This file is indexed.

/usr/include/openvdb/math/Maps.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Maps.h

#ifndef OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED

#include "Math.h"
#include "Mat4.h"
#include "Vec3.h"
#include "BBox.h"
#include "Coord.h"
#include <openvdb/io/io.h> // for io::getFormatVersion()
#include <openvdb/util/Name.h>
#include <openvdb/Types.h>
#include <boost/shared_ptr.hpp>
#include <map>

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {


////////////////////////////////////////

/// Forward declarations of the different map types

class MapBase;
class ScaleMap;
class TranslationMap;
class ScaleTranslateMap;
class UniformScaleMap;
class UniformScaleTranslateMap;
class AffineMap;
class UnitaryMap;
class NonlinearFrustumMap;

template<typename T1, typename T2> class CompoundMap;

typedef CompoundMap<UnitaryMap, TranslationMap>                     UnitaryAndTranslationMap;
typedef CompoundMap<CompoundMap<UnitaryMap, ScaleMap>, UnitaryMap>  SpectralDecomposedMap;
typedef SpectralDecomposedMap                                       SymmetricMap;
typedef CompoundMap<SymmetricMap, UnitaryAndTranslationMap>         FullyDecomposedMap;
typedef CompoundMap<SymmetricMap, UnitaryMap>                       PolarDecomposedMap;


////////////////////////////////////////

/// Map traits

template<typename T> struct is_linear                 { static const bool value = false; };
template<> struct is_linear<AffineMap>                { static const bool value = true; };
template<> struct is_linear<ScaleMap>                 { static const bool value = true; };
template<> struct is_linear<UniformScaleMap>          { static const bool value = true; };
template<> struct is_linear<UnitaryMap>               { static const bool value = true; };
template<> struct is_linear<TranslationMap>           { static const bool value = true; };
template<> struct is_linear<ScaleTranslateMap>        { static const bool value = true; };
template<> struct is_linear<UniformScaleTranslateMap> { static const bool value = true; };

template<typename T1, typename T2> struct is_linear<CompoundMap<T1, T2> > {
    static const bool value = is_linear<T1>::value && is_linear<T2>::value;
};


template<typename T> struct is_uniform_scale          { static const bool value = false; };
template<> struct is_uniform_scale<UniformScaleMap>   { static const bool value = true; };

template<typename T> struct is_uniform_scale_translate       { static const bool value = false; };
template<> struct is_uniform_scale_translate<TranslationMap> { static const bool value = true; };
template<> struct is_uniform_scale_translate<UniformScaleTranslateMap> {
    static const bool value = true;
};


template<typename T> struct is_scale                  { static const bool value = false; };
template<> struct is_scale<ScaleMap>                  { static const bool value = true; };

template<typename T> struct is_scale_translate        { static const bool value = false; };
template<> struct is_scale_translate<ScaleTranslateMap> { static const bool value = true; };


template<typename T> struct is_uniform_diagonal_jacobian {
    static const bool value = is_uniform_scale<T>::value || is_uniform_scale_translate<T>::value;
};

template<typename T> struct is_diagonal_jacobian {
    static const bool value = is_scale<T>::value || is_scale_translate<T>::value;
};


////////////////////////////////////////

/// Utility methods

/// @brief Create a SymmetricMap from a symmetric matrix.
/// Decomposes the map into Rotation Diagonal Rotation^T
OPENVDB_API boost::shared_ptr<SymmetricMap> createSymmetricMap(const Mat3d& m);


/// @brief General decomposition of a Matrix into a Unitary (e.g. rotation)
/// following a Symmetric (e.g. stretch & shear)
OPENVDB_API boost::shared_ptr<FullyDecomposedMap> createFullyDecomposedMap(const Mat4d& m);


/// @brief Decomposes a general linear into translation following polar decomposition.
///
/// T U S where:
///
///  T: Translation
///  U: Unitary (rotation or reflection)
///  S: Symmetric
///
/// @note: the Symmetric is automatically decomposed into Q D Q^T, where
/// Q is rotation and D is diagonal.
OPENVDB_API boost::shared_ptr<PolarDecomposedMap> createPolarDecomposedMap(const Mat3d& m);


/// @brief reduces an AffineMap to a ScaleMap or a ScaleTranslateMap when it can
OPENVDB_API boost::shared_ptr<MapBase> simplify(boost::shared_ptr<AffineMap> affine);

/// @brief Returns the left pseudoInverse of the input matrix when the 3x3 part is symmetric
/// otherwise it zeros the 3x3 and reverses the translation.
OPENVDB_API Mat4d approxInverse(const Mat4d& mat);


////////////////////////////////////////


/// @brief Abstract base class for maps
class OPENVDB_API MapBase
{
public:
    typedef boost::shared_ptr<MapBase>       Ptr;
    typedef boost::shared_ptr<const MapBase> ConstPtr;
    typedef Ptr (*MapFactory)();

    virtual ~MapBase(){}

    virtual boost::shared_ptr<AffineMap> getAffineMap() const = 0;

    /// Return the name of this map's concrete type (e.g., @c "AffineMap").
    virtual Name type() const = 0;

    /// Return @c true if this map is of concrete type @c MapT (e.g., AffineMap).
    template<typename MapT> bool isType() const { return this->type() == MapT::mapType(); }

    /// Return @c true if this map is equal to the given map.
    virtual bool isEqual(const MapBase& other) const = 0;

    /// Return @c true if this map is linear.
    virtual bool isLinear() const = 0;
    /// Return @c true if the spacing between the image of latice is uniform in all directions
    virtual bool hasUniformScale() const = 0;

    virtual Vec3d applyMap(const Vec3d& in) const = 0;
    virtual Vec3d applyInverseMap(const Vec3d& in) const = 0;

    //@{
    /// @brief Apply the Inverse Jacobian Transpose of this map to a vector.
    /// For a linear map this is equivalent to applying the transpose of
    /// inverse map excluding translation.
    virtual Vec3d applyIJT(const Vec3d& in) const = 0;
    virtual Vec3d applyIJT(const Vec3d& in, const Vec3d& domainPos) const = 0;
    //@}

    virtual Mat3d applyIJC(const Mat3d& m) const = 0;
    virtual Mat3d applyIJC(const Mat3d& m, const Vec3d& v, const Vec3d& domainPos) const = 0;


    virtual double determinant() const = 0;
    virtual double determinant(const Vec3d&) const = 0;


    //@{
    /// @brief Method to return the local size of a voxel.
    /// When a location is specified as an argument, it is understood to be
    /// be in the domain of the map (i.e. index space)
    virtual Vec3d voxelSize() const = 0;
    virtual Vec3d voxelSize(const Vec3d&) const = 0;
    //@}

    virtual void read(std::istream&) = 0;
    virtual void write(std::ostream&) const = 0;

    virtual std::string str() const = 0;

    virtual MapBase::Ptr copy() const = 0;

    //@{
    /// @brief Methods to update the map
    virtual MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const = 0;
    virtual MapBase::Ptr preTranslate(const Vec3d&) const = 0;
    virtual MapBase::Ptr preScale(const Vec3d&) const = 0;
    virtual MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const = 0;

    virtual MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const = 0;
    virtual MapBase::Ptr postTranslate(const Vec3d&) const = 0;
    virtual MapBase::Ptr postScale(const Vec3d&) const = 0;
    virtual MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const = 0;
    //@}

    //@{
    /// @brief Apply the Jacobian of this map to a vector.
    /// For a linear map this is equivalent to applying the map excluding translation.
    /// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
    /// with that version lack a virtual table entry for this method.  Do not call
    /// this method from Houdini 12.5.
    virtual Vec3d applyJacobian(const Vec3d& in) const = 0;
    virtual Vec3d applyJacobian(const Vec3d& in, const Vec3d& domainPos) const = 0;
    //@}

    //@{
    /// @brief Apply the InverseJacobian of this map to a vector.
    /// For a linear map this is equivalent to applying the map inverse excluding translation.
    /// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
    /// with that version lack a virtual table entry for this method.  Do not call
    /// this method from Houdini 12.5.
    virtual Vec3d applyInverseJacobian(const Vec3d& in) const = 0;
    virtual Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d& domainPos) const = 0;
    //@}


    //@{
    /// @brief Apply the Jacobian transpose of this map to a vector.
    /// For a linear map this is equivalent to applying the transpose of the map
    /// excluding translation.
    /// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
    /// with that version lack a virtual table entry for this method.  Do not call
    /// this method from Houdini 12.5.
    virtual Vec3d applyJT(const Vec3d& in) const = 0;
    virtual Vec3d applyJT(const Vec3d& in, const Vec3d& domainPos) const = 0;
    //@}

    /// @brief Return a new map representing the inverse of this map.
    /// @throw NotImplementedError if the map is a NonlinearFrustumMap.
    /// @warning Houdini 12.5 uses an earlier version of OpenVDB, and maps created
    /// with that version lack a virtual table entry for this method.  Do not call
    /// this method from Houdini 12.5.
    virtual MapBase::Ptr inverseMap() const = 0;

protected:
    MapBase() {}

    template<typename MapT>
    static bool isEqualBase(const MapT& self, const MapBase& other)
    {
        return other.isType<MapT>() && (self == *static_cast<const MapT*>(&other));
    }
};


////////////////////////////////////////


/// @brief Threadsafe singleton object for accessing the map type-name dictionary.
/// Associates a map type-name with a factory function.
class OPENVDB_API MapRegistry
{
public:
    typedef std::map<Name, MapBase::MapFactory> MapDictionary;

    static MapRegistry* instance();

    /// Create a new map of the given (registered) type name.
    static MapBase::Ptr createMap(const Name&);

    /// Return @c true if the given map type name is registered.
    static bool isRegistered(const Name&);

    /// Register a map type along with a factory function.
    static void registerMap(const Name&, MapBase::MapFactory);

    /// Remove a map type from the registry.
    static void unregisterMap(const Name&);

    /// Clear the map type registry.
    static void clear();

private:
    MapRegistry() {}

    static MapRegistry* staticInstance();

    static MapRegistry* mInstance;

    MapDictionary mMap;
};


////////////////////////////////////////


/// @brief A general linear transform using homogeneous coordinates to perform
/// rotation, scaling, shear and translation
class OPENVDB_API AffineMap: public MapBase
{
public:
    typedef boost::shared_ptr<AffineMap>       Ptr;
    typedef boost::shared_ptr<const AffineMap> ConstPtr;

    AffineMap():
        mMatrix(Mat4d::identity()),
        mMatrixInv(Mat4d::identity()),
        mJacobianInv(Mat3d::identity()),
        mDeterminant(1),
        mVoxelSize(Vec3d(1,1,1)),
        mIsDiagonal(true),
        mIsIdentity(true)
        // the default constructor for translation is zero
    {
    }

    AffineMap(const Mat3d& m)
    {
        Mat4d mat4(Mat4d::identity());
        mat4.setMat3(m);
        mMatrix = mat4;
        updateAcceleration();
    }

    AffineMap(const Mat4d& m): mMatrix(m)
    {
        if (!isAffine(m)) {
            OPENVDB_THROW(ArithmeticError,
                "Tried to initialize an affine transform from a non-affine 4x4 matrix");
        }
        updateAcceleration();
    }

    AffineMap(const AffineMap& other):
        MapBase(other),
        mMatrix(other.mMatrix),
        mMatrixInv(other.mMatrixInv),
        mJacobianInv(other.mJacobianInv),
        mDeterminant(other.mDeterminant),
        mVoxelSize(other.mVoxelSize),
        mIsDiagonal(other.mIsDiagonal),
        mIsIdentity(other.mIsIdentity)
    {
    }

    /// @brief constructor that merges the matrixes for two affine maps
    AffineMap(const AffineMap& first, const AffineMap& second):
        mMatrix(first.mMatrix * second.mMatrix)
    {
        updateAcceleration();
    }

    ~AffineMap() {}

    /// Return a MapBase::Ptr to a new AffineMap
    static MapBase::Ptr create() { return MapBase::Ptr(new AffineMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new AffineMap(*this)); }

    MapBase::Ptr inverseMap() const { return MapBase::Ptr(new AffineMap(mMatrixInv)); }

    static bool isRegistered() { return MapRegistry::isRegistered(AffineMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            AffineMap::mapType(),
            AffineMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("AffineMap"); }

    /// Return @c true (an AffineMap is always linear).
    bool isLinear() const { return true; }

    /// Return @c false ( test if this is unitary with translation )
    bool hasUniformScale() const
    {
        Mat3d mat = mMatrix.getMat3();
        const double det = mat.det();
        if (isApproxEqual(det, double(0))) {
            return false;
        } else {
            mat *= (1.f / pow(std::abs(det),1./3.));
            return isUnitary(mat);
        }
    }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const AffineMap& other) const
    {
        // the Mat.eq() is approximate
        if (!mMatrix.eq(other.mMatrix)) { return false; }
        if (!mMatrixInv.eq(other.mMatrixInv))  { return false; }
        return true;
    }

    bool operator!=(const AffineMap& other) const { return !(*this == other); }

    AffineMap& operator=(const AffineMap& other)
    {
        mMatrix = other.mMatrix;
        mMatrixInv = other.mMatrixInv;

        mJacobianInv = other.mJacobianInv;
        mDeterminant = other.mDeterminant;
        mVoxelSize = other.mVoxelSize;
        mIsDiagonal  = other.mIsDiagonal;
        mIsIdentity  = other.mIsIdentity;
        return *this;
    }
    /// Return the image of @c in under the map
    Vec3d applyMap(const Vec3d& in) const { return in * mMatrix; }
    /// Return the pre-image of @c in under the map
    Vec3d applyInverseMap(const Vec3d& in) const {return in * mMatrixInv; }

    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in) const { return mMatrix.transform3x3(in); }

    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return mMatrixInv.transform3x3(in); }

    /// Return the Jacobian Transpose of the map applied to @a in.
    /// This tranforms range-space gradients to domain-space gradients
    Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
    /// Return the Jacobian Transpose of the map applied to @a in.
    Vec3d applyJT(const Vec3d& in) const {
        const double* m = mMatrix.asPointer();
        return Vec3d( m[ 0] * in[0] + m[ 1] * in[1] + m[ 2] * in[2],
                      m[ 4] * in[0] + m[ 5] * in[1] + m[ 6] * in[2],
                      m[ 8] * in[0] + m[ 9] * in[1] + m[10] * in[2] );
    }

    /// Return the transpose of the inverse Jacobian of the map applied to @a in.
    Vec3d applyIJT(const Vec3d& in, const Vec3d&) const { return applyIJT(in); }
    /// Return the transpose of the inverse Jacobian of the map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const { return in * mJacobianInv; }
    /// Return the Jacobian Curvature: zero for a linear map
    Mat3d applyIJC(const Mat3d& m) const {
        return mJacobianInv.transpose()* m * mJacobianInv;
    }
    Mat3d applyIJC(const Mat3d& in, const Vec3d& , const Vec3d& ) const {
        return applyIJC(in);
    }
    /// Return the determinant of the Jacobian, ignores argument
    double determinant(const Vec3d& ) const { return determinant(); }
    /// Return the determinant of the Jacobian
    double determinant() const { return mDeterminant; }

    //@{
    /// @brief Return the lengths of the images of the segments
    /// (0,0,0)-(1,0,0), (0,0,0)-(0,1,0) and (0,0,0)-(0,0,1).
    Vec3d voxelSize() const { return mVoxelSize; }
    Vec3d voxelSize(const Vec3d&) const { return voxelSize(); }
    //@}

    /// Return @c true if the underlying matrix is approximately an identity
    bool isIdentity() const { return mIsIdentity; }
    /// Return @c true  if the underylying matrix is diagonal
    bool isDiagonal() const { return mIsDiagonal; }
    /// Return @c true if the map is equivalent to a ScaleMap
    bool isScale() const { return isDiagonal(); }
    /// Return @c true if the map is equivalent to a ScaleTranslateMap
    bool isScaleTranslate() const { return math::isDiagonal(mMatrix.getMat3()); }


    // Methods that modify the existing affine map

    //@{
    /// @brief Modify the existing affine map by pre-applying the given operation.
    void accumPreRotation(Axis axis, double radians)
    {
        mMatrix.preRotate(axis, radians);
        updateAcceleration();
    }
    void accumPreScale(const Vec3d& v)
    {
        mMatrix.preScale(v);
        updateAcceleration();
    }
    void accumPreTranslation(const Vec3d& v)
    {
        mMatrix.preTranslate(v);
        updateAcceleration();
    }
    void accumPreShear(Axis axis0, Axis axis1, double shear)
    {
        mMatrix.preShear(axis0, axis1, shear);
        updateAcceleration();
    }
    //@}


    //@{
    /// @brief Modify the existing affine map by post-applying the given operation.
    void accumPostRotation(Axis axis, double radians)
    {
        mMatrix.postRotate(axis, radians);
        updateAcceleration();
    }
    void accumPostScale(const Vec3d& v)
    {
        mMatrix.postScale(v);
        updateAcceleration();
    }
    void accumPostTranslation(const Vec3d& v)
    {
        mMatrix.postTranslate(v);
        updateAcceleration();
    }
    void accumPostShear(Axis axis0, Axis axis1, double shear)
    {
        mMatrix.postShear(axis0, axis1, shear);
        updateAcceleration();
    }
    //@}


    /// read serialization
    void read(std::istream& is)
    {
        mMatrix.read(is);
        updateAcceleration();
    }

    /// write serialization
    void write(std::ostream& os) const
    {
        mMatrix.write(os);
    }

    /// string serialization, useful for debugging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << " - mat4:\n" << mMatrix.str() << std::endl;
        buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
        return buffer.str();
    }

    /// on-demand decomposition of the affine map
    boost::shared_ptr<FullyDecomposedMap> createDecomposedMap()
    {
        return createFullyDecomposedMap(mMatrix);
    }

    /// Return AffineMap::Ptr to  a deep copy of the current AffineMap
    AffineMap::Ptr getAffineMap() const { return AffineMap::Ptr(new AffineMap(*this)); }

    /// Return AffineMap::Ptr to the inverse of this map
    AffineMap::Ptr inverse() const { return AffineMap::Ptr(new AffineMap(mMatrixInv)); }


    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropraite operation.
    MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreRotation(axis, radians);
        return simplify(affineMap);
    }
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreTranslation(t);
        return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
    }
    MapBase::Ptr preScale(const Vec3d& s) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreScale(s);
        return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
    }
    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}


    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of postfixing the appropraite operation.
    MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostRotation(axis, radians);
        return simplify(affineMap);
    }
    MapBase::Ptr postTranslate(const Vec3d& t) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostTranslation(t);
        return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
    }
    MapBase::Ptr postScale(const Vec3d& s) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostScale(s);
        return boost::static_pointer_cast<MapBase, AffineMap>(affineMap);
    }
    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

    /// Return the matrix representation of this AffineMap
    Mat4d getMat4() const { return mMatrix;}
    const Mat4d& getConstMat4() const {return mMatrix;}
    const Mat3d& getConstJacobianInv() const {return mJacobianInv;}

private:
    void updateAcceleration() {
        Mat3d mat3 = mMatrix.getMat3();
        mDeterminant = mat3.det();

        if (std::abs(mDeterminant) < (3.0 * math::Tolerance<double>::value())) {
            OPENVDB_THROW(ArithmeticError,
                "Tried to initialize an affine transform from a nearly singular matrix");
        }
        mMatrixInv = mMatrix.inverse();
        mJacobianInv = mat3.inverse().transpose();
        mIsDiagonal = math::isDiagonal(mMatrix);
        mIsIdentity = math::isIdentity(mMatrix);
        Vec3d pos = applyMap(Vec3d(0,0,0));
        mVoxelSize(0) = (applyMap(Vec3d(1,0,0)) - pos).length();
        mVoxelSize(1) = (applyMap(Vec3d(0,1,0)) - pos).length();
        mVoxelSize(2) = (applyMap(Vec3d(0,0,1)) - pos).length();
    }

    // the underlying matrix
    Mat4d  mMatrix;

    // stored for acceleration
    Mat4d  mMatrixInv;
    Mat3d  mJacobianInv;
    double mDeterminant;
    Vec3d  mVoxelSize;
    bool   mIsDiagonal, mIsIdentity;
}; // class AffineMap


////////////////////////////////////////


/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling need not be uniform in the three-directions
class OPENVDB_API ScaleMap: public MapBase
{
public:
    typedef boost::shared_ptr<ScaleMap>       Ptr;
    typedef boost::shared_ptr<const ScaleMap> ConstPtr;

    ScaleMap(): MapBase(), mScaleValues(Vec3d(1,1,1)), mVoxelSize(Vec3d(1,1,1)),
                mScaleValuesInverse(Vec3d(1,1,1)),
                mInvScaleSqr(1,1,1), mInvTwiceScale(0.5,0.5,0.5){}

    ScaleMap(const Vec3d& scale):
        MapBase(),
        mScaleValues(scale),
        mVoxelSize(Vec3d(std::abs(scale(0)),std::abs(scale(1)), std::abs(scale(2))))
    {
        double determinant = scale[0]* scale[1] * scale[2];
        if (std::abs(determinant) < 3.0 * math::Tolerance<double>::value()) {
            OPENVDB_THROW(ArithmeticError, "Non-zero scale values required");
        }
        mScaleValuesInverse = 1.0 / mScaleValues;
        mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
        mInvTwiceScale = mScaleValuesInverse / 2;
    }

    ScaleMap(const ScaleMap& other):
        MapBase(),
        mScaleValues(other.mScaleValues),
        mVoxelSize(other.mVoxelSize),
        mScaleValuesInverse(other.mScaleValuesInverse),
        mInvScaleSqr(other.mInvScaleSqr),
        mInvTwiceScale(other.mInvTwiceScale)
    {
    }

    ~ScaleMap() {}

    /// Return a MapBase::Ptr to a new ScaleMap
    static MapBase::Ptr create() { return MapBase::Ptr(new ScaleMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new ScaleMap(*this)); }

    MapBase::Ptr inverseMap() const { return MapBase::Ptr(new ScaleMap(mScaleValuesInverse)); }

    static bool isRegistered() { return MapRegistry::isRegistered(ScaleMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            ScaleMap::mapType(),
            ScaleMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("ScaleMap"); }

    /// Return @c true (a ScaleMap is always linear).
    bool isLinear() const { return true; }

    /// Return @c true if the values have the same magitude (eg. -1, 1, -1 would be a rotation).
    bool hasUniformScale() const
    {
        bool value = isApproxEqual(
            std::abs(mScaleValues.x()), std::abs(mScaleValues.y()), double(5e-7));
        value = value && isApproxEqual(
            std::abs(mScaleValues.x()), std::abs(mScaleValues.z()), double(5e-7));
        return value;
    }

    /// Return the image of @c in under the map
    Vec3d applyMap(const Vec3d& in) const
    {
        return Vec3d(
            in.x() * mScaleValues.x(),
            in.y() * mScaleValues.y(),
            in.z() * mScaleValues.z());
    }
    /// Return the pre-image of @c in under the map
    Vec3d applyInverseMap(const Vec3d& in) const
    {
        return Vec3d(
            in.x() * mScaleValuesInverse.x(),
            in.y() * mScaleValuesInverse.y(),
            in.z() * mScaleValuesInverse.z());
    }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in) const { return applyMap(in); }

    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return applyInverseMap(in); }

    /// Return the Jacobian Transpose of the map applied to @a in.
    /// This tranforms range-space gradients to domain-space gradients
    Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
    /// Return the Jacobian Transpose of the map applied to @a in.
    Vec3d applyJT(const Vec3d& in) const { return applyMap(in); }



    /// @brief Return the transpose of the inverse Jacobian of the map applied to @a in.
    /// @details Ignores second argument
    Vec3d applyIJT(const Vec3d& in, const Vec3d&) const { return applyIJT(in);}
    /// Return the transpose of the inverse Jacobian of the map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const { return applyInverseMap(in); }
    /// Return the Jacobian Curvature: zero for a linear map
    Mat3d applyIJC(const Mat3d& in) const
    {
        Mat3d tmp;
        for (int i = 0; i < 3; i++) {
            tmp.setRow(i, in.row(i) * mScaleValuesInverse(i));
        }
        for (int i = 0; i < 3; i++) {
            tmp.setCol(i, tmp.col(i) * mScaleValuesInverse(i));
        }
        return tmp;
    }
    Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d&) const { return applyIJC(in); }
    /// Return the product of the scale values, ignores argument
    double determinant(const Vec3d&) const { return determinant(); }
    /// Return the product of the scale values
    double determinant() const { return mScaleValues.x() * mScaleValues.y() * mScaleValues.z(); }

    /// Return the scale values that define the map
    const Vec3d& getScale() const {return mScaleValues;}

    /// Return the square of the scale.  Used to optimize some finite difference calculations
    const Vec3d& getInvScaleSqr() const { return mInvScaleSqr; }
    /// Return 1/(2 scale). Used to optimize some finite difference calculations
    const Vec3d& getInvTwiceScale() const { return mInvTwiceScale; }
    /// Return 1/(scale)
    const Vec3d& getInvScale() const { return mScaleValuesInverse; }

    //@{
    /// @brief Returns the lengths of the images
    /// of the segments
    /// \f$(0,0,0)-(1,0,0)\f$, \f$(0,0,0)-(0,1,0)\f$, \f$(0,0,0)-(0,0,1)\f$
    /// this is equivalent to the absolute values of the scale values
    Vec3d voxelSize() const { return mVoxelSize; }
    Vec3d voxelSize(const Vec3d&) const { return voxelSize(); }
    //@}

    /// read serialization
    void read(std::istream& is)
    {
        mScaleValues.read(is);
        mVoxelSize.read(is);
        mScaleValuesInverse.read(is);
        mInvScaleSqr.read(is);
        mInvTwiceScale.read(is);
    }
    /// write serialization
    void write(std::ostream& os) const
    {
        mScaleValues.write(os);
        mVoxelSize.write(os);
        mScaleValuesInverse.write(os);
        mInvScaleSqr.write(os);
        mInvTwiceScale.write(os);
    }
    /// string serialization, useful for debuging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << " - scale: " << mScaleValues << std::endl;
        buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
        return buffer.str();
    }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const ScaleMap& other) const
    {
        // ::eq() uses a tolerance
        if (!mScaleValues.eq(other.mScaleValues)) { return false; }
        return true;
    }

    bool operator!=(const ScaleMap& other) const { return !(*this == other); }

    /// Return a AffineMap equivalent to this map
    AffineMap::Ptr getAffineMap() const
    {
        return AffineMap::Ptr(new AffineMap(math::scale<Mat4d>(mScaleValues)));
    }



    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropraite operation to the existing map
    MapBase::Ptr preRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreRotation(axis, radians);
        return simplify(affineMap);
    }

    MapBase::Ptr preTranslate(const Vec3d& tr) const;

    MapBase::Ptr preScale(const Vec3d& v) const;

    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}


    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropraite operation to the existing map.
    MapBase::Ptr postRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostRotation(axis, radians);
        return simplify(affineMap);
    }

    MapBase::Ptr postTranslate(const Vec3d& tr) const;

    MapBase::Ptr postScale(const Vec3d& v) const;

    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

private:
    Vec3d mScaleValues, mVoxelSize, mScaleValuesInverse, mInvScaleSqr, mInvTwiceScale;
}; // class ScaleMap


/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling is uniform in the three-directions
class OPENVDB_API UniformScaleMap: public ScaleMap
{
public:
    typedef boost::shared_ptr<UniformScaleMap>       Ptr;
    typedef boost::shared_ptr<const UniformScaleMap> ConstPtr;

    UniformScaleMap(): ScaleMap(Vec3d(1,1,1)) {}
    UniformScaleMap(double scale): ScaleMap(Vec3d(scale, scale, scale)) {}
    UniformScaleMap(const UniformScaleMap& other): ScaleMap(other) {}
    ~UniformScaleMap() {}

    /// Return a MapBase::Ptr to a new UniformScaleMap
    static MapBase::Ptr create() { return MapBase::Ptr(new UniformScaleMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new UniformScaleMap(*this)); }

    MapBase::Ptr inverseMap() const
    {
        const Vec3d& invScale = getInvScale();
        return MapBase::Ptr(new UniformScaleMap( invScale[0]));
    }

    static bool isRegistered() { return MapRegistry::isRegistered(UniformScaleMap::mapType()); }
    static void registerMap()
    {
        MapRegistry::registerMap(
            UniformScaleMap::mapType(),
            UniformScaleMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("UniformScaleMap"); }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const UniformScaleMap& other) const { return ScaleMap::operator==(other); }
    bool operator!=(const UniformScaleMap& other) const { return !(*this == other); }

    /// Return a MapBase::Ptr to a UniformScaleTraslateMap that is the result of
    /// pre-translation on this map
    MapBase::Ptr preTranslate(const Vec3d& tr) const;

    /// Return a MapBase::Ptr to a UniformScaleTraslateMap that is the result of
    /// post-translation on this map
    MapBase::Ptr postTranslate(const Vec3d& tr) const;

}; // class UniformScaleMap


////////////////////////////////////////


inline MapBase::Ptr
ScaleMap::preScale(const Vec3d& v) const
{
    const Vec3d new_scale(v * mScaleValues);
    if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
        return MapBase::Ptr(new UniformScaleMap(new_scale[0]));
    } else {
        return MapBase::Ptr(new ScaleMap(new_scale));
    }
}


inline MapBase::Ptr
ScaleMap::postScale(const Vec3d& v) const
{ // pre-post Scale are the same for a scale map
    return preScale(v);
}


/// @brief A specialized linear transform that performs a translation
class OPENVDB_API TranslationMap: public MapBase
{
public:
    typedef boost::shared_ptr<TranslationMap>       Ptr;
    typedef boost::shared_ptr<const TranslationMap> ConstPtr;

    // default constructor is a translation by zero.
    TranslationMap(): MapBase(), mTranslation(Vec3d(0,0,0)) {}
    TranslationMap(const Vec3d& t): MapBase(), mTranslation(t) {}
    TranslationMap(const TranslationMap& other): MapBase(), mTranslation(other.mTranslation) {}

    ~TranslationMap() {}

    /// Return a MapBase::Ptr to a new TranslationMap
    static MapBase::Ptr create() { return MapBase::Ptr(new TranslationMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new TranslationMap(*this)); }

    MapBase::Ptr inverseMap() const { return MapBase::Ptr(new TranslationMap(-mTranslation)); }

    static bool isRegistered() { return MapRegistry::isRegistered(TranslationMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            TranslationMap::mapType(),
            TranslationMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("TranslationMap"); }

    /// Return @c true (a TranslationMap is always linear).
    bool isLinear() const { return true; }

    /// Return @c false (by convention true)
    bool hasUniformScale() const { return true; }

    /// Return the image of @c in under the map
    Vec3d applyMap(const Vec3d& in) const { return in + mTranslation; }
    /// Return the pre-image of @c in under the map
    Vec3d applyInverseMap(const Vec3d& in) const { return in - mTranslation; }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in) const { return in; }

    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return in; }


    /// Return the Jacobian Transpose of the map applied to @a in.
    /// This tranforms range-space gradients to domain-space gradients
    Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
    /// Return the Jacobian Transpose of the map applied to @a in.
    Vec3d applyJT(const Vec3d& in) const { return in; }

    /// @brief Return the transpose of the inverse Jacobian (Identity for TranslationMap)
    /// of the map applied to @c in, ignores second argument
    Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
    /// @brief Return the transpose of the inverse Jacobian (Identity for TranslationMap)
    /// of the map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const {return in;}
    /// Return the Jacobian Curvature: zero for a linear map
    Mat3d applyIJC(const Mat3d& mat) const {return mat;}
    Mat3d applyIJC(const Mat3d& mat, const Vec3d&, const Vec3d&) const { return applyIJC(mat); }

    /// Return @c 1
    double determinant(const Vec3d& ) const { return determinant(); }
    /// Return @c 1
    double determinant() const { return 1.0; }

    /// Return \f$ (1,1,1) \f$
    Vec3d voxelSize() const { return Vec3d(1,1,1);}
    /// Return \f$ (1,1,1) \f$
    Vec3d voxelSize(const Vec3d&) const { return voxelSize();}

    /// Return the translation vector
    const Vec3d& getTranslation() const { return mTranslation; }
    /// read serialization
    void read(std::istream& is) { mTranslation.read(is); }
    /// write serialization
    void write(std::ostream& os) const { mTranslation.write(os); }

    /// string serialization, useful for debuging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << " - translation: " << mTranslation << std::endl;
        return buffer.str();
    }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const TranslationMap& other) const
    {
        // ::eq() uses a tolerance
        return mTranslation.eq(other.mTranslation);
    }

    bool operator!=(const TranslationMap& other) const { return !(*this == other); }

    /// Return AffineMap::Ptr to an AffineMap equivalent to *this
    AffineMap::Ptr getAffineMap() const
    {
        Mat4d matrix(Mat4d::identity());
        matrix.setTranslation(mTranslation);

        AffineMap::Ptr affineMap(new AffineMap(matrix));
        return affineMap;
    }

    //@{
    /// @brief Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropriate operation.
    MapBase::Ptr preRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreRotation(axis, radians);
        return simplify(affineMap);

    }
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        return MapBase::Ptr(new TranslationMap(t + mTranslation));
    }

    MapBase::Ptr preScale(const Vec3d& v) const;

    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

    //@{
    /// @brief Return a MapBase::Ptr to a new map that is the result
    /// of postfixing the appropriate operation.
    MapBase::Ptr postRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostRotation(axis, radians);
        return simplify(affineMap);

    }
    MapBase::Ptr postTranslate(const Vec3d& t) const
    { // post and pre are the same for this
        return MapBase::Ptr(new TranslationMap(t + mTranslation));
    }

    MapBase::Ptr postScale(const Vec3d& v) const;

    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

private:
    Vec3d mTranslation;
}; // class TranslationMap


////////////////////////////////////////


/// @brief A specialized Affine transform that scales along the principal axis
/// the scaling need not be uniform in the three-directions, and then
/// translates the result.
class OPENVDB_API ScaleTranslateMap: public MapBase
{
public:
    typedef boost::shared_ptr<ScaleTranslateMap>       Ptr;
    typedef boost::shared_ptr<const ScaleTranslateMap> ConstPtr;

    ScaleTranslateMap():
        MapBase(),
        mTranslation(Vec3d(0,0,0)),
        mScaleValues(Vec3d(1,1,1)),
        mVoxelSize(Vec3d(1,1,1)),
        mScaleValuesInverse(Vec3d(1,1,1)),
        mInvScaleSqr(1,1,1),
        mInvTwiceScale(0.5,0.5,0.5)
    {
    }

    ScaleTranslateMap(const Vec3d& scale, const Vec3d& translate):
        MapBase(),
        mTranslation(translate),
        mScaleValues(scale),
        mVoxelSize(std::abs(scale(0)), std::abs(scale(1)), std::abs(scale(2)))
    {
        const double determinant = scale[0]* scale[1] * scale[2];
        if (std::abs(determinant) < 3.0 * math::Tolerance<double>::value()) {
            OPENVDB_THROW(ArithmeticError, "Non-zero scale values required");
        }
        mScaleValuesInverse = 1.0 / mScaleValues;
        mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
        mInvTwiceScale = mScaleValuesInverse / 2;
    }

    ScaleTranslateMap(const ScaleMap& scale, const TranslationMap& translate):
        MapBase(),
        mTranslation(translate.getTranslation()),
        mScaleValues(scale.getScale()),
        mVoxelSize(std::abs(mScaleValues(0)),
                         std::abs(mScaleValues(1)),
                         std::abs(mScaleValues(2))),
        mScaleValuesInverse(1.0 / scale.getScale())
    {
        mInvScaleSqr = mScaleValuesInverse * mScaleValuesInverse;
        mInvTwiceScale = mScaleValuesInverse / 2;
    }

    ScaleTranslateMap(const ScaleTranslateMap& other):
        MapBase(),
        mTranslation(other.mTranslation),
        mScaleValues(other.mScaleValues),
        mVoxelSize(other.mVoxelSize),
        mScaleValuesInverse(other.mScaleValuesInverse),
        mInvScaleSqr(other.mInvScaleSqr),
        mInvTwiceScale(other.mInvTwiceScale)
    {}

    ~ScaleTranslateMap() {}

    /// Return a MapBase::Ptr to a new ScaleTranslateMap
    static MapBase::Ptr create() { return MapBase::Ptr(new ScaleTranslateMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new ScaleTranslateMap(*this)); }

    MapBase::Ptr inverseMap() const
    {
        return MapBase::Ptr(new ScaleTranslateMap(
            mScaleValuesInverse, -mScaleValuesInverse * mTranslation));
    }

    static bool isRegistered() { return MapRegistry::isRegistered(ScaleTranslateMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            ScaleTranslateMap::mapType(),
            ScaleTranslateMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("ScaleTranslateMap"); }

    /// Return @c true (a ScaleTranslateMap is always linear).
    bool isLinear() const { return true; }

    /// @brief Return @c true if the scale values have the same magnitude
    /// (eg. -1, 1, -1 would be a rotation).
    bool hasUniformScale() const
    {
        bool value = isApproxEqual(
            std::abs(mScaleValues.x()), std::abs(mScaleValues.y()), double(5e-7));
        value = value && isApproxEqual(
            std::abs(mScaleValues.x()), std::abs(mScaleValues.z()), double(5e-7));
        return value;
    }

    /// Return the image of @c under the map
    Vec3d applyMap(const Vec3d& in) const
    {
        return Vec3d(
            in.x() * mScaleValues.x() + mTranslation.x(),
            in.y() * mScaleValues.y() + mTranslation.y(),
            in.z() * mScaleValues.z() + mTranslation.z());
    }
    /// Return the pre-image of @c under the map
    Vec3d applyInverseMap(const Vec3d& in) const
    {
        return Vec3d(
            (in.x() - mTranslation.x() ) * mScaleValuesInverse.x(),
            (in.y() - mTranslation.y() ) * mScaleValuesInverse.y(),
            (in.z() - mTranslation.z() ) * mScaleValuesInverse.z());
    }

    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in) const { return in * mScaleValues; }

    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return in * mScaleValuesInverse; }

    /// Return the Jacobian Transpose of the map applied to @a in.
    /// This tranforms range-space gradients to domain-space gradients
    Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
    /// Return the Jacobian Transpose of the map applied to @a in.
    Vec3d applyJT(const Vec3d& in) const { return applyJacobian(in); }

    /// @brief Return the transpose of the inverse Jacobian of the map applied to @a in
    /// @details Ignores second argument
    Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
    /// Return the transpose of the inverse Jacobian of the map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const
    {
        return Vec3d(
            in.x() * mScaleValuesInverse.x(),
            in.y() * mScaleValuesInverse.y(),
            in.z() * mScaleValuesInverse.z());
    }
    /// Return the Jacobian Curvature: zero for a linear map
    Mat3d applyIJC(const Mat3d& in) const
    {
        Mat3d tmp;
        for (int i=0; i<3; i++){
            tmp.setRow(i, in.row(i)*mScaleValuesInverse(i));
        }
        for (int i=0; i<3; i++){
            tmp.setCol(i, tmp.col(i)*mScaleValuesInverse(i));
        }
        return tmp;
    }
    Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d& ) const { return applyIJC(in); }

    /// Return the product of the scale values, ignores argument
    double determinant(const Vec3d& ) const { return determinant(); }
    /// Return the product of the scale values
    double determinant() const { return mScaleValues.x()*mScaleValues.y()*mScaleValues.z(); }
    /// Return the absolute values of the scale values
    Vec3d voxelSize() const { return mVoxelSize;}
    /// Return the absolute values of the scale values, ignores
    ///argument
    Vec3d voxelSize(const Vec3d&) const { return voxelSize();}

    /// Returns the scale values
    const Vec3d& getScale() const { return mScaleValues; }
    /// Returns the translation
    const Vec3d& getTranslation() const { return mTranslation; }

    /// Return the square of the scale.  Used to optimize some finite difference calculations
    const Vec3d& getInvScaleSqr() const {return mInvScaleSqr;}
    /// Return 1/(2 scale). Used to optimize some finite difference calculations
    const Vec3d& getInvTwiceScale() const {return mInvTwiceScale;}
    /// Return 1/(scale)
    const Vec3d& getInvScale() const {return mScaleValuesInverse; }

    /// read serialization
    void read(std::istream& is)
    {
        mTranslation.read(is);
        mScaleValues.read(is);
        mVoxelSize.read(is);
        mScaleValuesInverse.read(is);
        mInvScaleSqr.read(is);
        mInvTwiceScale.read(is);
    }
    /// write serialization
    void write(std::ostream& os) const
    {
        mTranslation.write(os);
        mScaleValues.write(os);
        mVoxelSize.write(os);
        mScaleValuesInverse.write(os);
        mInvScaleSqr.write(os);
        mInvTwiceScale.write(os);
    }
    /// string serialization, useful for debuging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << " - translation: " << mTranslation << std::endl;
        buffer << " - scale: " << mScaleValues << std::endl;
        buffer << " - voxel dimensions: " << mVoxelSize << std::endl;
        return buffer.str();
    }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const ScaleTranslateMap& other) const
    {
        // ::eq() uses a tolerance
        if (!mScaleValues.eq(other.mScaleValues)) { return false; }
        if (!mTranslation.eq(other.mTranslation)) { return false; }
        return true;
    }

    bool operator!=(const ScaleTranslateMap& other) const { return !(*this == other); }

    /// Return AffineMap::Ptr to an AffineMap equivalent to *this
    AffineMap::Ptr getAffineMap() const
    {
        AffineMap::Ptr affineMap(new AffineMap(math::scale<Mat4d>(mScaleValues)));
        affineMap->accumPostTranslation(mTranslation);
        return affineMap;
    }

    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropraite operation.
    MapBase::Ptr preRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreRotation(axis, radians);
        return simplify(affineMap);
    }
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        const Vec3d& s = mScaleValues;
        const Vec3d scaled_trans( t.x() * s.x(),
                                  t.y() * s.y(),
                                  t.z() * s.z() );
        return MapBase::Ptr( new ScaleTranslateMap(mScaleValues, mTranslation + scaled_trans));
    }

    MapBase::Ptr preScale(const Vec3d& v) const;

    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of postfixing the appropraite operation.
    MapBase::Ptr postRotate(double radians, Axis axis) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostRotation(axis, radians);
        return simplify(affineMap);
    }
    MapBase::Ptr postTranslate(const Vec3d& t) const
    {
        return MapBase::Ptr( new ScaleTranslateMap(mScaleValues, mTranslation + t));
    }

    MapBase::Ptr postScale(const Vec3d& v) const;

    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

private:
    Vec3d mTranslation, mScaleValues, mVoxelSize, mScaleValuesInverse,
        mInvScaleSqr, mInvTwiceScale;
}; // class ScaleTanslateMap


inline MapBase::Ptr
ScaleMap::postTranslate(const Vec3d& t) const
{
    return MapBase::Ptr(new ScaleTranslateMap(mScaleValues, t));
}


inline MapBase::Ptr
ScaleMap::preTranslate(const Vec3d& t) const
{

    const Vec3d& s = mScaleValues;
    const Vec3d scaled_trans( t.x() * s.x(),
                              t.y() * s.y(),
                              t.z() * s.z() );
    return MapBase::Ptr(new ScaleTranslateMap(mScaleValues, scaled_trans));
}


/// @brief A specialized Affine transform that uniformaly scales along the principal axis
/// and then translates the result.
class OPENVDB_API UniformScaleTranslateMap: public ScaleTranslateMap
{
public:
    typedef boost::shared_ptr<UniformScaleTranslateMap>       Ptr;
    typedef boost::shared_ptr<const UniformScaleTranslateMap> ConstPtr;

    UniformScaleTranslateMap():ScaleTranslateMap(Vec3d(1,1,1), Vec3d(0,0,0)) {}
    UniformScaleTranslateMap(double scale, const Vec3d& translate):
        ScaleTranslateMap(Vec3d(scale,scale,scale), translate) {}
    UniformScaleTranslateMap(const UniformScaleMap& scale, const TranslationMap& translate):
        ScaleTranslateMap(scale.getScale(), translate.getTranslation()) {}

    UniformScaleTranslateMap(const UniformScaleTranslateMap& other):ScaleTranslateMap(other) {}
    ~UniformScaleTranslateMap() {}

    /// Return a MapBase::Ptr to a new UniformScaleTranslateMap
    static MapBase::Ptr create() { return MapBase::Ptr(new UniformScaleTranslateMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new UniformScaleTranslateMap(*this)); }

    MapBase::Ptr inverseMap() const
    {
        const Vec3d& scaleInv = getInvScale();
        const Vec3d& trans = getTranslation();
        return MapBase::Ptr(new UniformScaleTranslateMap(scaleInv[0], -scaleInv[0] * trans));
    }

    static bool isRegistered()
    {
        return MapRegistry::isRegistered(UniformScaleTranslateMap::mapType());
    }

    static void registerMap()
    {
        MapRegistry::registerMap(
                                 UniformScaleTranslateMap::mapType(),
                                 UniformScaleTranslateMap::create);
    }

    Name type() const { return mapType(); }
    static Name mapType() { return Name("UniformScaleTranslateMap"); }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const UniformScaleTranslateMap& other) const
    {
        return ScaleTranslateMap::operator==(other);
    }
    bool operator!=(const UniformScaleTranslateMap& other) const { return !(*this == other); }

    /// @brief Return a MapBase::Ptr to a UniformScaleTranslateMap that is
    /// the result of prepending translation on this map.
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        const double scale = this->getScale().x();
        const Vec3d  new_trans = this->getTranslation() + scale * t;
        return MapBase::Ptr( new UniformScaleTranslateMap(scale, new_trans));
    }

    /// @brief Return a MapBase::Ptr to a UniformScaleTranslateMap that is
    /// the result of postfixing translation on this map.
    MapBase::Ptr postTranslate(const Vec3d& t) const
    {
        const double scale = this->getScale().x();
        return MapBase::Ptr( new UniformScaleTranslateMap(scale, this->getTranslation() + t));
    }
}; // class UniformScaleTanslateMap


inline MapBase::Ptr
UniformScaleMap::postTranslate(const Vec3d& t) const
{
    const double scale = this->getScale().x();
    return MapBase::Ptr(new UniformScaleTranslateMap(scale, t));
}


inline MapBase::Ptr
UniformScaleMap::preTranslate(const Vec3d& t) const
{
    const double scale = this->getScale().x();
    return MapBase::Ptr(new UniformScaleTranslateMap(scale, scale*t));
}


inline MapBase::Ptr
TranslationMap::preScale(const Vec3d& v) const
{
    if (isApproxEqual(v[0],v[1]) && isApproxEqual(v[0],v[2])) {
        return MapBase::Ptr(new UniformScaleTranslateMap(v[0], mTranslation));
    } else {
        return MapBase::Ptr(new ScaleTranslateMap(v, mTranslation));
    }
}


inline MapBase::Ptr
TranslationMap::postScale(const Vec3d& v) const
{
    if (isApproxEqual(v[0],v[1]) && isApproxEqual(v[0],v[2])) {
        return MapBase::Ptr(new UniformScaleTranslateMap(v[0], v[0]*mTranslation));
    } else {
        const Vec3d trans(mTranslation.x()*v.x(),
                          mTranslation.y()*v.y(),
                          mTranslation.z()*v.z());
        return MapBase::Ptr(new ScaleTranslateMap(v, trans));
    }
}


inline MapBase::Ptr
ScaleTranslateMap::preScale(const Vec3d& v) const
{
    const Vec3d new_scale( v * mScaleValues );
    if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
        return MapBase::Ptr( new UniformScaleTranslateMap(new_scale[0], mTranslation));
    } else {
        return MapBase::Ptr( new ScaleTranslateMap(new_scale, mTranslation));
    }
}


inline MapBase::Ptr
ScaleTranslateMap::postScale(const Vec3d& v) const
{
    const Vec3d new_scale( v * mScaleValues );
    const Vec3d new_trans( mTranslation.x()*v.x(),
                           mTranslation.y()*v.y(),
                           mTranslation.z()*v.z() );

    if (isApproxEqual(new_scale[0],new_scale[1]) && isApproxEqual(new_scale[0],new_scale[2])) {
        return MapBase::Ptr( new UniformScaleTranslateMap(new_scale[0], new_trans));
    } else {
        return MapBase::Ptr( new ScaleTranslateMap(new_scale, new_trans));
    }
}


////////////////////////////////////////


/// @brief A specialized linear transform that performs a unitary maping
/// i.e. rotation  and or reflection.
class OPENVDB_API UnitaryMap: public MapBase
{
public:
    typedef boost::shared_ptr<UnitaryMap>       Ptr;
    typedef boost::shared_ptr<const UnitaryMap> ConstPtr;

    /// default constructor makes an Idenity.
    UnitaryMap(): mAffineMap(Mat4d::identity())
    {
    }

    UnitaryMap(const Vec3d& axis, double radians)
    {
        Mat3d matrix;
        matrix.setToRotation(axis, radians);
        mAffineMap = AffineMap(matrix);
    }

    UnitaryMap(Axis axis, double radians)
    {
        Mat4d matrix;
        matrix.setToRotation(axis, radians);
        mAffineMap = AffineMap(matrix);
    }

    UnitaryMap(const Mat3d& m)
    {
        // test that the mat3 is a rotation || reflection
        if (!isUnitary(m)) {
            OPENVDB_THROW(ArithmeticError, "Matrix initializing unitary map was not unitary");
        }

        Mat4d matrix(Mat4d::identity());
        matrix.setMat3(m);
        mAffineMap = AffineMap(matrix);
    }

    UnitaryMap(const Mat4d& m)
    {
        if (!isInvertible(m)) {
            OPENVDB_THROW(ArithmeticError,
                "4x4 Matrix initializing unitary map was not unitary: not invertible");
        }

        if (!isAffine(m)) {
            OPENVDB_THROW(ArithmeticError,
                "4x4 Matrix initializing unitary map was not unitary: not affine");
        }

        if (hasTranslation(m)) {
            OPENVDB_THROW(ArithmeticError,
                "4x4 Matrix initializing unitary map was not unitary: had translation");
        }

        if (!isUnitary(m.getMat3())) {
            OPENVDB_THROW(ArithmeticError,
                "4x4 Matrix initializing unitary map was not unitary");
        }

        mAffineMap = AffineMap(m);
    }

    UnitaryMap(const UnitaryMap& other):
        MapBase(other),
        mAffineMap(other.mAffineMap)
    {
    }

    UnitaryMap(const UnitaryMap& first, const UnitaryMap& second):
        mAffineMap(*(first.getAffineMap()), *(second.getAffineMap()))
    {
    }

    ~UnitaryMap() {}
    /// Return a MapBase::Ptr to a new UnitaryMap
    static MapBase::Ptr create() { return MapBase::Ptr(new UnitaryMap()); }
    /// Returns a MapBase::Ptr to a deep copy of *this
    MapBase::Ptr copy() const { return MapBase::Ptr(new UnitaryMap(*this)); }

    MapBase::Ptr inverseMap() const
    {
        return MapBase::Ptr(new UnitaryMap(mAffineMap.getMat4().inverse()));
    }

    static bool isRegistered() { return MapRegistry::isRegistered(UnitaryMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            UnitaryMap::mapType(),
            UnitaryMap::create);
    }

    /// Return @c UnitaryMap
    Name type() const { return mapType(); }
    /// Return @c UnitaryMap
    static Name mapType() { return Name("UnitaryMap"); }

    /// Return @c true (a UnitaryMap is always linear).
    bool isLinear() const { return true; }

    /// Return @c false (by convention true)
    bool hasUniformScale() const { return true; }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const UnitaryMap& other) const
    {
        // compare underlying linear map.
        if (mAffineMap!=other.mAffineMap)  return false;
        return true;
    }

    bool operator!=(const UnitaryMap& other) const { return !(*this == other); }
    /// Return the image of @c in under the map
    Vec3d applyMap(const Vec3d& in) const { return mAffineMap.applyMap(in); }
    /// Return the pre-image of @c in under the map
    Vec3d applyInverseMap(const Vec3d& in) const { return mAffineMap.applyInverseMap(in); }

    Vec3d applyJacobian(const Vec3d& in, const Vec3d&) const { return applyJacobian(in); }
    /// Return the Jacobian of the map applied to @a in.
    Vec3d applyJacobian(const Vec3d& in) const { return mAffineMap.applyJacobian(in); }

    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d&) const { return applyInverseJacobian(in); }
    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return mAffineMap.applyInverseJacobian(in); }


    /// Return the Jacobian Transpose of the map applied to @a in.
    /// This tranforms range-space gradients to domain-space gradients
    Vec3d applyJT(const Vec3d& in, const Vec3d&) const { return applyJT(in); }
    /// Return the Jacobian Transpose of the map applied to @a in.
    Vec3d applyJT(const Vec3d& in) const {
        // The transpose of the unitary map is its inverse
        return applyInverseMap(in);
    }


    /// @brief Return the transpose of the inverse Jacobian of the map applied to @a in
    /// @details Ignores second argument
    Vec3d applyIJT(const Vec3d& in, const Vec3d& ) const { return applyIJT(in);}
    /// Return the transpose of the inverse Jacobian of the map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const { return mAffineMap.applyIJT(in); }
    /// Return the Jacobian Curvature: zero for a linear map
    Mat3d applyIJC(const Mat3d& in) const { return mAffineMap.applyIJC(in); }
    Mat3d applyIJC(const Mat3d& in, const Vec3d&, const Vec3d& ) const { return applyIJC(in); }
    /// Return the determinant of the Jacobian, ignores argument
    double determinant(const Vec3d& ) const { return determinant(); }
    /// Return the determinant of the Jacobian
    double determinant() const { return mAffineMap.determinant(); }


    /// @brief Returns the lengths of the images
    /// of the segments
    /// \f$(0,0,0)-(1,0,0)\f$, \f$(0,0,0)-(0,1,0)\f$,
    /// \f$(0,0,0)-(0,0,1)\f$
    Vec3d voxelSize() const { return mAffineMap.voxelSize();}
    Vec3d voxelSize(const Vec3d&) const { return voxelSize();}

    /// read serialization
    void read(std::istream& is)
    {
        mAffineMap.read(is);
    }

    /// write serialization
    void write(std::ostream& os) const
    {
        mAffineMap.write(os);
    }
    /// string serialization, useful for debuging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << mAffineMap.str();
        return buffer.str();
    }
    /// Return AffineMap::Ptr to an AffineMap equivalent to *this
    AffineMap::Ptr getAffineMap() const { return AffineMap::Ptr(new AffineMap(mAffineMap)); }

    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropraite operation.
    MapBase::Ptr preRotate(double radians, Axis axis) const
    {
        UnitaryMap first(axis, radians);
        UnitaryMap::Ptr unitaryMap(new UnitaryMap(first, *this));
        return boost::static_pointer_cast<MapBase, UnitaryMap>(unitaryMap);
    }
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreTranslation(t);
        return simplify(affineMap);
    }
    MapBase::Ptr preScale(const Vec3d& v) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreScale(v);
        return simplify(affineMap);
    }
    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPreShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}


    //@{
    /// @brief  Return a MapBase::Ptr to a new map that is the result
    /// of postfixing the appropraite operation.
    MapBase::Ptr postRotate(double radians, Axis axis) const
    {
        UnitaryMap second(axis, radians);
        UnitaryMap::Ptr unitaryMap(new UnitaryMap(*this, second));
        return boost::static_pointer_cast<MapBase, UnitaryMap>(unitaryMap);
    }
    MapBase::Ptr postTranslate(const Vec3d& t) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostTranslation(t);
        return simplify(affineMap);
    }
    MapBase::Ptr postScale(const Vec3d& v) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostScale(v);
        return simplify(affineMap);
    }
    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        AffineMap::Ptr affineMap = getAffineMap();
        affineMap->accumPostShear(axis0, axis1, shear);
        return simplify(affineMap);
    }
    //@}

private:
    AffineMap  mAffineMap;
}; // class UnitaryMap


////////////////////////////////////////


/// @brief  This map is composed of three steps.
/// First it will take a box of size (Lx X  Ly X Lz) defined by a member data bounding box
/// and map it into a frustum with near plane (1 X Ly/Lx) and prescribed depth
/// Then this frustum is transformed by an internal second map: most often a uniform scale,
/// but other effects can be achieved by accumulating translation, shear and rotation: these
/// are all applied to the second map
class OPENVDB_API NonlinearFrustumMap: public MapBase
{
public:
    typedef boost::shared_ptr<NonlinearFrustumMap>       Ptr;
    typedef boost::shared_ptr<const NonlinearFrustumMap> ConstPtr;

    NonlinearFrustumMap():
        MapBase(),
        mBBox(Vec3d(0), Vec3d(1)),
        mTaper(1),
        mDepth(1)
    {
        init();
    }

    /// @brief Constructor that takes an index-space bounding box
    /// to be mapped into a frustum with a given @a depth and @a taper
    /// (defined as ratio of nearplane/farplane).
    NonlinearFrustumMap(const BBoxd& bb, double taper, double depth):
        MapBase(),mBBox(bb), mTaper(taper), mDepth(depth)
    {
        init();
    }

    /// @brief Constructor that takes an index-space bounding box
    /// to be mapped into a frustum with a given @a depth and @a taper
    /// (defined as ratio of nearplane/farplane).
    /// @details This frustum is further modifed by the @a secondMap,
    /// intended to be a simple translation and rotation and uniform scale
   NonlinearFrustumMap(const BBoxd& bb, double taper, double depth,
        const MapBase::Ptr& secondMap):
        mBBox(bb), mTaper(taper), mDepth(depth)
    {
        if (!secondMap->isLinear() ) {
              OPENVDB_THROW(ArithmeticError,
                "The second map in the Frustum transfrom must be linear");
        }
        mSecondMap = *( secondMap->getAffineMap() );
        init();
    }

    NonlinearFrustumMap(const NonlinearFrustumMap& other):
        MapBase(),
        mBBox(other.mBBox),
        mTaper(other.mTaper),
        mDepth(other.mDepth),
        mSecondMap(other.mSecondMap),
        mHasSimpleAffine(other.mHasSimpleAffine)
    {
        init();
    }

    /// @brief Constructor from a camera frustum
    ///
    /// @param position the tip of the frustum (i.e., the camera's position).
    /// @param direction a vector pointing from @a position toward the near plane.
    /// @param up a non-unit vector describing the direction and extent of
    ///     the frustum's intersection on the near plane.  Together,
    ///     @a up must be orthogonal to @a direction.
    /// @param aspect the aspect ratio of the frustum intersection with near plane
    ///     defined as width / height
    /// @param z_near,depth the distance from @a position along @a direction to the
    ///     near and far planes of the frustum.
    /// @param x_count the number of voxels, aligned with @a left,
    ///     across the face of the frustum
    /// @param z_count the number of voxels, aligned with @a direction,
    ///     between the near and far planes
    NonlinearFrustumMap(const Vec3d& position,
                        const Vec3d& direction,
                        const Vec3d& up,
                        double aspect /* width / height */,
                        double z_near, double depth,
                        Coord::ValueType x_count, Coord::ValueType z_count) {

        /// @todo check that depth > 0
        /// @todo check up.length > 0
        /// @todo check that direction dot up = 0
        if (!(depth > 0)) {
            OPENVDB_THROW(ArithmeticError,
                "The frustum depth must be non-zero and positive");
        }
        if (!(up.length() > 0)) {
            OPENVDB_THROW(ArithmeticError,
                "The frustum height must be non-zero and positive");
        }
        if (!(aspect > 0)) {
            OPENVDB_THROW(ArithmeticError,
                "The frustum aspect ratio  must be non-zero and positive");
        }
        if (!(isApproxEqual(up.dot(direction), 0.))) {
            OPENVDB_THROW(ArithmeticError,
                "The frustum up orientation must be perpendicular to into-frustum direction");
        }

        double near_plane_height = 2 * up.length();
        double near_plane_width = aspect * near_plane_height;

        Coord::ValueType y_count = static_cast<int>(Round(x_count / aspect));

        mBBox = BBoxd(Vec3d(0,0,0), Vec3d(x_count, y_count, z_count));
        mDepth = depth / near_plane_width;  // depth non-dimensionalized on width
        double gamma = near_plane_width / z_near;
        mTaper = 1./(mDepth*gamma + 1.);

        Vec3d direction_unit = direction;
        direction_unit.normalize();

        Mat4d r1(Mat4d::identity());
        r1.setToRotation(/*from*/Vec3d(0,0,1), /*to */direction_unit);
        Mat4d r2(Mat4d::identity());
        Vec3d temp = r1.inverse().transform(up);
        r2.setToRotation(/*from*/Vec3d(0,1,0), /*to*/temp );
        Mat4d scale = math::scale<Mat4d>(
            Vec3d(near_plane_width, near_plane_width, near_plane_width));

        // move the near plane to origin, rotate to align with axis, and scale down
        // T_inv * R1_inv * R2_inv * scale_inv
        Mat4d mat = scale * r2 * r1;
        mat.setTranslation(position + z_near*direction_unit);

        mSecondMap = AffineMap(mat);

        init();
    }

    ~NonlinearFrustumMap(){}
    /// Return a MapBase::Ptr to a new NonlinearFrustumMap
    static MapBase::Ptr create() { return MapBase::Ptr(new NonlinearFrustumMap()); }
    /// Return a MapBase::Ptr to a deep copy of this map
    MapBase::Ptr copy() const { return MapBase::Ptr(new NonlinearFrustumMap(*this)); }

    /// @brief Not implemented, since there is currently no map type that can
    /// represent the inverse of a frustum
    /// @throw NotImplementedError
    MapBase::Ptr inverseMap() const
    {
        OPENVDB_THROW(NotImplementedError,
            "inverseMap() is not implemented for NonlinearFrustumMap");
    }
    static bool isRegistered() { return MapRegistry::isRegistered(NonlinearFrustumMap::mapType()); }

    static void registerMap()
    {
        MapRegistry::registerMap(
            NonlinearFrustumMap::mapType(),
            NonlinearFrustumMap::create);
    }
    /// Return @c NonlinearFrustumMap
    Name type() const { return mapType(); }
    /// Return @c NonlinearFrustumMap
    static Name mapType() { return Name("NonlinearFrustumMap"); }

    /// Return @c false (a NonlinearFrustumMap is never linear).
    bool isLinear() const { return false; }

    /// Return @c false (by convention false)
    bool hasUniformScale() const { return false; }

    /// Return @c true if the map is equivalent to an identity
    bool isIdentity() const
    {
        // The frustum can only be consistent with a linear map if the taper value is 1
        if (!isApproxEqual(mTaper, double(1)) ) return false;

        // There are various ways an identity can decomposed between the two parts of the
        // map.  Best to just check that the principle vectors are stationary.
        const Vec3d e1(1,0,0);
        if (!applyMap(e1).eq(e1)) return false;

        const Vec3d e2(0,1,0);
        if (!applyMap(e2).eq(e2)) return false;

        const Vec3d e3(0,0,1);
        if (!applyMap(e3).eq(e3)) return false;

        return true;
    }

    virtual bool isEqual(const MapBase& other) const { return isEqualBase(*this, other); }

    bool operator==(const NonlinearFrustumMap& other) const
    {
        if (mBBox!=other.mBBox) return false;
        if (!isApproxEqual(mTaper, other.mTaper)) return false;
        if (!isApproxEqual(mDepth, other.mDepth)) return false;

        // Two linear transforms are equivalent iff they have the same translation
        // and have the same affects on orthongal spanning basis check translation
        Vec3d e(0,0,0);
        if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
        /// check spanning vectors
        e(0) = 1;
        if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
        e(0) = 0;
        e(1) = 1;
        if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
        e(1) = 0;
        e(2) = 1;
        if (!mSecondMap.applyMap(e).eq(other.mSecondMap.applyMap(e))) return false;
        return true;
    }

    bool operator!=(const NonlinearFrustumMap& other) const { return !(*this == other); }

    /// Return the image of @c in under the map
    Vec3d applyMap(const Vec3d& in) const
    {
        return mSecondMap.applyMap(applyFrustumMap(in));
    }

    /// Return the pre-image of @c in under the map
    Vec3d applyInverseMap(const Vec3d& in) const
    {
        return applyFrustumInverseMap(mSecondMap.applyInverseMap(in));
    }
    /// Return the Jacobian of the linear second map applied to @c in
    Vec3d applyJacobian(const Vec3d& in) const { return mSecondMap.applyJacobian(in); }
    /// Return the Jacobian defined at @c isloc applied to @c in
    Vec3d applyJacobian(const Vec3d& in, const Vec3d& isloc) const
    {
        // Move the center of the x-face of the bbox
        // to the origin in index space.
        Vec3d centered(isloc);
        centered = centered - mBBox.min();
        centered.x() -= mXo;
        centered.y() -= mYo;

        // scale the z-direction on depth / K count
        const double zprime = centered.z()*mDepthOnLz;

        const double scale = (mGamma * zprime + 1.) / mLx;
        const double scale2 = mGamma * mDepthOnLz / mLx;

        const Vec3d tmp(scale * in.x() + scale2 * centered.x()* in.z(),
                        scale * in.y() + scale2 * centered.y()* in.z(),
                        mDepthOnLz * in.z());

        return mSecondMap.applyJacobian(tmp);
    }


    /// Return the Inverse Jacobian of the map applied to @a in. (i.e. inverse map with out translation)
    Vec3d applyInverseJacobian(const Vec3d& in) const { return mSecondMap.applyInverseJacobian(in); }
    /// Return the Inverse Jacobian defined at @c isloc of the map applied to @a in.
    Vec3d applyInverseJacobian(const Vec3d& in, const Vec3d& isloc) const {

        // Move the center of the x-face of the bbox
        // to the origin in index space.
        Vec3d centered(isloc);
        centered = centered - mBBox.min();
        centered.x() -= mXo;
        centered.y() -= mYo;

        // scale the z-direction on depth / K count
        const double zprime = centered.z()*mDepthOnLz;

        const double scale = (mGamma * zprime + 1.) / mLx;
        const double scale2 = mGamma * mDepthOnLz / mLx;


        Vec3d out = mSecondMap.applyInverseJacobian(in);

        out.x() = (out.x() - scale2 * centered.x() * out.z() / mDepthOnLz) / scale;
        out.y() = (out.y() - scale2 * centered.y() * out.z() / mDepthOnLz) / scale;
        out.z() = out.z() / mDepthOnLz;

        return out;
    }



    /// Return the Jacobian Transpose of the map applied to vector @c in at @c indexloc.
    /// This tranforms range-space gradients to domain-space gradients.
    ///
    Vec3d applyJT(const Vec3d& in, const Vec3d& isloc) const {
        const Vec3d tmp = mSecondMap.applyJT(in);
        // Move the center of the x-face of the bbox
        // to the origin in index space.
        Vec3d centered(isloc);
        centered = centered - mBBox.min();
        centered.x() -= mXo;
        centered.y() -= mYo;

        // scale the z-direction on depth / K count
        const double zprime = centered.z()*mDepthOnLz;

        const double scale = (mGamma * zprime + 1.) / mLx;
        const double scale2 = mGamma * mDepthOnLz / mLx;

        return Vec3d(scale * tmp.x(),
                     scale * tmp.y(),
                     scale2 * centered.x()* tmp.x() +
                     scale2 * centered.y()* tmp.y() +
                     mDepthOnLz * tmp.z());
    }
    /// Return the Jacobian Transpose of the second map applied to @c in.
    Vec3d applyJT(const Vec3d& in) const {
        return mSecondMap.applyJT(in);
    }

    /// Return the transpose of the inverse Jacobian of the linear second map applied to @c in
    Vec3d applyIJT(const Vec3d& in) const { return mSecondMap.applyIJT(in); }

    // the Jacobian of the nonlinear part of the transform is a sparse matrix
    // Jacobian^(-T) =
    //
    //    (Lx)(  1/s               0              0 )
    //        (  0                1/s             0 )
    //        (  -(x-xo)g/(sLx)   -(y-yo)g/(sLx)  Lz/(Depth Lx)   )
    /// Return the transpose of the inverse Jacobain (at @c locW applied to @c in.
    /// @c ijk is the location in the pre-image space (e.g. index space)
    Vec3d applyIJT(const Vec3d& d1_is, const Vec3d& ijk) const
    {
        const Vec3d loc = applyFrustumMap(ijk);
        const double s = mGamma * loc.z() + 1.;

        // verify that we aren't at the singularity
        if (isApproxEqual(s, 0.)) {
            OPENVDB_THROW(ArithmeticError, "Tried to evaluate the frustum transform"
                " at the singular focal point (e.g. camera)");
        }

        const double sinv = 1.0/s;        // 1/(z*gamma + 1)
        const double pt0 = mLx * sinv;    // Lx / (z*gamma +1)
        const double pt1 = mGamma * pt0;  // gamma * Lx / ( z*gamma +1)
        const double pt2 = pt1 * sinv;    // gamma * Lx / ( z*gamma +1)**2

        const Mat3d& jacinv = mSecondMap.getConstJacobianInv();

        // compute \frac{\partial E_i}{\partial x_j}
        Mat3d gradE(Mat3d::zero());
        for (int j = 0; j < 3; ++j ) {
            gradE(0,j) =  pt0 * jacinv(0,j) -  pt2 * loc.x()*jacinv(2,j);
            gradE(1,j) =  pt0 * jacinv(1,j) -  pt2 * loc.y()*jacinv(2,j);
            gradE(2,j) = (1./mDepthOnLz) * jacinv(2,j);
        }

        Vec3d result;
        for (int i = 0; i < 3; ++i) {
            result(i) = d1_is(0) * gradE(0,i) + d1_is(1) * gradE(1,i) + d1_is(2) * gradE(2,i);
        }

        return result;

    }

    /// Return the Jacobian Curvature for the linear second map
    Mat3d applyIJC(const Mat3d& in) const { return mSecondMap.applyIJC(in); }
    /// Return the Jacobian Curvature: all the second derivatives in range space
    /// @param d2_is second derivative matrix computed in index space
    /// @param d1_is gradient computed in index space
    /// @param ijk  the index space location where the result is computed
    Mat3d applyIJC(const Mat3d& d2_is, const Vec3d& d1_is, const Vec3d& ijk) const
    {
        const Vec3d loc = applyFrustumMap(ijk);

        const double s =  mGamma * loc.z()  + 1.;

        // verify that we aren't at the singularity
        if (isApproxEqual(s, 0.)) {
            OPENVDB_THROW(ArithmeticError, "Tried to evaluate the frustum transform"
                " at the singular focal point (e.g. camera)");
        }

        // precompute
        const double sinv = 1.0/s;     // 1/(z*gamma + 1)
        const double pt0 = mLx * sinv;   // Lx / (z*gamma +1)
        const double pt1 = mGamma * pt0;   // gamma * Lx / ( z*gamma +1)
        const double pt2 = pt1 * sinv;   // gamma * Lx / ( z*gamma +1)**2
        const double pt3 = pt2 * sinv;   // gamma * Lx / ( z*gamma +1)**3

        const Mat3d& jacinv = mSecondMap.getConstJacobianInv();

        // compute \frac{\partial^2 E_i}{\partial x_j \partial x_k}

        Mat3d matE0(Mat3d::zero());
        Mat3d matE1(Mat3d::zero()); // matE2 = 0
        for(int j = 0; j < 3; j++) {
            for (int k = 0; k < 3; k++) {

                const double pt4 =  2. * jacinv(2,j) * jacinv(2,k) * pt3;

                matE0(j,k) = -(jacinv(0,j) * jacinv(2,k) + jacinv(2,j) * jacinv(0,k)) * pt2 +
                    pt4 * loc.x();

                matE1(j,k) = -(jacinv(1,j) * jacinv(2,k) + jacinv(2,j) * jacinv(1,k)) * pt2 +
                    pt4 * loc.y();
            }
        }

        // compute \frac{\partial E_i}{\partial x_j}
        Mat3d gradE(Mat3d::zero());
        for (int j = 0; j < 3; ++j ) {
            gradE(0,j) =  pt0 * jacinv(0,j) -  pt2 * loc.x()*jacinv(2,j);
            gradE(1,j) =  pt0 * jacinv(1,j) -  pt2 * loc.y()*jacinv(2,j);
            gradE(2,j) = (1./mDepthOnLz) * jacinv(2,j);
        }

        Mat3d result(Mat3d::zero());
        // compute \fac{\partial E_j}{\partial x_m} \fac{\partial E_i}{\partial x_n}
        // \frac{\partial^2 input}{\partial E_i \partial E_j}
        for (int m = 0; m < 3; ++m ) {
            for ( int n = 0; n < 3; ++n) {
                for (int i = 0; i < 3; ++i ) {
                    for (int j = 0; j < 3; ++j) {
                        result(m, n) += gradE(j, m) * gradE(i, n) * d2_is(i, j);
                    }
                }
            }
        }

         for (int m = 0; m < 3; ++m ) {
            for ( int n = 0; n < 3; ++n) {
                result(m, n) +=
                    matE0(m, n) * d1_is(0) + matE1(m, n) * d1_is(1);// + matE2(m, n) * d1_is(2);
            }
        }

         return result;
    }

    /// Return the determinant of the Jacobian of linear second map
    double determinant() const {return mSecondMap.determinant();} // no implementation

    /// Return the determinate of the Jacobian evaluated at @c loc
    /// @c loc is a location in the pre-image space (e.g., index space)
    double determinant(const Vec3d& loc) const
    {
        double s = mGamma * loc.z() + 1.0;
        double frustum_determinant = s * s * mDepthOnLzLxLx;
        return mSecondMap.determinant() * frustum_determinant;
    }

    /// Return the size of a voxel at the center of the near plane
    Vec3d voxelSize() const
    {
        const Vec3d loc( 0.5*(mBBox.min().x() + mBBox.max().x()),
                         0.5*(mBBox.min().y() + mBBox.max().y()),
                         mBBox.min().z());

        return voxelSize(loc);

    }

    /// @brief Returns the lengths of the images of the three segments
    /// from @a loc to @a loc + (1,0,0), from @a loc to @a loc + (0,1,0)
    /// and from @a loc to @a loc + (0,0,1)
    /// @param loc  a location in the pre-image space (e.g., index space)
    Vec3d voxelSize(const Vec3d& loc) const
    {
        Vec3d out, pos = applyMap(loc);
        out(0) = (applyMap(loc + Vec3d(1,0,0)) - pos).length();
        out(1) = (applyMap(loc + Vec3d(0,1,0)) - pos).length();
        out(2) = (applyMap(loc + Vec3d(0,0,1)) - pos).length();
        return out;
    }

    AffineMap::Ptr getAffineMap() const { return mSecondMap.getAffineMap(); }

    /// set the taper value, the ratio of nearplane width / far plane width
    void setTaper(double t) { mTaper = t; init();}
    /// Return the taper value.
    double getTaper() const { return mTaper; }
    /// set the frustum depth: distance between near and far plane = frustm depth * frustm x-width
    void setDepth(double d) { mDepth = d; init();}
    /// Return the unscaled frustm depth
    double getDepth() const { return mDepth; }
    // gamma a non-dimensional  number:  nearplane x-width / camera to near plane distance
    double getGamma() const { return mGamma; }

    /// Return the bounding box that defines the frustum in pre-image space
    const BBoxd& getBBox() const { return mBBox; }

    /// Return MapBase::Ptr& to the second map
    const AffineMap& secondMap() const { return mSecondMap; }
    /// Return @c true if the  the bounding box in index space that defines the region that
    /// is maped into the frustum is non-zero, otherwise @c false
    bool isValid() const { return !mBBox.empty();}

    /// Return @c true if the second map is a uniform scale, Rotation and translation
    bool hasSimpleAffine() const { return mHasSimpleAffine; }

    /// read serialization
    void read(std::istream& is)
    {
        // for backward compatibility with earlier version
        if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_FLOAT_FRUSTUM_BBOX ) {
            CoordBBox bb;
            bb.read(is);
            mBBox = BBoxd(bb.min().asVec3d(), bb.max().asVec3d());
        } else {
            mBBox.read(is);
        }

        is.read(reinterpret_cast<char*>(&mTaper), sizeof(double));
        is.read(reinterpret_cast<char*>(&mDepth), sizeof(double));

        // Read the second maps type.
        Name type = readString(is);

        // Check if the map has been registered.
        if(!MapRegistry::isRegistered(type)) {
            OPENVDB_THROW(KeyError, "Map " << type << " is not registered");
        }

        // Create the second map of the type and then read it in.
        MapBase::Ptr proxy =  math::MapRegistry::createMap(type);
        proxy->read(is);
        mSecondMap = *(proxy->getAffineMap());
        init();
    }

    /// write serialization
    void write(std::ostream& os) const
    {
        mBBox.write(os);
        os.write(reinterpret_cast<const char*>(&mTaper), sizeof(double));
        os.write(reinterpret_cast<const char*>(&mDepth), sizeof(double));

        writeString(os, mSecondMap.type());
        mSecondMap.write(os);
    }

    /// string serialization, useful for debuging
    std::string str() const
    {
        std::ostringstream buffer;
        buffer << " - taper: " << mTaper << std::endl;
        buffer << " - depth: " << mDepth << std::endl;
        buffer << " SecondMap: "<< mSecondMap.type() << std::endl;
        buffer << mSecondMap.str() << std::endl;
        return buffer.str();
    }

    //@{
    /// @brief Return a MapBase::Ptr to a new map that is the result
    /// of prepending the appropriate operation to the linear part of this map
    MapBase::Ptr preRotate(double radians, Axis axis = X_AXIS) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preRotate(radians, axis)));
    }
    MapBase::Ptr preTranslate(const Vec3d& t) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preTranslate(t)));
    }
    MapBase::Ptr preScale(const Vec3d& s) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.preScale(s)));
    }
    MapBase::Ptr preShear(double shear, Axis axis0, Axis axis1) const
    {
        return MapBase::Ptr(new NonlinearFrustumMap(
            mBBox, mTaper, mDepth, mSecondMap.preShear(shear, axis0, axis1)));
    }
    //@}

    //@{
    /// @brief Return a MapBase::Ptr to a new map that is the result
    /// of postfixing the appropiate operation to the linear part of this map.
    MapBase::Ptr postRotate(double radians, Axis axis = X_AXIS) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postRotate(radians, axis)));
    }
    MapBase::Ptr postTranslate(const Vec3d& t) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postTranslate(t)));
    }
    MapBase::Ptr postScale(const Vec3d& s) const
    {
        return MapBase::Ptr(
            new NonlinearFrustumMap(mBBox, mTaper, mDepth, mSecondMap.postScale(s)));
    }
    MapBase::Ptr postShear(double shear, Axis axis0, Axis axis1) const
    {
        return MapBase::Ptr(new NonlinearFrustumMap(
            mBBox, mTaper, mDepth, mSecondMap.postShear(shear, axis0, axis1)));
    }
    //@}

private:
    void init()
    {
        // set up as a frustum
        mLx = mBBox.extents().x();
        mLy = mBBox.extents().y();
        mLz = mBBox.extents().z();

        if (isApproxEqual(mLx,0.) || isApproxEqual(mLy,0.) || isApproxEqual(mLz,0.) ) {
            OPENVDB_THROW(ArithmeticError, "The index space bounding box"
                " must have at least two index points in each direction.");
        }

        mXo = 0.5* mLx;
        mYo = 0.5* mLy;

        // mDepth is non-dimensionalized on near
        mGamma = (1./mTaper - 1) / mDepth;

        mDepthOnLz = mDepth/mLz;
        mDepthOnLzLxLx = mDepthOnLz/(mLx * mLx);

        /// test for shear and non-uniform scale
        mHasSimpleAffine = true;
        Vec3d tmp = mSecondMap.voxelSize();

        /// false if there is non-uniform scale
        if (!isApproxEqual(tmp(0), tmp(1))) { mHasSimpleAffine = false; return; }
        if (!isApproxEqual(tmp(0), tmp(2))) { mHasSimpleAffine = false; return; }

        Vec3d trans = mSecondMap.applyMap(Vec3d(0,0,0));
        /// look for shear
        Vec3d tmp1 = mSecondMap.applyMap(Vec3d(1,0,0)) - trans;
        Vec3d tmp2 = mSecondMap.applyMap(Vec3d(0,1,0)) - trans;
        Vec3d tmp3 = mSecondMap.applyMap(Vec3d(0,0,1)) - trans;

        /// false if there is shear
        if (!isApproxEqual(tmp1.dot(tmp2), 0., 1.e-7)) { mHasSimpleAffine  = false; return; }
        if (!isApproxEqual(tmp2.dot(tmp3), 0., 1.e-7)) { mHasSimpleAffine  = false; return; }
        if (!isApproxEqual(tmp3.dot(tmp1), 0., 1.e-7)) { mHasSimpleAffine  = false; return; }
    }

    Vec3d applyFrustumMap(const Vec3d& in) const
    {

        // Move the center of the x-face of the bbox
        // to the origin in index space.
        Vec3d out(in);
        out = out - mBBox.min();
        out.x() -= mXo;
        out.y() -= mYo;

        // scale the z-direction on depth / K count
        out.z() *= mDepthOnLz;

        double scale = (mGamma * out.z() + 1.)/ mLx;

        // scale the x-y on the length I count and apply tapper
        out.x() *= scale ;
        out.y() *= scale ;

        return out;
    }

    Vec3d applyFrustumInverseMap(const Vec3d& in) const
    {
        // invert taper and resize:  scale = 1/( (z+1)/2 (mt-1) + 1)
        Vec3d out(in);
        double invScale = mLx / (mGamma * out.z() + 1.);
        out.x() *= invScale;
        out.y() *= invScale;

        out.x() += mXo;
        out.y() += mYo;

        out.z() /= mDepthOnLz;

        // move back
        out = out +  mBBox.min();
        return out;
    }

    // bounding box in index space used in Frustum transforms.
    BBoxd   mBBox;

    // taper value used in constructing Frustums.
    double      mTaper;
    double      mDepth;

    // defines the second map
    AffineMap mSecondMap;

    // these are derived from the above.
    double mLx, mLy, mLz;
    double mXo, mYo, mGamma, mDepthOnLz, mDepthOnLzLxLx;

    // true: if the mSecondMap is linear and has no shear, and has no non-uniform scale
    bool mHasSimpleAffine;
}; // class NonlinearFrustumMap


////////////////////////////////////////


///  @brief Creates the composition of two maps, each of which could be a composition.
///  In the case that each component of the composition classified as linear an
///  acceleration AffineMap is stored.
template<typename FirstMapType, typename SecondMapType>
class CompoundMap
{
public:
    typedef CompoundMap<FirstMapType, SecondMapType>    MyType;

    typedef boost::shared_ptr<MyType>       Ptr;
    typedef boost::shared_ptr<const MyType> ConstPtr;


    CompoundMap() { updateAffineMatrix(); }

    CompoundMap(const FirstMapType& f, const SecondMapType& s): mFirstMap(f), mSecondMap(s)
    {
        updateAffineMatrix();
    }

    CompoundMap(const MyType& other):
        mFirstMap(other.mFirstMap),
        mSecondMap(other.mSecondMap),
        mAffineMap(other.mAffineMap)
    {}

    Name type() const { return mapType(); }
    static Name mapType()
    {
        return (FirstMapType::mapType() + Name(":") + SecondMapType::mapType());
    }

    bool operator==(const MyType& other) const
    {
        if (mFirstMap != other.mFirstMap)   return false;
        if (mSecondMap != other.mSecondMap) return false;
        if (mAffineMap != other.mAffineMap) return false;
        return true;
    }

    bool operator!=(const MyType& other) const { return !(*this == other); }

    MyType& operator=(const MyType& other)
    {
        mFirstMap = other.mFirstMap;
        mSecondMap = other.mSecondMap;
        mAffineMap = other.mAffineMap;
        return *this;
    }

    bool isIdentity() const
    {
        if (is_linear<MyType>::value) {
            return mAffineMap.isIdentity();
        } else {
            return mFirstMap.isIdentity()&&mSecondMap.isIdentity();
        }
    }

    bool isDiagonal() const {
        if (is_linear<MyType>::value) {
            return mAffineMap.isDiagonal();
        } else {
            return mFirstMap.isDiagonal()&&mSecondMap.isDiagonal();
        }
    }

    AffineMap::Ptr getAffineMap() const
    {
        if (is_linear<MyType>::value) {
            AffineMap::Ptr affine(new AffineMap(mAffineMap));
            return affine;
        } else {
            OPENVDB_THROW(ArithmeticError,
                "Constant affine matrix representation not possible for this nonlinear map");
        }
    }

    // direct decompotion
    const FirstMapType& firstMap() const { return mFirstMap; }
    const SecondMapType& secondMap() const {return mSecondMap; }

    void setFirstMap(const FirstMapType& first) { mFirstMap = first; updateAffineMatrix(); }
    void setSecondMap(const SecondMapType& second) { mSecondMap = second; updateAffineMatrix(); }

    void read(std::istream& is)
    {
        mAffineMap.read(is);
        mFirstMap.read(is);
        mSecondMap.read(is);
    }
    void write(std::ostream& os) const
    {
        mAffineMap.write(os);
        mFirstMap.write(os);
        mSecondMap.write(os);
    }

private:
    void updateAffineMatrix()
    {
        if (is_linear<MyType>::value) {
            // both maps need to be linear, these methods are only defined for linear maps
            AffineMap::Ptr first = mFirstMap.getAffineMap();
            AffineMap::Ptr second= mSecondMap.getAffineMap();
            mAffineMap = AffineMap(*first, *second);
        }
    }

    FirstMapType   mFirstMap;
    SecondMapType  mSecondMap;
    // used for acceleration
    AffineMap      mAffineMap;
}; // class CompoundMap

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_MAPS_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )