This file is indexed.

/usr/include/openvdb/math/Mat.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Mat.h
/// @author Joshua Schpok

#ifndef OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED

#include <math.h>
#include <iostream>
#include <boost/format.hpp>
#include <openvdb/Exceptions.h>
#include "Math.h"


namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

/// @class Mat "Mat.h"
/// A base class for square matrices.
template<unsigned SIZE, typename T>
class Mat
{
public:
    typedef T value_type;
    typedef T ValueType;
    enum SIZE_ { size = SIZE };

    // Number of cols, rows, elements
    static unsigned numRows() { return SIZE; }
    static unsigned numColumns() { return SIZE; }
    static unsigned numElements() { return SIZE*SIZE; }

    /// Default ctor.  Does nothing.  Required because declaring a copy (or
    /// other) constructor means the default constructor gets left out.
    Mat() { }

    /// Copy constructor.  Used when the class signature matches exactly.
    Mat(Mat const &src) {
        for (unsigned i(0); i < numElements(); ++i) {
            mm[i] = src.mm[i];
        }
    }

    /// @return string representation of matrix
    /// Since output is multiline, optional indentation argument prefixes
    /// each newline with that much white space. It does not indent
    /// the first line, since you might be calling this inline:
    ///
    /// cout << "matrix: " << mat.str(7)
    ///
    /// matrix: [[1 2]
    ///          [3 4]]
    std::string
    str(unsigned indentation = 0) const {

        std::string ret;
        std::string indent;

        // We add +1 since we're indenting one for the first '['
        indent.append(indentation+1, ' ');

        ret.append("[");

        // For each row,
        for (unsigned i(0); i < SIZE; i++) {

            ret.append("[");

            // For each column
            for (unsigned j(0); j < SIZE; j++) {

                // Put a comma after everything except the last
                if (j) ret.append(", ");
                ret.append((boost::format("%1%") % mm[(i*SIZE)+j]).str());
            }

            ret.append("]");

            // At the end of every row (except the last)...
            if (i < SIZE-1 )
                // ...suffix the row bracket with a comma, newline, and
                // advance indentation
                ret.append((boost::format(",\n%1%") % indent).str());
        }

        ret.append("]");

        return ret;
    }

    /// Write a Mat to an output stream
    friend std::ostream& operator<<(
        std::ostream& ostr,
        const Mat<SIZE, T>& m)
    {
        ostr << m.str();
        return ostr;
    }

    void write(std::ostream& os) const {
        os.write(reinterpret_cast<const char*>(&mm), sizeof(T)*SIZE*SIZE);
    }

    void read(std::istream& is) {
        is.read(reinterpret_cast<char*>(&mm), sizeof(T)*SIZE*SIZE);
    }


protected:
    T mm[SIZE*SIZE];
};


template<typename T> class Quat;
template<typename T> class Vec3;

/// @brief Return the rotation matrix specified by the given quaternion.
/// @details The quaternion is normalized and used to construct the matrix.
/// Note that the matrix is transposed to match post-multiplication semantics.
template<class MatType>
MatType
rotation(const Quat<typename MatType::value_type> &q,
    typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8))
{
    typedef typename MatType::value_type T;

    T qdot(q.dot(q));
    T s(0);

    if (!isApproxEqual(qdot, T(0.0),eps)) {
        s = T(2.0 / qdot);
    }

    T x  = s*q.x();
    T y  = s*q.y();
    T z  = s*q.z();
    T wx = x*q.w();
    T wy = y*q.w();
    T wz = z*q.w();
    T xx = x*q.x();
    T xy = y*q.x();
    T xz = z*q.x();
    T yy = y*q.y();
    T yz = z*q.y();
    T zz = z*q.z();

