This file is indexed.

/usr/include/openturns/swig/WhiteNoise_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
%feature("docstring") OT::WhiteNoise
"White Noise process.

Parameters
----------
distribution : :class:`~openturns.Distribution` 
    Distribution of dimension :math:`d` of the white noise process.

mesh : :class:`~openturns.Mesh`, optional
    Mesh in :math:`\\\\Rset^n` over which the process is discretized. 
    By default, the mesh is reduced to one point in :math:`\\\\Rset` which coordinate is equal to 0.


Notes
-----
A second order white noise :math:`\\\\varepsilon: \\\\Omega \\\\times \\\\cD \\\\rightarrow \\\\Rset^d`  is a stochastic process of dimension :math:`d` such that the covariance function :math:`C(\\\\vect{s},\\\\vect{t})=\\\\delta(\\\\vect{t}-\\\\vect{s})C(\\\\vect{s},\\\\vect{s})` where :math:`C(\\\\vect{s},\\\\vect{s})`  is the covariance matrix of the process at vertex :math:`\\\\vect{s}` and :math:`\\\\delta` the Kroenecker function.

A process :math:`\\\\varepsilon` is a white noise if  all finite family of locations  :math:`(\\\\vect{t}_i)_{i=1, \\\\dots, n} \\\\in \\\\cD`, :math:`(\\\\varepsilon_{\\\\vect{t}_i})_{i=1, \\\\dots, n}` is independent and identically distributed.


Examples
--------
Create a normal normal white noise of dimension 1:

>>> import openturns as ot
>>> myDist = ot.Normal()
>>> myMesh = ot.IntervalMesher([100]*2).build(ot.Interval([0.0]*2, [1.0]*2))
>>> myWN = ot.WhiteNoise(myDist, myMesh)

Get a realization:

>>> myReal =myWN.getRealization()"

// ---------------------------------------------------------------------
%feature("docstring") OT::WhiteNoise::getDistribution
"Accessor to the distribution.

Returns
-------
distribution : :class:`~openturns.Distribution` 
    The distribution of dimension :math:`d` of the white noise."

// ---------------------------------------------------------------------
%feature("docstring") OT::WhiteNoise::getMarginal
"Accessor to the marginal process.

Parameters
----------
N : integer
    The  index of the marginal to be extracted.

indices : :class:`~openturns.Indices`, optional
    The list of the indexes of the marginal to be extracted.

Returns
-------
wn : :class:`~openturns.WhiteNoise` 
    The marginal white noise."

// ---------------------------------------------------------------------
%feature("docstring") OT::WhiteNoise::setDistribution
"Accessor to the distribution.

Parameters
----------
distribution : :class:`~openturns.Distribution` 
    The distribution of dimension :math:`d` of the white noise."

// ---------------------------------------------------------------------