This file is indexed.

/usr/include/openvdb/io/Compression.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////

#ifndef OPENVDB_IO_COMPRESSION_HAS_BEEN_INCLUDED
#define OPENVDB_IO_COMPRESSION_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/math/Math.h> // for negative()
#include "io.h" // for getDataCompression(), etc.
#include <boost/scoped_array.hpp>
#include <algorithm>
#include <iostream>
#include <string>
#include <vector>


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace io {

/// @brief OR-able bit flags for compression options on input and output streams
/// @details
/// <dl>
/// <dt><tt>COMPRESS_NONE</tt>
/// <dd>On write, don't compress data.<br>
///     On read, the input stream contains uncompressed data.
///
/// <dt><tt>COMPRESS_ZIP</tt>
/// <dd>When writing grids other than level sets or fog volumes, apply
///     ZLIB compression to internal and leaf node value buffers.<br>
///     When reading grids other than level sets or fog volumes, indicate that
///     the value buffers of internal and leaf nodes are ZLIB-compressed.<br>
///     ZLIB compresses well but is slow.
///
/// <dt><tt>COMPRESS_ACTIVE_MASK</tt>
/// <dd>When writing a grid of any class, don't output a node's inactive values
///     if it has two or fewer distinct values.  Instead, output minimal information
///     to permit the lossless reconstruction of inactive values.<br>
///     On read, nodes might have been stored without inactive values.
///     Where necessary, reconstruct inactive values from available information.
///
/// <dt><tt>COMPRESS_BLOSC</tt>
/// <dd>When writing grids other than level sets or fog volumes, apply
///     Blosc compression to internal and leaf node value buffers.<br>
///     When reading grids other than level sets or fog volumes, indicate that
///     the value buffers of internal and leaf nodes are Blosc-compressed.<br>
///     Blosc is much faster than ZLIB and produces comparable file sizes.
/// </dl>
enum {
    COMPRESS_NONE           = 0,
    COMPRESS_ZIP            = 0x1,
    COMPRESS_ACTIVE_MASK    = 0x2,
    COMPRESS_BLOSC          = 0x4
};

/// Return a string describing the given compression flags.
OPENVDB_API std::string compressionToString(uint32_t flags);


////////////////////////////////////////


/// @internal Per-node indicator byte that specifies what additional metadata
/// is stored to permit reconstruction of inactive values
enum {
    /*0*/ NO_MASK_OR_INACTIVE_VALS,     // no inactive vals, or all inactive vals are +background
    /*1*/ NO_MASK_AND_MINUS_BG,         // all inactive vals are -background
    /*2*/ NO_MASK_AND_ONE_INACTIVE_VAL, // all inactive vals have the same non-background val
    /*3*/ MASK_AND_NO_INACTIVE_VALS,    // mask selects between -background and +background
    /*4*/ MASK_AND_ONE_INACTIVE_VAL,    // mask selects between backgd and one other inactive val
    /*5*/ MASK_AND_TWO_INACTIVE_VALS,   // mask selects between two non-background inactive vals
    /*6*/ NO_MASK_AND_ALL_VALS          // > 2 inactive vals, so no mask compression at all
};


////////////////////////////////////////


/// @brief RealToHalf and its specializations define a mapping from
/// floating-point data types to analogous half float types.
template<typename T>
struct RealToHalf {
    enum { isReal = false }; // unless otherwise specified, type T is not a floating-point type
    typedef T HalfT; // type T's half float analogue is T itself
    static HalfT convert(const T& val) { return val; }
};
template<> struct RealToHalf<float> {
    enum { isReal = true };
    typedef half HalfT;
    static HalfT convert(float val) { return HalfT(val); }
};
template<> struct RealToHalf<double> {
    enum { isReal = true };
    typedef half HalfT;
    // A half can only be constructed from a float, so cast the value to a float first.
    static HalfT convert(double val) { return HalfT(float(val)); }
};
template<> struct RealToHalf<Vec2s> {
    enum { isReal = true };
    typedef Vec2H HalfT;
    static HalfT convert(const Vec2s& val) { return HalfT(val); }
};
template<> struct RealToHalf<Vec2d> {
    enum { isReal = true };
    typedef Vec2H HalfT;
    // A half can only be constructed from a float, so cast the vector's elements to floats first.
    static HalfT convert(const Vec2d& val) { return HalfT(Vec2s(val)); }
};
template<> struct RealToHalf<Vec3s> {
    enum { isReal = true };
    typedef Vec3H HalfT;
    static HalfT convert(const Vec3s& val) { return HalfT(val); }
};
template<> struct RealToHalf<Vec3d> {
    enum { isReal = true };
    typedef Vec3H HalfT;
    // A half can only be constructed from a float, so cast the vector's elements to floats first.
    static HalfT convert(const Vec3d& val) { return HalfT(Vec3s(val)); }
};


