This file is indexed.

/usr/include/openturns/swig/Wilks_doc.i is in libopenturns-dev 1.7-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
%feature("docstring") OT::Wilks
"Class to evaluate the Wilks number.

Available constructor:
    Wilks(*randomVector*)

Parameters
----------
randomVector : :class:`~openturns.RandomVector` of dimension 1
    Output variable of interest.

Notes
-----
This class is a static class which enables the evaluation of the Wilks number:
the minimal sample size :math:`N_{\\\\alpha, \\\\beta, i}` to perform in order to
garantee that the empirical quantile :math:`\\\\alpha`, noted
:math:`\\\\tilde{q}_{\\\\alpha} N_{\\\\alpha, \\\\beta, i}` evaluated with the
:math:`(n - i)^{th}` maximum of the sample, noted :math:`X_{n - i}` be greater
than the theoretical quantile :math:`q_{\\\\alpha}` with a probability at least
:math:`\\\\beta`:

.. math::

    \\\\Pset (\\\\tilde{q}_{\\\\alpha} N_{\\\\alpha, \\\\beta, i} > q_{\\\\alpha}) > \\\\beta

where :math:`\\\\tilde{q}_{\\\\alpha} N_{\\\\alpha, \\\\beta, i} = X_{n-i}`."

// ---------------------------------------------------------------------

%feature("docstring") OT::Wilks::ComputeSampleSize
"Evaluate the size of the sample.

Parameters
----------
alpha : positive float :math:`< 1`
    The order of the quantile we want to evaluate.
beta : positive float :math:`< 1`
    Confidence on the evaluation of the empirical quantile.
i : int
    Rank of the maximum which will evaluate the empirical quantile. Default
    :math:`i = 0` (maximum of the sample)

Returns
-------
w : int
    the Wilks number."

// ---------------------------------------------------------------------

%feature("docstring") OT::Wilks::computeQuantileBound
"Evaluate the bound of the quantile.

Parameters
----------
alpha : positive float :math:`< 1`
    The order of the quantile we want to evaluate.
beta : positive float :math:`< 1`
    Confidence on the evaluation of the empirical quantile.
i : int
    Rank of the maximum which will evaluate the empirical quantile. Default
    :math:`i = 0` (maximum of the sample)

Returns
-------
q : :class:`~openturns.NumericalPoint`
    The estimate of the quantile upper bound for the given quantile level, at
    the given confidence level and using the given upper statistics."