/usr/include/openturns/swig/VisualTest_doc.i is in libopenturns-dev 1.7-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | %feature("docstring") OT::VisualTest::DrawHenryLine
"Draw an Henry plot as an OpenTURNS :class:`~openturns.Graph`.
Parameters
----------
sample : 2-d sequence of float
Tested (univariate) sample.
normal_distribution : :class:`~openturns.Normal`, optional
Tested (univariate) normal distribution.
If not given, this will build a :class:`~openturns.Normal` distribution
from the given sample using the :class:`~openturns.NormalFactory`.
Notes
-----
The Henry plot is a visual fitting test for the normal distribution. It
opposes the sample quantiles to those of the standard normal distribution
(the one with zero mean and unit variance) by plotting the following points
could:
.. math::
\\\\left(x^{(i)},
\\\\Phi^{-1}\\\\left[\\\\widehat{F}\\\\left(x^{(i)}\\\\right)\\\\right]
\\\\right), \\\\quad i = 1, \\\\ldots, m
where :math:`\\\\widehat{F}` denotes the empirical CDF of the sample and
:math:`\\\\Phi^{-1}` denotes the quantile function of the standard normal
distribution.
If the given sample fits to the tested normal distribution (with mean
:math:`\\\\mu` and standard deviation :math:`\\\\sigma`), then the points should be
close to be aligned (up to the uncertainty associated with the estimation
of the empirical probabilities) on the **Henry line** whose equation reads:
.. math::
y = \\\\frac{x - \\\\mu}{\\\\sigma}, \\\\quad x \\\\in \\\\Rset
The Henry plot is a special case of the more general QQ-plot.
See Also
--------
VisualTest_DrawQQplot, FittingTest_Kolmogorov
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal(2., .5)
>>> sample = distribution.getSample(30)
Draw an Henry plot against a given (wrong) Normal distribution:
>>> henry_graph = ot.VisualTest.DrawHenryLine(sample, distribution)
>>> henry_graph.setTitle('Henry plot against given %s' % ot.Normal(3., 1.))
>>> View(henry_graph).show()
Draw an Henry plot against an inferred Normal distribution:
>>> henry_graph = ot.VisualTest.DrawHenryLine(sample)
>>> henry_graph.setTitle('Henry plot against inferred Normal distribution')
>>> View(henry_graph).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::VisualTest::DrawQQplot
"Draw a QQ-plot as an OpenTURNS :class:`~openturns.Graph`.
Available usages:
VisualTest.DrawQQplot(*sample1, sample2, n_points*)
VisualTest.DrawQQplot(*sample1, distribution*);
Parameters
----------
sample1, sample2 : 2-d sequences of float
Tested samples.
ditribution : :class:`~openturns.Distribution`
Tested model.
n_points : int, optional
The number of points that is used for interpolating the empirical CDF of
the two samples (with possibly different sizes).
It will default to *DistributionImplementation-DefaultPointNumber* from
the :class:`~openturns.ResourceMap`.
Notes
-----
The QQ-plot is a visual fitting test for univariate distributions. It
opposes the sample quantiles to those of the tested quantity (either a
distribution or another sample) by plotting the following points could:
.. math::
\\\\left(x^{(i)},
\\\\bullet\\\\left[\\\\widehat{F}\\\\left(x^{(i)}\\\\right)\\\\right]
\\\\right), \\\\quad i = 1, \\\\ldots, m
where :math:`\\\\widehat{F}` denotes the empirical CDF of the (first) tested
sample and :math:`\\\\bullet` denotes either the quantile function of the tested
distribution or the empirical quantile function of the second tested sample.
If the given sample fits to the tested distribution or sample, then the points
should be close to be aligned (up to the uncertainty associated with the
estimation of the empirical probabilities) with the **first bissector** whose
equation reads:
.. math::
y = x, \\\\quad x \\\\in \\\\Rset
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Weibull(2., .5)
>>> sample = distribution.getSample(30)
>>> sample.setDescription(['Sample'])
Draw a QQ-plot against a given (inferred) distribution:
>>> tested_distribution = ot.WeibullFactory().build(sample)
>>> QQ_plot = ot.VisualTest.DrawQQplot(sample, tested_distribution)
>>> View(QQ_plot).show()
Draw a two-sample QQ-plot:
>>> another_sample = distribution.getSample(50)
>>> another_sample.setDescription(['Another sample'])
>>> QQ_plot = ot.VisualTest.DrawQQplot(sample, another_sample)
>>> View(QQ_plot).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::VisualTest::DrawCobWeb
"Draw a Cobweb plot as an OpenTURNS :class:`~openturns.Graph`.
Available usages:
VisualTest.DrawCobWeb(*inputSample, outputSample, min, max, color, quantileScale=True*)
Parameters
----------
inputSample : 2-d sequence of float of dimension :math:`n`
Input sample :math:`\\\\vect{X}`.
outputSample : 2-d sequence of float of dimension :math:`1`
Output sample :math:`Y`.
Ymin, Ymax : float such that *Ymax > Ymin*
Values to select lines which will colore in *color*. Must be in
:math:`[0,1]` if *quantileScale=True*.
color : str
Color of the specified curves.
quantileScale : bool
Flag indicating the scale of the *Ymin* and *Ymax*. If
*quantileScale=True*, they are expressed in the rank based scale;
otherwise, they are expressed in the :math:`Y`-values scale.
Notes
-----
Let's suppose a model :math:`f: \\\\Rset^n \\\\mapsto \\\\Rset`, where
:math:`f(\\\\vect{X})=Y`.
The Cobweb graph enables to visualize all the combinations of the input
variables which lead to a specific range of the output variable.
Each column represents one component :math:`X_i` of the input vector
:math:`\\\\vect{X}`. The last column represents the scalar output variable
:math:`Y`.
For each point :math:`\\\\vect{X}^j` of *inputSample*, each component :math:`X_i^j`
is noted on its respective axe and the last mark is the one which corresponds
to the associated :math:`Y^j`. A line joins all the marks. Thus, each point of
the sample corresponds to a particular line on the graph.
The scale of the axes are quantile based : each axe runs between 0 and 1 and
each value is represented by its quantile with respect to its marginal
empirical distribution.
It is interesting to select, among those lines, the ones which correspond to a
specific range of the output variable. These particular lines selected are
colored differently in *color*. This specific range is defined with *Ymin* and
*Ymax* in the quantile based scale of :math:`Y` or in its specific scale. In
that second case, the range is automatically converted into a quantile based
scale range.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> inputSample = ot.Normal(2).getSample(15)
>>> inputSample.setDescription(['X0', 'X1'])
>>> formula = ['cos(X0)+cos(2*X1)']
>>> model = ot.NumericalMathFunction(['X0', 'X1'], ['y'], formula)
>>> outputSample = model(inputSample)
Draw a Cobweb plot:
>>> cobweb = ot.VisualTest.DrawCobWeb(inputSample, outputSample, 1., 2., 'red', False)
>>> View(cobweb).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::VisualTest::DrawHistogram
"Draw an histogram as an OpenTURNS :class:`~openturns.Graph`.
Available usages:
VisualTest.DrawHistogram(*sample*)
VisualTest.DrawHistogram(*sample, barsNumber*)
Parameters
----------
sample : 2-d sequence of float
Sample to draw.
barsNumber : positive int
Number of barplots used to draw the histogram. If not specified, it is
automatically determined by OpenTURNS according to the Silverman rule.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> sample = ot.Normal(1).getSample(100)
Draw an histogram:
>>> hist = ot.VisualTest.DrawHistogram(sample)
>>> View(hist).show()"
// ---------------------------------------------------------------------
%feature("docstring") OT::VisualTest::DrawEmpiricalCDF
"Draw an empirical CDF as an OpenTURNS :class:`~openturns.Graph`.
Available usages:
VisualTest.DrawEmpiricalCDF(*sample, Xmin, Xmax*)
Parameters
----------
sample : 2-d sequence of float
Sample to draw.
Xmin, Xmax : float with *Xmin < Xmax*
Lower and upper boundaries of the graph.
Notes
-----
The created graph contains a staircase curve which is the empirical CDF of the
sample.
Examples
--------
>>> import openturns as ot
>>> from openturns.viewer import View
Generate a random sample from a Normal distribution:
>>> ot.RandomGenerator.SetSeed(0)
>>> sample = ot.Normal(1).getSample(100)
>>> Xmin = sample.getMin()[0]
>>> Xmax = sample.getMax()[0]
Draw an empirical CDF:
>>> empiricalCDF = ot.VisualTest.DrawEmpiricalCDF(sample, Xmin - 1.0, Xmax + 1.0)
>>> View(empiricalCDF).show()"
|