/// Return the given value truncated to 16-bit float precision.
template<typename T>
inline T
truncateRealToHalf(const T& val)
{
    return T(RealToHalf<T>::convert(val));
}


////////////////////////////////////////


OPENVDB_API void zipToStream(std::ostream&, const char* data, size_t numBytes);
OPENVDB_API void unzipFromStream(std::istream&, char* data, size_t numBytes);
OPENVDB_API void bloscToStream(std::ostream&, const char* data, size_t valSize, size_t numVals);
OPENVDB_API void bloscFromStream(std::istream&, char* data, size_t numBytes);

/// @brief Read data from a stream.
/// @param is           the input stream
/// @param data         the contiguous array of data to read in
/// @param count        the number of elements to read in
/// @param compression  whether and how the data is compressed (either COMPRESS_NONE,
///                     COMPRESS_ZIP, COMPRESS_ACTIVE_MASK or COMPRESS_BLOSC)
/// @throw IoError if @a compression is COMPRESS_BLOSC but OpenVDB was compiled
/// without Blosc support.
/// @details This default implementation is instantiated only for types
/// whose size can be determined by the sizeof() operator.
template<typename T>
inline void
readData(std::istream& is, T* data, Index count, uint32_t compression)
{
    if (compression & COMPRESS_BLOSC) {
        bloscFromStream(is, reinterpret_cast<char*>(data), sizeof(T) * count);
    } else if (compression & COMPRESS_ZIP) {
        unzipFromStream(is, reinterpret_cast<char*>(data), sizeof(T) * count);
    } else {
        is.read(reinterpret_cast<char*>(data), sizeof(T) * count);
    }
}

/// Specialization for std::string input
template<>
inline void
readData<std::string>(std::istream& is, std::string* data, Index count, uint32_t /*compression*/)
{
    for (Index i = 0; i < count; ++i) {
        size_t len = 0;
        is >> len;
        //data[i].resize(len);
        //is.read(&(data[i][0]), len);

        std::string buffer(len+1, ' ');
        is.read(&buffer[0], len+1 );
        data[i].assign(buffer, 0, len);
    }
}

/// HalfReader wraps a static function, read(), that is analogous to readData(), above,
/// except that it is partially specialized for floating-point types in order to promote
/// 16-bit half float values to full float.  A wrapper class is required because
/// only classes, not functions, can be partially specialized.
template<bool IsReal, typename T> struct HalfReader;
/// Partial specialization for non-floating-point types (no half to float promotion)
template<typename T>
struct HalfReader</*IsReal=*/false, T> {
    static inline void read(std::istream& is, T* data, Index count, uint32_t compression) {
        readData(is, data, count, compression);
    }
};
/// Partial specialization for floating-point types
template<typename T>
struct HalfReader</*IsReal=*/true, T> {
    typedef typename RealToHalf<T>::HalfT HalfT;
    static inline void read(std::istream& is, T* data, Index count, uint32_t compression) {
        if (count < 1) return;
        std::vector<HalfT> halfData(count); // temp buffer into which to read half float values
        readData<HalfT>(is, reinterpret_cast<HalfT*>(&halfData[0]), count, compression);
        // Copy half float values from the temporary buffer to the full float output array.
        std::copy(halfData.begin(), halfData.end(), data);
    }
};


/// Write data to a stream.
/// @param os           the output stream
/// @param data         the contiguous array of data to write
/// @param count        the number of elements to write out
/// @param compression  whether and how to compress the data (either COMPRESS_NONE,
///                     COMPRESS_ZIP, COMPRESS_ACTIVE_MASK or COMPRESS_BLOSC)
/// @throw IoError if @a compression is COMPRESS_BLOSC but OpenVDB was compiled
/// without Blosc support.
/// @details This default implementation is instantiated only for types
/// whose size can be determined by the sizeof() operator.
template<typename T>
inline void
writeData(std::ostream &os, const T *data, Index count, uint32_t compression)
{
    if (compression & COMPRESS_BLOSC) {
        bloscToStream(os, reinterpret_cast<const char*>(data), sizeof(T), count);
    } else if (compression & COMPRESS_ZIP) {
        zipToStream(os, reinterpret_cast<const char*>(data), sizeof(T) * count);
    } else {
        os.write(reinterpret_cast<const char*>(data), sizeof(T) * count);
    }
}

/// Specialization for std::string output
template<>
inline void
writeData<std::string>(std::ostream& os, const std::string* data, Index count,
    uint32_t /*compression*/) ///< @todo add compression
{
    for (Index i = 0; i < count; ++i) {
        const size_t len = data[i].size();
        os << len;
        os.write(data[i].c_str(), len+1);
        //os.write(&(data[i][0]), len );
    }
}

/// HalfWriter wraps a static function, write(), that is analogous to writeData(), above,
/// except that it is partially specialized for floating-point types in order to quantize
/// floating-point values to 16-bit half float.  A wrapper class is required because
/// only classes, not functions, can be partially specialized.
template<bool IsReal, typename T> struct HalfWriter;
/// Partial specialization for non-floating-point types (no float to half quantization)
template<typename T>
struct HalfWriter</*IsReal=*/false, T> {
    static inline void write(std::ostream& os, const T* data, Index count, uint32_t compression) {
        writeData(os, data, count, compression);
    }
};
/// Partial specialization for floating-point types
template<typename T>
struct HalfWriter</*IsReal=*/true, T> {
    typedef typename RealToHalf<T>::HalfT HalfT;
    static inline void write(std::ostream& os, const T* data, Index count, uint32_t compression) {
        if (count < 1) return;
        // Convert full float values to half float, then output the half float array.
        std::vector<HalfT> halfData(count);
        for (Index i = 0; i < count; ++i) halfData[i] = RealToHalf<T>::convert(data[i]);
        writeData<HalfT>(os, reinterpret_cast<const HalfT*>(&halfData[0]), count, compression);
    }
};
#ifdef _MSC_VER
/// Specialization to avoid double to float warnings in MSVC
template<>
struct HalfWriter</*IsReal=*/true, double> {
    typedef RealToHalf<double>::HalfT HalfT;
    static inline void write(std::ostream& os, const double* data, Index count,
        uint32_t compression)
    {
        if (count < 1) return;
        // Convert full float values to half float, then output the half float array.
        std::vector<HalfT> halfData(count);
        for (Index i = 0; i < count; ++i) halfData[i] = RealToHalf<double>::convert(data[i]);
        writeData<HalfT>(os, reinterpret_cast<const HalfT*>(&halfData[0]), count, compression);
    }
};
#endif // _MSC_VER


////////////////////////////////////////


/// Populate the given buffer with @a destCount values of type @c ValueT
/// read from the given stream, taking into account that the stream might
/// have been compressed via one of several supported schemes.
/// [Mainly for internal use]
/// @param is         a stream from which to read data (possibly compressed,
///                   depending on the stream's compression settings)
/// @param destBuf    a buffer into which to read values of type @c ValueT
/// @param destCount  the number of values to be stored in the buffer
/// @param valueMask  a bitmask (typically, a node's value mask) indicating
///                   which positions in the buffer correspond to active values
/// @param fromHalf   if true, read 16-bit half floats from the input stream
///                   and convert them to full floats
template<typename ValueT, typename MaskT>
inline void
readCompressedValues(std::istream& is, ValueT* destBuf, Index destCount,
    const MaskT& valueMask, bool fromHalf)
{
    // Get the stream's compression settings.
    const uint32_t compression = getDataCompression(is);
    const bool maskCompressed = compression & COMPRESS_ACTIVE_MASK;

    int8_t metadata = NO_MASK_AND_ALL_VALS;
    if (getFormatVersion(is) >= OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION) {
        // Read the flag that specifies what, if any, additional metadata
        // (selection mask and/or inactive value(s)) is saved.
        is.read(reinterpret_cast<char*>(&metadata), /*bytes=*/1);
    }

    ValueT background = zeroVal<ValueT>();
    if (const void* bgPtr = getGridBackgroundValuePtr(is)) {
        background = *static_cast<const ValueT*>(bgPtr);
    }
    ValueT inactiveVal1 = background;
    ValueT inactiveVal0 =
        ((metadata == NO_MASK_OR_INACTIVE_VALS) ? background : math::negative(background));

    if (metadata == NO_MASK_AND_ONE_INACTIVE_VAL ||
        metadata == MASK_AND_ONE_INACTIVE_VAL ||
        metadata == MASK_AND_TWO_INACTIVE_VALS)
    {
        // Read one of at most two distinct inactive values.
        is.read(reinterpret_cast<char*>(&inactiveVal0), sizeof(ValueT));
        if (metadata == MASK_AND_TWO_INACTIVE_VALS) {
            // Read the second of two distinct inactive values.
            is.read(reinterpret_cast<char*>(&inactiveVal1), sizeof(ValueT));
        }
    }

    MaskT selectionMask;
    if (metadata == MASK_AND_NO_INACTIVE_VALS ||
        metadata == MASK_AND_ONE_INACTIVE_VAL ||
        metadata == MASK_AND_TWO_INACTIVE_VALS)
    {
        // For use in mask compression (only), read the bitmask that selects
        // between two distinct inactive values.
        selectionMask.load(is);
    }

    ValueT* tempBuf = destBuf;
    boost::scoped_array<ValueT> scopedTempBuf;

    Index tempCount = destCount;
    if (maskCompressed && metadata != NO_MASK_AND_ALL_VALS
        && getFormatVersion(is) >= OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION)
    {
        tempCount = valueMask.countOn();
        if (tempCount != destCount) {
            // If this node has inactive voxels, allocate a temporary buffer
            // into which to read just the active values.
            scopedTempBuf.reset(new ValueT[tempCount]);
            tempBuf = scopedTempBuf.get();
        }
    }

    // Read in the buffer.
    if (fromHalf) {
        HalfReader<RealToHalf<ValueT>::isReal, ValueT>::read(is, tempBuf, tempCount, compression);
    } else {
        readData<ValueT>(is, tempBuf, tempCount, compression);
    }

    // If mask compression is enabled and the number of active values read into
    // the temp buffer is smaller than the size of the destination buffer,
    // then there are missing (inactive) values.
    if (maskCompressed && tempCount != destCount) {
        // Restore inactive values, using the background value and, if available,
        // the inside/outside mask.  (For fog volumes, the destination buffer is assumed
        // to be initialized to background value zero, so inactive values can be ignored.)
        for (Index destIdx = 0, tempIdx = 0; destIdx < MaskT::SIZE; ++destIdx) {
            if (valueMask.isOn(destIdx)) {
                // Copy a saved active value into this node's buffer.
                destBuf[destIdx] = tempBuf[tempIdx];
                ++tempIdx;
            } else {
                // Reconstruct an unsaved inactive value and copy it into this node's buffer.
                destBuf[destIdx] = (selectionMask.isOn(destIdx) ? inactiveVal1 : inactiveVal0);
            }
        }
    }
}