    MatType r;
    r[0][0]=T(1) - (yy+zz); r[0][1]=xy + wz;        r[0][2]=xz - wy;
    r[1][0]=xy - wz;        r[1][1]=T(1) - (xx+zz); r[1][2]=yz + wx;
    r[2][0]=xz + wy;        r[2][1]=yz - wx;        r[2][2]=T(1) - (xx+yy);

    if(MatType::numColumns() == 4) padMat4(r);
    return r;
}



/// @brief Return a matrix for rotation by @a angle radians about the given @a axis.
/// @param axis   The axis (one of X, Y, Z) to rotate about.
/// @param angle  The rotation angle, in radians.
template<class MatType>
MatType
rotation(Axis axis, typename MatType::value_type angle)
{
    typedef typename MatType::value_type T;
    T c = static_cast<T>(cos(angle));
    T s = static_cast<T>(sin(angle));

    MatType result;
    result.setIdentity();

    switch (axis) {
    case X_AXIS:
        result[1][1]  = c;
        result[1][2]  = s;
        result[2][1]  = -s;
        result[2][2] = c;
        return result;
    case Y_AXIS:
        result[0][0]  = c;
        result[0][2]  = -s;
        result[2][0]  = s;
        result[2][2] = c;
        return result;
    case Z_AXIS:
        result[0][0] = c;
        result[0][1] = s;
        result[1][0] = -s;
        result[1][1] = c;
        return result;
    default:
        throw ValueError("Unrecognized rotation axis");
    }
}


/// @brief Return a matrix for rotation by @a angle radians about the given @a axis.
/// @note The axis must be a unit vector.
template<class MatType>
MatType
rotation(const Vec3<typename MatType::value_type> &_axis, typename MatType::value_type angle)
{
    typedef typename MatType::value_type T;
    T txy, txz, tyz, sx, sy, sz;

    Vec3<T> axis(_axis.unit());

    // compute trig properties of angle:
    T c(cos(double(angle)));
    T s(sin(double(angle)));
    T t(1 - c);

    MatType result;
    // handle diagonal elements
    result[0][0] = axis[0]*axis[0] * t + c;
    result[1][1] = axis[1]*axis[1] * t + c;
    result[2][2] = axis[2]*axis[2] * t + c;

    txy = axis[0]*axis[1] * t;
    sz = axis[2] * s;

    txz = axis[0]*axis[2] * t;
    sy = axis[1] * s;

    tyz = axis[1]*axis[2] * t;
    sx = axis[0] * s;

    // right handed space
    // Contribution from rotation about 'z'
    result[0][1] = txy + sz;
    result[1][0] = txy - sz;
    // Contribution from rotation about 'y'
    result[0][2] = txz - sy;
    result[2][0] = txz + sy;
    // Contribution from rotation about 'x'
    result[1][2] = tyz + sx;
    result[2][1] = tyz - sx;

    if(MatType::numColumns() == 4) padMat4(result);
    return MatType(result);
}


/// @brief Return the Euler angles composing the given rotation matrix.
/// @details Optional axes arguments describe in what order elementary rotations
/// are applied. Note that in our convention, XYZ means Rz * Ry * Rx.
/// Because we are using rows rather than columns to represent the
/// local axes of a coordinate frame, the interpretation from a local
/// reference point of view is to first rotate about the x axis, then
/// about the newly rotated y axis, and finally by the new local z axis.
/// From a fixed reference point of view, the interpretation is to
/// rotate about the stationary world z, y, and x axes respectively.
///
/// Irrespective of the Euler angle convention, in the case of distinct
/// axes, eulerAngles() returns the x, y, and z angles in the corresponding
/// x, y, z components of the returned Vec3. For the XZX convention, the
/// left X value is returned in Vec3.x, and the right X value in Vec3.y.
/// For the ZXZ convention the left Z value is returned in Vec3.z and
/// the right Z value in Vec3.y
///
/// Examples of reconstructing r from its Euler angle decomposition
///
/// v = eulerAngles(r, ZYX_ROTATION);
/// rx.setToRotation(Vec3d(1,0,0), v[0]);
/// ry.setToRotation(Vec3d(0,1,0), v[1]);
/// rz.setToRotation(Vec3d(0,0,1), v[2]);
/// r = rx * ry * rz;
///
/// v = eulerAngles(r, ZXZ_ROTATION);
/// rz1.setToRotation(Vec3d(0,0,1), v[2]);
/// rx.setToRotation (Vec3d(1,0,0), v[0]);
/// rz2.setToRotation(Vec3d(0,0,1), v[1]);
/// r = rz2 * rx * rz1;
///
/// v = eulerAngles(r, XZX_ROTATION);
/// rx1.setToRotation (Vec3d(1,0,0), v[0]);
/// rx2.setToRotation (Vec3d(1,0,0), v[1]);
/// rz.setToRotation  (Vec3d(0,0,1), v[2]);
/// r = rx2 * rz * rx1;
///
template<class MatType>
Vec3<typename MatType::value_type>
eulerAngles(
    const MatType& mat,
    RotationOrder rotationOrder,
    typename MatType::value_type eps = static_cast<typename MatType::value_type>(1.0e-8))
{
    typedef typename MatType::value_type ValueType;
    typedef Vec3<ValueType> V;
    ValueType phi, theta, psi;

    switch(rotationOrder)
    {
    case XYZ_ROTATION:
        if (isApproxEqual(mat[2][0], ValueType(1.0), eps)) {
            theta = ValueType(M_PI_2);
            phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
            psi = phi;
        } else if (isApproxEqual(mat[2][0], ValueType(-1.0), eps)) {
            theta = ValueType(-M_PI_2);
            phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(-mat[1][0],mat[0][0]));
            phi = ValueType(atan2(-mat[2][1],mat[2][2]));
            theta = ValueType(atan2(mat[2][0],
                sqrt( mat[2][1]*mat[2][1] +
                    mat[2][2]*mat[2][2])));
        }
        return V(phi, theta, psi);
    case ZXY_ROTATION:
        if (isApproxEqual(mat[1][2], ValueType(1.0), eps)) {
            theta = ValueType(M_PI_2);
            phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
            psi = phi;
        } else if (isApproxEqual(mat[1][2], ValueType(-1.0), eps)) {
            theta = ValueType(-M_PI/2);
            phi = ValueType(0.5 * atan2(mat[0][1],mat[2][1]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(-mat[0][2], mat[2][2]));
            phi = ValueType(atan2(-mat[1][0], mat[1][1]));
            theta = ValueType(atan2(mat[1][2],
                        sqrt(mat[0][2] * mat[0][2] +
                                mat[2][2] * mat[2][2])));
        }
        return V(theta, psi, phi);

    case YZX_ROTATION:
        if (isApproxEqual(mat[0][1], ValueType(1.0), eps)) {
            theta = ValueType(M_PI_2);
            phi = ValueType(0.5 * atan2(mat[2][0], mat[2][2]));
            psi = phi;
        } else if (isApproxEqual(mat[0][1], ValueType(-1.0), eps)) {
            theta = ValueType(-M_PI/2);
            phi = ValueType(0.5 * atan2(mat[2][0], mat[1][0]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(-mat[2][1], mat[1][1]));
            phi = ValueType(atan2(-mat[0][2], mat[0][0]));
            theta = ValueType(atan2(mat[0][1],
                sqrt(mat[0][0] * mat[0][0] +
                        mat[0][2] * mat[0][2])));
        }
        return V(psi, phi, theta);

    case XZX_ROTATION:

        if (isApproxEqual(mat[0][0], ValueType(1.0), eps)) {
            theta = ValueType(0.0);
            phi = ValueType(0.5 * atan2(mat[1][2], mat[1][1]));
            psi = phi;
        } else if (isApproxEqual(mat[0][0], ValueType(-1.0), eps)) {
            theta = ValueType(M_PI);
            psi = ValueType(0.5 * atan2(mat[2][1], -mat[1][1]));
            phi = - psi;
        } else {
            psi = ValueType(atan2(mat[2][0], -mat[1][0]));
            phi = ValueType(atan2(mat[0][2], mat[0][1]));
            theta = ValueType(atan2(sqrt(mat[0][1] * mat[0][1] +
                                mat[0][2] * mat[0][2]),
                            mat[0][0]));
        }
        return V(phi, psi, theta);

    case ZXZ_ROTATION:

        if (isApproxEqual(mat[2][2], ValueType(1.0), eps)) {
            theta = ValueType(0.0);
            phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
            psi = phi;
        } else if (isApproxEqual(mat[2][2], ValueType(-1.0), eps)) {
            theta = ValueType(M_PI);
            phi = ValueType(0.5 * atan2(mat[0][1], mat[0][0]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(mat[0][2], mat[1][2]));
            phi = ValueType(atan2(mat[2][0], -mat[2][1]));
            theta = ValueType(atan2(sqrt(mat[0][2] * mat[0][2] +
                                mat[1][2] * mat[1][2]),
                            mat[2][2]));
        }
        return V(theta, psi, phi);

    case YXZ_ROTATION:

        if (isApproxEqual(mat[2][1], ValueType(1.0), eps)) {
            theta = ValueType(-M_PI_2);
            phi = ValueType(0.5 * atan2(-mat[1][0], mat[0][0]));
            psi = phi;
        } else if (isApproxEqual(mat[2][1], ValueType(-1.0), eps)) {
            theta = ValueType(M_PI_2);
            phi = ValueType(0.5 * atan2(mat[1][0], mat[0][0]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(mat[0][1], mat[1][1]));
            phi = ValueType(atan2(mat[2][0], mat[2][2]));
            theta = ValueType(atan2(-mat[2][1],
                sqrt(mat[0][1] * mat[0][1] +
                        mat[1][1] * mat[1][1])));
        }
        return V(theta, phi, psi);

    case ZYX_ROTATION:

        if (isApproxEqual(mat[0][2], ValueType(1.0), eps)) {
            theta = ValueType(-M_PI_2);
            phi = ValueType(0.5 * atan2(-mat[1][0], mat[1][1]));
            psi = phi;
        } else if (isApproxEqual(mat[0][2], ValueType(-1.0), eps)) {
            theta = ValueType(M_PI_2);
            phi = ValueType(0.5 * atan2(mat[2][1], mat[2][0]));
            psi = -phi;
        } else {
            psi = ValueType(atan2(mat[1][2], mat[2][2]));
            phi = ValueType(atan2(mat[0][1], mat[0][0]));
            theta = ValueType(atan2(-mat[0][2],
                sqrt(mat[0][1] * mat[0][1] +
                        mat[0][0] * mat[0][0])));
        }
        return V(psi, theta, phi);

    case XZY_ROTATION:

        if (isApproxEqual(mat[1][0], ValueType(-1.0), eps)) {
            theta = ValueType(M_PI_2);
            psi = ValueType(0.5 * atan2(mat[2][1], mat[2][2]));
            phi = -psi;
        } else if (isApproxEqual(mat[1][0], ValueType(1.0), eps)) {
            theta = ValueType(-M_PI_2);
            psi = ValueType(0.5 * atan2(- mat[2][1], mat[2][2]));
            phi = psi;
        } else {
            psi = ValueType(atan2(mat[2][0], mat[0][0]));
            phi = ValueType(atan2(mat[1][2], mat[1][1]));
            theta = ValueType(atan2(- mat[1][0],
                            sqrt(mat[1][1] * mat[1][1] +
                                    mat[1][2] * mat[1][2])));
        }
        return V(phi, psi, theta);
    }

    OPENVDB_THROW(NotImplementedError, "Euler extraction sequence not implemented");
}


/// @brief Return a rotation matrix that maps @a v1 onto @a v2
/// about the cross product of @a v1 and @a v2.
template<class MatType>
MatType
rotation(
    const Vec3<typename MatType::value_type>& _v1,
    const Vec3<typename MatType::value_type>& _v2,
    typename MatType::value_type eps=1.0e-8)
{
    typedef typename MatType::value_type T;
    Vec3<T> v1(_v1);
    Vec3<T> v2(_v2);

    // Check if v1 and v2 are unit length
    if (!isApproxEqual(1.0, v1.dot(v1), eps)) {
        v1.normalize();
    }
    if (!isApproxEqual(1.0, v2.dot(v2), eps)) {
        v2.normalize();
    }

    Vec3<T> cross;
    cross.cross(v1, v2);

    if (isApproxEqual(cross[0], 0.0, eps) &&
        isApproxEqual(cross[1], 0.0, eps) &&
        isApproxEqual(cross[2], 0.0, eps)) {


        // Given two unit vectors v1 and v2 that are nearly parallel, build a
        // rotation matrix that maps v1 onto v2. First find which principal axis
        // p is closest to perpendicular to v1. Find a reflection that exchanges
        // v1 and p, and find a reflection that exchanges p2 and v2. The desired
        // rotation matrix is the composition of these two reflections. See the
        // paper "Efficiently Building a Matrix to Rotate One Vector to
        // Another" by Tomas Moller and John Hughes in Journal of Graphics
        // Tools Vol 4, No 4 for details.

        Vec3<T> u, v, p(0.0, 0.0, 0.0);

        double x = Abs(v1[0]);
        double y = Abs(v1[1]);
        double z = Abs(v1[2]);

        if (x < y) {
            if (z < x) {
                p[2] = 1;
            } else {
                p[0] = 1;
            }
        } else {
            if (z < y) {
                p[2] = 1;
            } else {
                p[1] = 1;
            }
        }
        u = p - v1;
        v = p - v2;

        double udot = u.dot(u);
        double vdot = v.dot(v);

        double a = -2 / udot;
        double b = -2 / vdot;
        double c = 4 * u.dot(v) / (udot * vdot);

        MatType result;
        result.setIdentity();

        for (int j = 0; j < 3; j++) {
            for (int i = 0; i < 3; i++)
                result[i][j] =
                    a * u[i] * u[j] + b * v[i] * v[j] + c * v[j] * u[i];
        }
        result[0][0] += 1.0;
        result[1][1] += 1.0;
        result[2][2] += 1.0;

        if(MatType::numColumns() == 4) padMat4(result);
        return result;

    } else {
        double c = v1.dot(v2);
        double a = (1.0 - c) / cross.dot(cross);

        double a0 = a * cross[0];
        double a1 = a * cross[1];
        double a2 = a * cross[2];

        double a01 = a0 * cross[1];
        double a02 = a0 * cross[2];
        double a12 = a1 * cross[2];

        MatType r;

        r[0][0] = c + a0 * cross[0];
        r[0][1] = a01 + cross[2];
        r[0][2] = a02 - cross[1],
        r[1][0] = a01 - cross[2];
        r[1][1] = c + a1 * cross[1];
        r[1][2] = a12 + cross[0];
        r[2][0] = a02 + cross[1];
        r[2][1] = a12 - cross[0];
        r[2][2] = c + a2 * cross[2];

        if(MatType::numColumns() == 4) padMat4(r);
        return r;

    }
}


/// Return a matrix that scales by @a s.
template<class MatType>
MatType
scale(const Vec3<typename MatType::value_type>& s)
{
    // Gets identity, then sets top 3 diagonal
    // Inefficient by 3 sets.

    MatType result;
    result.setIdentity();
    result[0][0] = s[0];
    result[1][1] = s[1];
    result[2][2] = s[2];

    return result;
}


/// Return a Vec3 representing the lengths of the passed matrix's upper 3x3's rows.
template<class MatType>
Vec3<typename MatType::value_type>
getScale(const MatType &mat)
{
    typedef Vec3<typename MatType::value_type> V;
    return V(
        V(mat[0][0], mat[0][1], mat[0][2]).length(),
        V(mat[1][0], mat[1][1], mat[1][2]).length(),
        V(mat[2][0], mat[2][1], mat[2][2]).length());
}


/// @brief Return a copy of the given matrix with its upper 3x3 rows normalized.
/// @details This can be geometrically interpreted as a matrix with no scaling
/// along its major axes.
template<class MatType>
MatType
unit(const MatType &mat, typename MatType::value_type eps = 1.0e-8)
{
    Vec3<typename MatType::value_type> dud;
    return unit(mat, eps, dud);
}


/// @brief Return a copy of the given matrix with its upper 3x3 rows normalized,
/// and return the length of each of these rows in @a scaling.
/// @details This can be geometrically interpretted as a matrix with no scaling
/// along its major axes, and the scaling in the input vector
template<class MatType>
MatType
unit(
    const MatType &in,
    typename MatType::value_type eps,
    Vec3<typename MatType::value_type>& scaling)
{
    typedef typename MatType::value_type T;
    MatType result(in);

    for (int i(0); i < 3; i++) {
        try {
            const Vec3<T> u(
                Vec3<T>(in[i][0], in[i][1], in[i][2]).unit(eps, scaling[i]));
            for (int j=0; j<3; j++) result[i][j] = u[j];
        } catch (ArithmeticError&) {
            for (int j=0; j<3; j++) result[i][j] = 0;
        }
    }
    return result;
}


/// @brief Set the matrix to a shear along @a axis0 by a fraction of @a axis1.
/// @param axis0 The fixed axis of the shear.
/// @param axis1 The shear axis.
/// @param shear The shear factor.
template <class MatType>
MatType
shear(Axis axis0, Axis axis1, typename MatType::value_type shear)
{
    int index0 = static_cast<int>(axis0);
    int index1 = static_cast<int>(axis1);

    MatType result;
    result.setIdentity();
    if (axis0 == axis1) {
        result[index1][index0] = shear + 1;
    } else {
        result[index1][index0] = shear;
    }

    return result;
}


/// Return a matrix as the cross product of the given vector.
template<class MatType>
MatType
skew(const Vec3<typename MatType::value_type> &skew)
{
    typedef typename MatType::value_type T;

    MatType r;
    r[0][0] = T(0);      r[0][1] = skew.z();  r[0][2] = -skew.y();
    r[1][0] = -skew.z(); r[1][1] = T(0);      r[2][1] = skew.x();
    r[2][0] = skew.y();  r[2][1] = -skew.x(); r[2][2] = T(0);

    if(MatType::numColumns() == 4) padMat4(r);
    return r;
}


/// @brief Return an orientation matrix such that z points along @a direction,
/// and y is along the @a direction / @a vertical plane.
template<class MatType>
MatType
aim(const Vec3<typename MatType::value_type>& direction,
    const Vec3<typename MatType::value_type>& vertical)
{
    typedef typename MatType::value_type T;
    Vec3<T> forward(direction.unit());
    Vec3<T> horizontal(vertical.unit().cross(forward).unit());
    Vec3<T> up(forward.cross(horizontal).unit());

    MatType r;

    r[0][0]=horizontal.x(); r[0][1]=horizontal.y(); r[0][2]=horizontal.z();
    r[1][0]=up.x();         r[1][1]=up.y();         r[1][2]=up.z();
    r[2][0]=forward.x();    r[2][1]=forward.y();    r[2][2]=forward.z();

    if(MatType::numColumns() == 4) padMat4(r);
    return r;
}

/// @brief    This function snaps a specific axis to a specific direction,
///           preserving scaling.
/// @details  It does this using minimum energy, thus posing a unique solution if
///           basis & direction aren't parallel.
/// @note     @a direction need not be unit.
template<class MatType>
inline MatType
snapMatBasis(const MatType& source, Axis axis, const Vec3<typename MatType::value_type>& direction)
{
    typedef typename MatType::value_type T;

    Vec3<T> unitDir(direction.unit());
    Vec3<T> ourUnitAxis(source.row(axis).unit());

    // Are the two parallel?
    T parallel = unitDir.dot(ourUnitAxis);

    // Already snapped!
    if (isApproxEqual(parallel, T(1.0))) return source;

    if (isApproxEqual(parallel, T(-1.0))) {
        OPENVDB_THROW(ValueError, "Cannot snap to inverse axis");
    }

    // Find angle between our basis and the one specified
    T angleBetween(angle(unitDir, ourUnitAxis));
    // Caclulate axis to rotate along
    Vec3<T> rotationAxis = unitDir.cross(ourUnitAxis);

    MatType rotation;
    rotation.setToRotation(rotationAxis, angleBetween);

    return source * rotation;
}

/// @brief Write 0s along Mat4's last row and column, and a 1 on its diagonal.
/// @details Useful initialization when we're initializing just the 3x3 block.
template<class MatType>
static MatType&
padMat4(MatType& dest)
{
    dest[0][3] = dest[1][3] = dest[2][3] = 0;
    dest[3][2] = dest[3][1] = dest[3][0] = 0;
    dest[3][3] = 1;

    return dest;
}


/// @brief Solve for A=B*B, given A.
/// @details Denman-Beavers square root iteration
template <typename MatType>
inline void
sqrtSolve(const MatType &aA, MatType &aB, double aTol=0.01)
{
    unsigned int iterations = (unsigned int)(log(aTol)/log(0.5));
    MatType Y[2];
    MatType Z[2];
    MatType invY;
    MatType invZ;

    unsigned int current = 0;

    Y[0]=aA;
    Z[0] = MatType::identity();

    unsigned int iteration;
    for (iteration=0; iteration<iterations; iteration++)
    {
        unsigned int last = current;
        current = !current;

        invY = Y[last].inverse();
        invZ = Z[last].inverse();

        Y[current]=0.5*(Y[last]+invZ);
        Z[current]=0.5*(Z[last]+invY);
    }

    MatType &R = Y[current];

    aB=R;
}


template <typename MatType>
inline void
powSolve(const MatType &aA, MatType &aB, double aPower, double aTol=0.01)
{
    unsigned int iterations = (unsigned int)(log(aTol)/log(0.5));

    const bool inverted = ( aPower < 0.0 );

    if (inverted) {
        aPower = -aPower;
    }

    unsigned int whole = (unsigned int)aPower;
    double fraction = aPower - whole;

    MatType R;
    R = MatType::identity();

    MatType partial = aA;

    double contribution = 1.0;

    unsigned int iteration;

    for (iteration=0; iteration< iterations; iteration++)
    {
        sqrtSolve(partial, partial, aTol);
        contribution *= 0.5;

        if (fraction>=contribution)
        {
            R *= partial;
            fraction-=contribution;
        }
    }

    partial = aA;
    while (whole)
    {
        if (whole & 1) {
            R *= partial;
        }
        whole>>=1;
        if(whole) {
            partial*=partial;
        }
    }

    if (inverted) {
        aB = R.inverse();
    }
    else {
        aB = R;
    }
}


/// @brief Determine if a matrix is an identity matrix.
template<typename MatType>
inline bool
isIdentity(const MatType& m)
{
    return m.eq(MatType::identity());
}


/// @brief Determine if a matrix is invertible.
template<typename MatType>
inline bool
isInvertible(const MatType& m)
{
    typedef typename MatType::ValueType  value_type;
    return !isApproxEqual(m.det(), (value_type)0);
}


/// @brief Determine if a matrix is symmetric.
/// @details This implicitly uses math::isApproxEqual() to determine equality.
template<typename MatType>
inline bool
isSymmetric(const MatType& m)
{
    return m.eq(m.transpose());
}


/// Determine if a matrix is unitary (i.e., rotation or reflection).
template<typename MatType>
inline bool
isUnitary(const MatType& m)
{
    typedef typename MatType::ValueType value_type;
    if (!isApproxEqual(std::abs(m.det()), value_type(1.0))) return false;
    // check that the matrix transpose is the inverse
    MatType temp = m * m.transpose();
    return temp.eq(MatType::identity());
}


/// Determine if a matrix is diagonal.
template<typename MatType>
inline bool
isDiagonal(const MatType& mat)
{
    int n = MatType::size;
    typename MatType::ValueType temp(0);
    for (int i = 0; i < n; ++i) {
        for (int j = 0; j < n; ++j) {
            if (i != j) {
                temp+=std::abs(mat(i,j));
            }
        }
    }
    return isApproxEqual(temp, typename MatType::ValueType(0.0));
}


/// Return the @f$L_\infty@f$ norm of an N x N matrix.
template<typename MatType>
typename MatType::ValueType
lInfinityNorm(const MatType& matrix)
{
    int n = MatType::size;
    typename MatType::ValueType norm = 0;

    for( int j = 0; j<n; ++j) {
        typename MatType::ValueType column_sum = 0;

        for (int i = 0; i<n; ++i) {
            column_sum += fabs(matrix(i,j));
        }
        norm = std::max(norm, column_sum);
    }

    return norm;
}


/// Return the @f$L_1@f$ norm of an N x N matrix.
template<typename MatType>
typename MatType::ValueType
lOneNorm(const MatType& matrix)
{
    int n = MatType::size;
    typename MatType::ValueType norm = 0;

    for( int i = 0; i<n; ++i) {
        typename MatType::ValueType row_sum = 0;

        for (int j = 0; j<n; ++j) {
            row_sum += fabs(matrix(i,j));
        }
        norm = std::max(norm, row_sum);
    }

    return norm;
}


/// @brief Decompose an invertible 3x3 matrix into a unitary matrix
/// followed by a symmetric matrix (positive semi-definite Hermitian),
/// i.e., M = U * S.
/// @details If det(U) = 1 it is a rotation, otherwise det(U) = -1,
/// meaning there is some part reflection.
/// See "Computing the polar decomposition with applications"
/// Higham, N.J. - SIAM J. Sc. Stat Comput 7(4):1160-1174
template<typename MatType>
bool
polarDecomposition(const MatType& input, MatType& unitary,
    MatType& positive_hermitian, unsigned int MAX_ITERATIONS=100)
{
    unitary = input;
    MatType new_unitary(input);
    MatType unitary_inv;

    if (fabs(unitary.det()) < math::Tolerance<typename MatType::ValueType>::value()) return false;

    unsigned int iteration(0);

    typename MatType::ValueType linf_of_u;
    typename MatType::ValueType l1nm_of_u;
    typename MatType::ValueType linf_of_u_inv;
    typename MatType::ValueType l1nm_of_u_inv;
    typename MatType::ValueType l1_error = 100;
    double gamma;

    do {
        unitary_inv = unitary.inverse();
        linf_of_u = lInfinityNorm(unitary);
        l1nm_of_u = lOneNorm(unitary);

        linf_of_u_inv = lInfinityNorm(unitary_inv);
        l1nm_of_u_inv = lOneNorm(unitary_inv);

        gamma = sqrt( sqrt( (l1nm_of_u_inv * linf_of_u_inv ) / (l1nm_of_u * linf_of_u) ));

        new_unitary = 0.5*(gamma * unitary + (1./gamma) * unitary_inv.transpose() );

        l1_error = lInfinityNorm(unitary - new_unitary);
        unitary = new_unitary;

        /// this generally converges in less than ten iterations
        if (iteration > MAX_ITERATIONS) return false;
        iteration++;
    } while (l1_error > math::Tolerance<typename MatType::ValueType>::value());

    positive_hermitian = unitary.transpose() * input;
    return true;
}

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_MAT_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )