/usr/include/openvdb/math/Coord.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED
#include <openvdb/Platform.h>
#include "Math.h"
#include "Vec3.h"
namespace tbb { class split; } // forward declaration
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
/// @brief Signed (x, y, z) 32-bit integer coordinates
class Coord
{
public:
typedef int32_t Int32;
typedef uint32_t Index32;
typedef Vec3<Int32> Vec3i;
typedef Vec3<Index32> Vec3I;
typedef Int32 ValueType;
typedef std::numeric_limits<ValueType> Limits;
Coord() { mVec[0] = mVec[1] = mVec[2] = 0; }
explicit Coord(Int32 xyz) { mVec[0] = mVec[1] = mVec[2] = xyz; }
Coord(Int32 x, Int32 y, Int32 z) { mVec[0] = x; mVec[1] = y; mVec[2] = z; }
explicit Coord(const Vec3i& v) { mVec[0] = v[0]; mVec[1] = v[1]; mVec[2] = v[2]; }
explicit Coord(const Vec3I& v)
{
mVec[0] = Int32(v[0]); mVec[1] = Int32(v[1]); mVec[2] = Int32(v[2]);
}
explicit Coord(const Int32* v) { mVec[0] = v[0]; mVec[1] = v[1]; mVec[2] = v[2]; }
/// @brief Return the smallest possible coordinate
static Coord min() { return Coord(Limits::min()); }
/// @brief Return the largest possible coordinate
static Coord max() { return Coord(Limits::max()); }
/// @brief Return @a xyz rounded to the closest integer coordinates
/// (cell centered conversion).
template<typename T> static Coord round(const Vec3<T>& xyz)
{
return Coord(Int32(Round(xyz[0])), Int32(Round(xyz[1])), Int32(Round(xyz[2])));
}
/// @brief Return the largest integer coordinates that are not greater
/// than @a xyz (node centered conversion).
template<typename T> static Coord floor(const Vec3<T>& xyz)
{
return Coord(Int32(Floor(xyz[0])), Int32(Floor(xyz[1])), Int32(Floor(xyz[2])));
}
/// @brief Return the largest integer coordinates that are not greater
/// than @a xyz+1 (node centered conversion).
template<typename T> static Coord ceil(const Vec3<T>& xyz)
{
return Coord(Int32(Ceil(xyz[0])), Int32(Ceil(xyz[1])), Int32(Ceil(xyz[2])));
}
Coord& reset(Int32 x, Int32 y, Int32 z)
{
mVec[0] = x; mVec[1] = y; mVec[2] = z;
return *this;
}
Coord& reset(Int32 xyz) { return this->reset(xyz, xyz, xyz); }
Coord& setX(Int32 x) { mVec[0] = x; return *this; }
Coord& setY(Int32 y) { mVec[1] = y; return *this; }
Coord& setZ(Int32 z) { mVec[2] = z; return *this; }
Coord& offset(Int32 dx, Int32 dy, Int32 dz)
{
mVec[0]+=dx; mVec[1]+=dy; mVec[2]+=dz;
return *this;
}
Coord& offset(Int32 n) { return this->offset(n, n, n); }
Coord offsetBy(Int32 dx, Int32 dy, Int32 dz) const
{
return Coord(mVec[0] + dx, mVec[1] + dy, mVec[2] + dz);
}
Coord offsetBy(Int32 n) const { return offsetBy(n, n, n); }
Coord& operator+=(const Coord& rhs)
{
mVec[0] += rhs[0]; mVec[1] += rhs[1]; mVec[2] += rhs[2];
return *this;
}
Coord& operator-=(const Coord& rhs)
{
mVec[0] -= rhs[0]; mVec[1] -= rhs[1]; mVec[2] -= rhs[2];
return *this;
}
Coord operator+(const Coord& rhs) const
{
return Coord(mVec[0] + rhs[0], mVec[1] + rhs[1], mVec[2] + rhs[2]);
}
Coord operator-(const Coord& rhs) const
{
return Coord(mVec[0] - rhs[0], mVec[1] - rhs[1], mVec[2] - rhs[2]);
}
Coord operator-() const { return Coord(-mVec[0], -mVec[1], -mVec[2]); }
Coord operator>> (size_t n) const { return Coord(mVec[0]>>n, mVec[1]>>n, mVec[2]>>n); }
Coord operator<< (size_t n) const { return Coord(mVec[0]<<n, mVec[1]<<n, mVec[2]<<n); }
Coord& operator<<=(size_t n) { mVec[0]<<=n; mVec[1]<<=n; mVec[2]<<=n; return *this; }
Coord& operator>>=(size_t n) { mVec[0]>>=n; mVec[1]>>=n; mVec[2]>>=n; return *this; }
Coord operator& (Int32 n) const { return Coord(mVec[0] & n, mVec[1] & n, mVec[2] & n); }
Coord operator| (Int32 n) const { return Coord(mVec[0] | n, mVec[1] | n, mVec[2] | n); }
Coord& operator&= (Int32 n) { mVec[0]&=n; mVec[1]&=n; mVec[2]&=n; return *this; }
Coord& operator|= (Int32 n) { mVec[0]|=n; mVec[1]|=n; mVec[2]|=n; return *this; }
Int32 x() const { return mVec[0]; }
Int32 y() const { return mVec[1]; }
Int32 z() const { return mVec[2]; }
Int32 operator[](size_t i) const { assert(i < 3); return mVec[i]; }
Int32& x() { return mVec[0]; }
Int32& y() { return mVec[1]; }
Int32& z() { return mVec[2]; }
Int32& operator[](size_t i) { assert(i < 3); return mVec[i]; }
const Int32* data() const { return mVec; }
Int32* data() { return mVec; }
const Int32* asPointer() const { return mVec; }
Int32* asPointer() { return mVec; }
Vec3d asVec3d() const { return Vec3d(double(mVec[0]), double(mVec[1]), double(mVec[2])); }
Vec3s asVec3s() const { return Vec3s(float(mVec[0]), float(mVec[1]), float(mVec[2])); }
Vec3i asVec3i() const { return Vec3i(mVec); }
Vec3I asVec3I() const { return Vec3I(Index32(mVec[0]), Index32(mVec[1]), Index32(mVec[2])); }
void asXYZ(Int32& x, Int32& y, Int32& z) const { x = mVec[0]; y = mVec[1]; z = mVec[2]; }
bool operator==(const Coord& rhs) const
{
return (mVec[0] == rhs.mVec[0] && mVec[1] == rhs.mVec[1] && mVec[2] == rhs.mVec[2]);
}
bool operator!=(const Coord& rhs) const { return !(*this == rhs); }
/// Lexicographic less than
bool operator<(const Coord& rhs) const
{
return this->x() < rhs.x() ? true : this->x() > rhs.x() ? false
: this->y() < rhs.y() ? true : this->y() > rhs.y() ? false
: this->z() < rhs.z() ? true : false;
}
/// Lexicographic less than or equal to
bool operator<=(const Coord& rhs) const
{
return this->x() < rhs.x() ? true : this->x() > rhs.x() ? false
: this->y() < rhs.y() ? true : this->y() > rhs.y() ? false
: this->z() <=rhs.z() ? true : false;
}
/// Lexicographic greater than
bool operator>(const Coord& rhs) const { return !(*this <= rhs); }
/// Lexicographic greater than or equal to
bool operator>=(const Coord& rhs) const { return !(*this < rhs); }
/// Perform a component-wise minimum with the other Coord.
void minComponent(const Coord& other)
{
mVec[0] = std::min(mVec[0], other.mVec[0]);
mVec[1] = std::min(mVec[1], other.mVec[1]);
mVec[2] = std::min(mVec[2], other.mVec[2]);
}
/// Perform a component-wise maximum with the other Coord.
void maxComponent(const Coord& other)
{
mVec[0] = std::max(mVec[0], other.mVec[0]);
mVec[1] = std::max(mVec[1], other.mVec[1]);
mVec[2] = std::max(mVec[2], other.mVec[2]);
}
/// Return the component-wise minimum of the two Coords.
static inline Coord minComponent(const Coord& lhs, const Coord& rhs)
{
return Coord(std::min(lhs.x(), rhs.x()),
std::min(lhs.y(), rhs.y()),
std::min(lhs.z(), rhs.z()));
}
/// Return the component-wise maximum of the two Coords.
static inline Coord maxComponent(const Coord& lhs, const Coord& rhs)
{
return Coord(std::max(lhs.x(), rhs.x()),
std::max(lhs.y(), rhs.y()),
std::max(lhs.z(), rhs.z()));
}
/// Return true if any of the components of @a a are smaller than the
/// corresponding components of @a b.
static inline bool lessThan(const Coord& a, const Coord& b)
{
return (a[0] < b[0] || a[1] < b[1] || a[2] < b[2]);
}
/// @brief Return the index (0, 1 or 2) with the smallest value.
size_t minIndex() const { return MinIndex(mVec); }
/// @brief Return the index (0, 1 or 2) with the largest value.
size_t maxIndex() const { return MaxIndex(mVec); }
void read(std::istream& is) { is.read(reinterpret_cast<char*>(mVec), sizeof(mVec)); }
void write(std::ostream& os) const
{
os.write(reinterpret_cast<const char*>(mVec), sizeof(mVec));
}
private:
Int32 mVec[3];
}; // class Coord
inline Coord
Abs(const Coord& xyz)
{
return Coord(Abs(xyz[0]), Abs(xyz[1]), Abs(xyz[2]));
}
////////////////////////////////////////
/// @brief Axis-aligned bounding box of signed integer coordinates
/// @note The range of the integer coordinates, [min, max], is inclusive.
/// Thus, a bounding box with min = max is not empty but rather encloses
/// a single coordinate.
class CoordBBox
{
public:
typedef uint64_t Index64;
typedef Coord::ValueType ValueType;
/// @brief Iterator over Coord domain covered by a CoordBBox
///
/// @note If ZYX is true Z is the fastest moving coordinate, else
/// it is the X coordinate, i.e. XYZ traversal
template<bool ZYX>
class Iterator {
public:
/// @brief C-tor from a bounding box
Iterator(const CoordBBox &b) : mPos(b.min()), mMin(b.min()), mMax(b.max()) {}
/// @brief Increments iterator to point to the next coordinate
/// @note Stops a the last + 1 coordinate of the bounding box
/// as defined by the template parameter.
Iterator& operator++() {
ZYX ? this->next<2,1,0>() : this->next<0,1,2>();//resolved and inlined
return *this;
}
/// @brief Return true if the iterator still points to a valid coordinate
operator bool() const {
return ZYX ? mPos[0] <= mMax[0] : mPos[2] <= mMax[2];
}
/// @brief Return a const reference to the coordinate currently pointed to
const Coord& operator*() const { return mPos; }
private:
template<size_t a, size_t b, size_t c>
inline void next() {
if ( mPos[a] < mMax[a] ) {// this is the most common case
++mPos[a];
} else if ( mPos[b] < mMax[b] ) {
mPos[a] = mMin[a];
++mPos[b];
} else if ( mPos[c] <= mMax[c] ) {
mPos[a] = mMin[a];
mPos[b] = mMin[b];
++mPos[c];
}
}
Coord mPos, mMin, mMax;
};// CoordBBox::Iterator
/// @brief The default constructor produces an empty bounding box.
CoordBBox(): mMin(Coord::max()), mMax(Coord::min()) {}
/// @brief Construct a bounding box with the given @a min and @a max bounds.
CoordBBox(const Coord& min, const Coord& max): mMin(min), mMax(max) {}
/// @brief Construct from individual components of the min and max bounds.
CoordBBox(ValueType x_min, ValueType y_min, ValueType z_min,
ValueType x_max, ValueType y_max, ValueType z_max)
: mMin(x_min, y_min, z_min), mMax(x_max, y_max, z_max)
{
}
/// @brief Splitting constructor for use in TBB ranges
/// @note The other bounding box is assumed to be divisible.
CoordBBox(CoordBBox& other, const tbb::split&): mMin(other.mMin), mMax(other.mMax)
{
assert(this->is_divisible());
const size_t n = this->maxExtent();
mMax[n] = (mMin[n] + mMax[n]) >> 1;
other.mMin[n] = mMax[n] + 1;
}
static CoordBBox createCube(const Coord& min, ValueType dim)
{
return CoordBBox(min, min.offsetBy(dim - 1));
}
/// Return an "infinite" bounding box, as defined by the Coord value range.
static CoordBBox inf() { return CoordBBox(Coord::min(), Coord::max()); }
const Coord& min() const { return mMin; }
const Coord& max() const { return mMax; }
Coord& min() { return mMin; }
Coord& max() { return mMax; }
void reset() { mMin = Coord::max(); mMax = Coord::min(); }
void reset(const Coord& min, const Coord& max) { mMin = min; mMax = max; }
void resetToCube(const Coord& min, ValueType dim) { mMin = min; mMax = min.offsetBy(dim - 1); }
/// @note The start coordinate is inclusive.
Coord getStart() const { return mMin; }
/// @note The end coordinate is exclusive.
Coord getEnd() const { return mMax.offsetBy(1); }
bool operator==(const CoordBBox& rhs) const { return mMin == rhs.mMin && mMax == rhs.mMax; }
bool operator!=(const CoordBBox& rhs) const { return !(*this == rhs); }
bool empty() const { return (mMin[0] > mMax[0] || mMin[1] > mMax[1] || mMin[2] > mMax[2]); }
//@{
/// Return @c true if this bounding box is nonempty
operator bool() const { return !this->empty(); }
bool hasVolume() const { return !this->empty(); }
//@}
/// Return the floating-point position of the center of this bounding box.
Vec3d getCenter() const { return 0.5 * Vec3d((mMin + mMax).asPointer()); }
/// @brief Return the dimensions of the coordinates spanned by this bounding box.
/// @note Since coordinates are inclusive, a bounding box with min = max
/// has dimensions of (1, 1, 1).
Coord dim() const { return mMax.offsetBy(1) - mMin; }
/// @todo deprecate - use dim instead
Coord extents() const { return this->dim(); }
/// @brief Return the integer volume of coordinates spanned by this bounding box.
/// @note Since coordinates are inclusive, a bounding box with min = max has volume one.
Index64 volume() const
{
const Coord d = this->dim();
return Index64(d[0]) * Index64(d[1]) * Index64(d[2]);
}
/// Return @c true if this bounding box can be subdivided [mainly for use by TBB].
bool is_divisible() const { return mMin[0]<mMax[0] && mMin[1]<mMax[1] && mMin[2]<mMax[2]; }
/// @brief Return the index (0, 1 or 2) of the shortest axis.
size_t minExtent() const { return this->dim().minIndex(); }
/// @brief Return the index (0, 1 or 2) of the longest axis.
size_t maxExtent() const { return this->dim().maxIndex(); }
/// Return @c true if point (x, y, z) is inside this bounding box.
bool isInside(const Coord& xyz) const
{
return !(Coord::lessThan(xyz,mMin) || Coord::lessThan(mMax,xyz));
}
/// Return @c true if the given bounding box is inside this bounding box.
bool isInside(const CoordBBox& b) const
{
return !(Coord::lessThan(b.mMin,mMin) || Coord::lessThan(mMax,b.mMax));
}
/// Return @c true if the given bounding box overlaps with this bounding box.
bool hasOverlap(const CoordBBox& b) const
{
return !(Coord::lessThan(mMax,b.mMin) || Coord::lessThan(b.mMax,mMin));
}
/// Pad this bounding box with the specified padding.
void expand(ValueType padding)
{
mMin.offset(-padding);
mMax.offset( padding);
}
/// Return a new instance that is expanded by the specified padding.
CoordBBox expandBy(ValueType padding) const
{
return CoordBBox(mMin.offsetBy(-padding),mMax.offsetBy(padding));
}
/// Expand this bounding box to enclose point (x, y, z).
void expand(const Coord& xyz)
{
mMin.minComponent(xyz);
mMax.maxComponent(xyz);
}
/// Union this bounding box with the given bounding box.
void expand(const CoordBBox& bbox)
{
mMin.minComponent(bbox.min());
mMax.maxComponent(bbox.max());
}
/// Intersect this bounding box with the given bounding box.
void intersect(const CoordBBox& bbox)
{
mMin.maxComponent(bbox.min());
mMax.minComponent(bbox.max());
}
/// @brief Union this bounding box with the cubical bounding box
/// of the given size and with the given minimum coordinates.
void expand(const Coord& min, Coord::ValueType dim)
{
mMin.minComponent(min);
mMax.maxComponent(min.offsetBy(dim-1));
}
/// Translate this bounding box by @f$(t_x, t_y, t_z)@f$.
void translate(const Coord& t) { mMin += t; mMax += t; }
/// @brief Populates an array with the eight corner points of this bounding box.
/// @details The ordering of the corner points is lexicographic.
/// @warning It is assumed that the pointer can be incremented at
/// least seven times, i.e. has storage for eight Coord elements!
void getCornerPoints(Coord *p) const
{
assert(p != NULL);
p->reset(mMin.x(), mMin.y(), mMin.z()); ++p;
p->reset(mMin.x(), mMin.y(), mMax.z()); ++p;
p->reset(mMin.x(), mMax.y(), mMin.z()); ++p;
p->reset(mMin.x(), mMax.y(), mMax.z()); ++p;
p->reset(mMax.x(), mMin.y(), mMin.z()); ++p;
p->reset(mMax.x(), mMin.y(), mMax.z()); ++p;
p->reset(mMax.x(), mMax.y(), mMin.z()); ++p;
p->reset(mMax.x(), mMax.y(), mMax.z());
}
//@{
/// @brief Bit-wise operations performed on both the min and max members
CoordBBox operator>> (size_t n) const { return CoordBBox(mMin>>n, mMax>>n); }
CoordBBox operator<< (size_t n) const { return CoordBBox(mMin<<n, mMax<<n); }
CoordBBox& operator<<=(size_t n) { mMin <<= n; mMax <<= n; return *this; }
CoordBBox& operator>>=(size_t n) { mMin >>= n; mMax >>= n; return *this; }
CoordBBox operator& (Coord::Int32 n) const { return CoordBBox(mMin & n, mMax & n); }
CoordBBox operator| (Coord::Int32 n) const { return CoordBBox(mMin | n, mMax | n); }
CoordBBox& operator&= (Coord::Int32 n) { mMin &= n; mMax &= n; return *this; }
CoordBBox& operator|= (Coord::Int32 n) { mMin |= n; mMax |= n; return *this; }
//@}
/// Unserialize this bounding box from the given stream.
void read(std::istream& is) { mMin.read(is); mMax.read(is); }
/// Serialize this bounding box to the given stream.
void write(std::ostream& os) const { mMin.write(os); mMax.write(os); }
private:
Coord mMin, mMax;
}; // class CoordBBox
////////////////////////////////////////
inline std::ostream& operator<<(std::ostream& os, const Coord& xyz)
{
os << xyz.asVec3i(); return os;
}
//@{
/// Allow a Coord to be added to or subtracted from a Vec3.
template<typename T>
inline Vec3<typename promote<T, typename Coord::ValueType>::type>
operator+(const Vec3<T>& v0, const Coord& v1)
{
Vec3<typename promote<T, typename Coord::ValueType>::type> result(v0);
result[0] += v1[0];
result[1] += v1[1];
result[2] += v1[2];
return result;
}
template<typename T>
inline Vec3<typename promote<T, typename Coord::ValueType>::type>
operator+(const Coord& v1, const Vec3<T>& v0)
{
Vec3<typename promote<T, typename Coord::ValueType>::type> result(v0);
result[0] += v1[0];
result[1] += v1[1];
result[2] += v1[2];
return result;
}
//@}
//@{
/// Allow a Coord to be subtracted from a Vec3.
template <typename T>
inline Vec3<typename promote<T, Coord::ValueType>::type>
operator-(const Vec3<T>& v0, const Coord& v1)
{
Vec3<typename promote<T, Coord::ValueType>::type> result(v0);
result[0] -= v1[0];
result[1] -= v1[1];
result[2] -= v1[2];
return result;
}
template <typename T>
inline Vec3<typename promote<T, Coord::ValueType>::type>
operator-(const Coord& v1, const Vec3<T>& v0)
{
Vec3<typename promote<T, Coord::ValueType>::type> result(v0);
result[0] -= v1[0];
result[1] -= v1[1];
result[2] -= v1[2];
return -result;
}
//@}
inline std::ostream&
operator<<(std::ostream& os, const CoordBBox& b)
{
os << b.min() << " -> " << b.max();
return os;
}
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_COORD_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|