/// Write @a srcCount values of type @c ValueT to the given stream, optionally
/// after compressing the values via one of several supported schemes.
/// [Mainly for internal use]
/// @param os         a stream to which to write data (possibly compressed, depending
///                   on the stream's compression settings)
/// @param srcBuf     a buffer containing values of type @c ValueT to be written
/// @param srcCount   the number of values stored in the buffer
/// @param valueMask  a bitmask (typically, a node's value mask) indicating
///                   which positions in the buffer correspond to active values
/// @param childMask  a bitmask (typically, a node's child mask) indicating
///                   which positions in the buffer correspond to child node pointers
/// @param toHalf     if true, convert floating-point values to 16-bit half floats
template<typename ValueT, typename MaskT>
inline void
writeCompressedValues(std::ostream& os, ValueT* srcBuf, Index srcCount,
    const MaskT& valueMask, const MaskT& childMask, bool toHalf)
{
    struct Local {
        // Comparison function for values
        static inline bool eq(const ValueT& a, const ValueT& b) {
            return math::isExactlyEqual(a, b);
        }
    };

    // Get the stream's compression settings.
    const uint32_t compress = getDataCompression(os);
    const bool maskCompress = compress & COMPRESS_ACTIVE_MASK;

    Index tempCount = srcCount;
    ValueT* tempBuf = srcBuf;
    boost::scoped_array<ValueT> scopedTempBuf;

    int8_t metadata = NO_MASK_AND_ALL_VALS;

    if (!maskCompress) {
        os.write(reinterpret_cast<const char*>(&metadata), /*bytes=*/1);
    } else {
        // A valid level set's inactive values are either +background (outside)
        // or -background (inside), and a fog volume's inactive values are all zero.
        // Rather than write out all of these values, we can store just the active values
        // (given that the value mask specifies their positions) and, if necessary,
        // an inside/outside bitmask.

        const ValueT zero = zeroVal<ValueT>();
        ValueT background = zero;
        if (const void* bgPtr = getGridBackgroundValuePtr(os)) {
            background = *static_cast<const ValueT*>(bgPtr);
        }

        /// @todo Consider all values, not just inactive values?
        ValueT inactiveVal[2] = { background, background };
        int numUniqueInactiveVals = 0;
        for (typename MaskT::OffIterator it = valueMask.beginOff();
            numUniqueInactiveVals < 3 && it; ++it)
        {
            const Index32 idx = it.pos();

            // Skip inactive values that are actually child node pointers.
            if (childMask.isOn(idx)) continue;

            const ValueT& val = srcBuf[idx];
            const bool unique = !(
                (numUniqueInactiveVals > 0 && Local::eq(val, inactiveVal[0])) ||
                (numUniqueInactiveVals > 1 && Local::eq(val, inactiveVal[1]))
            );
            if (unique) {
                if (numUniqueInactiveVals < 2) inactiveVal[numUniqueInactiveVals] = val;
                ++numUniqueInactiveVals;
            }
        }

        metadata = NO_MASK_OR_INACTIVE_VALS;

        if (numUniqueInactiveVals == 1) {
            if (!Local::eq(inactiveVal[0], background)) {
                if (Local::eq(inactiveVal[0], math::negative(background))) {
                    metadata = NO_MASK_AND_MINUS_BG;
                } else {
                    metadata = NO_MASK_AND_ONE_INACTIVE_VAL;
                }
            }
        } else if (numUniqueInactiveVals == 2) {
            metadata = NO_MASK_OR_INACTIVE_VALS;
            if (!Local::eq(inactiveVal[0], background) && !Local::eq(inactiveVal[1], background)) {
                // If neither inactive value is equal to the background, both values
                // need to be saved, along with a mask that selects between them.
                metadata = MASK_AND_TWO_INACTIVE_VALS;

            } else if (Local::eq(inactiveVal[1], background)) {
                if (Local::eq(inactiveVal[0], math::negative(background))) {
                    // If the second inactive value is equal to the background and
                    // the first is equal to -background, neither value needs to be saved,
                    // but save a mask that selects between -background and +background.
                    metadata = MASK_AND_NO_INACTIVE_VALS;
                } else {
                    // If the second inactive value is equal to the background, only
                    // the first value needs to be saved, along with a mask that selects
                    // between it and the background.
                    metadata = MASK_AND_ONE_INACTIVE_VAL;
                }
            } else if (Local::eq(inactiveVal[0], background)) {
                if (Local::eq(inactiveVal[1], math::negative(background))) {
                    // If the first inactive value is equal to the background and
                    // the second is equal to -background, neither value needs to be saved,
                    // but save a mask that selects between -background and +background.
                    metadata = MASK_AND_NO_INACTIVE_VALS;
                    std::swap(inactiveVal[0], inactiveVal[1]);
                } else {
                    // If the first inactive value is equal to the background, swap it
                    // with the second value and save only that value, along with a mask
                    // that selects between it and the background.
                    std::swap(inactiveVal[0], inactiveVal[1]);
                    metadata = MASK_AND_ONE_INACTIVE_VAL;
                }
            }
        } else if (numUniqueInactiveVals > 2) {
            metadata = NO_MASK_AND_ALL_VALS;
        }

        os.write(reinterpret_cast<const char*>(&metadata), /*bytes=*/1);

        if (metadata == NO_MASK_AND_ONE_INACTIVE_VAL ||
            metadata == MASK_AND_ONE_INACTIVE_VAL ||
            metadata == MASK_AND_TWO_INACTIVE_VALS)
        {
            if (!toHalf) {
                // Write one of at most two distinct inactive values.
                os.write(reinterpret_cast<const char*>(&inactiveVal[0]), sizeof(ValueT));
                if (metadata == MASK_AND_TWO_INACTIVE_VALS) {
                    // Write the second of two distinct inactive values.
                    os.write(reinterpret_cast<const char*>(&inactiveVal[1]), sizeof(ValueT));
                }
            } else {
                // Write one of at most two distinct inactive values.
                ValueT truncatedVal = static_cast<ValueT>(truncateRealToHalf(inactiveVal[0]));
                os.write(reinterpret_cast<const char*>(&truncatedVal), sizeof(ValueT));
                if (metadata == MASK_AND_TWO_INACTIVE_VALS) {
                    // Write the second of two distinct inactive values.
                    truncatedVal = truncateRealToHalf(inactiveVal[1]);
                    os.write(reinterpret_cast<const char*>(&truncatedVal), sizeof(ValueT));
                }
            }
        }

        if (metadata == NO_MASK_AND_ALL_VALS) {
            // If there are more than two unique inactive values, the entire input buffer
            // needs to be saved (both active and inactive values).
            /// @todo Save the selection mask as long as most of the inactive values
            /// are one of two values?
        } else {
            // Create a new array to hold just the active values.
            scopedTempBuf.reset(new ValueT[srcCount]);
            tempBuf = scopedTempBuf.get();

            if (metadata == NO_MASK_OR_INACTIVE_VALS ||
                metadata == NO_MASK_AND_MINUS_BG ||
                metadata == NO_MASK_AND_ONE_INACTIVE_VAL)
            {
                // Copy active values to the contiguous array.
                tempCount = 0;
                for (typename MaskT::OnIterator it = valueMask.beginOn(); it; ++it, ++tempCount) {
                    tempBuf[tempCount] = srcBuf[it.pos()];
                }
            } else {
                // Copy active values to a new, contiguous array and populate a bitmask
                // that selects between two distinct inactive values.
                MaskT selectionMask;
                tempCount = 0;
                for (Index srcIdx = 0; srcIdx < srcCount; ++srcIdx) {
                    if (valueMask.isOn(srcIdx)) { // active value
                        tempBuf[tempCount] = srcBuf[srcIdx];
                        ++tempCount;
                    } else { // inactive value
                        if (Local::eq(srcBuf[srcIdx], inactiveVal[1])) {
                            selectionMask.setOn(srcIdx); // inactive value 1
                        } // else inactive value 0
                    }
                }
                assert(tempCount == valueMask.countOn());

                // Write out the mask that selects between two inactive values.
                selectionMask.save(os);
            }
        }
    }

    // Write out the buffer.
    if (toHalf) {
        HalfWriter<RealToHalf<ValueT>::isReal, ValueT>::write(os, tempBuf, tempCount, compress);
    } else {
        writeData(os, tempBuf, tempCount, compress);
    }
}

} // namespace io
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_IO_COMPRESSION_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )