/usr/include/openvdb/math/Math.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Math.h
/// @brief General-purpose arithmetic and comparison routines, most of which
/// accept arbitrary value types (or at least arbitrary numeric value types)
#ifndef OPENVDB_MATH_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_HAS_BEEN_INCLUDED
#include <assert.h>
#include <algorithm> // for std::max()
#include <cmath> // for floor(), ceil() and sqrt()
#include <math.h> // for pow(), fabs() etc
#include <cstdlib> // for srand(), abs(int)
#include <limits> // for std::numeric_limits<Type>::max()
#include <string>
#include <boost/numeric/conversion/conversion_traits.hpp>
#include <boost/math/special_functions/cbrt.hpp>
#include <boost/math/special_functions/fpclassify.hpp> // boost::math::isfinite
#include <boost/random/mersenne_twister.hpp> // for boost::random::mt19937
#include <boost/random/uniform_01.hpp>
#include <boost/random/uniform_int.hpp>
#include <boost/version.hpp> // for BOOST_VERSION
#include <openvdb/Platform.h>
#include <openvdb/version.h>
// Compile pragmas
#define PRAGMA(x) _Pragma(#x)
// Intel(r) compiler fires remark #1572: floating-point equality and inequality
// comparisons are unrealiable when == or != is used with floating point operands.
#if defined(__INTEL_COMPILER)
#define OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN \
_Pragma("warning (push)") \
_Pragma("warning (disable:1572)")
#define OPENVDB_NO_FP_EQUALITY_WARNING_END \
_Pragma("warning (pop)")
#elif defined(__clang__)
#define OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN \
PRAGMA(clang diagnostic push) \
PRAGMA(clang diagnostic ignored "-Wfloat-equal")
#define OPENVDB_NO_FP_EQUALITY_WARNING_END \
PRAGMA(clang diagnostic pop)
#else
// For GCC, #pragma GCC diagnostic ignored "-Wfloat-equal"
// isn't working until gcc 4.2+,
// Trying
// #pragma GCC system_header
// creates other problems, most notably "warning: will never be executed"
// in from templates, unsure of how to work around.
// If necessary, could use integer based comparisons for equality
#define OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN
#define OPENVDB_NO_FP_EQUALITY_WARNING_END
#endif
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
/// @brief Return the value of type T that corresponds to zero.
/// @note A zeroVal<T>() specialization must be defined for each @c ValueType T
/// that cannot be constructed using the form @c T(0). For example, @c std::string(0)
/// treats 0 as @c NULL and throws a @c std::logic_error.
template<typename T> inline T zeroVal() { return T(0); }
/// Return the @c std::string value that corresponds to zero.
template<> inline std::string zeroVal<std::string>() { return ""; }
/// Return the @c bool value that corresponds to zero.
template<> inline bool zeroVal<bool>() { return false; }
/// @todo These won't be needed if we eliminate StringGrids.
//@{
/// @brief Needed to support the <tt>(zeroVal<ValueType>() + val)</tt> idiom
/// when @c ValueType is @c std::string
inline std::string operator+(const std::string& s, bool) { return s; }
inline std::string operator+(const std::string& s, int) { return s; }
inline std::string operator+(const std::string& s, float) { return s; }
inline std::string operator+(const std::string& s, double) { return s; }
//@}
namespace math {
/// @brief Return the unary negation of the given value.
/// @note A negative<T>() specialization must be defined for each ValueType T
/// for which unary negation is not defined.
template<typename T> inline T negative(const T& val) { return T(-val); }
/// Return the negation of the given boolean.
template<> inline bool negative(const bool& val) { return !val; }
/// Return the "negation" of the given string.
template<> inline std::string negative(const std::string& val) { return val; }
//@{
/// Tolerance for floating-point comparison
template<typename T> struct Tolerance { static T value() { return zeroVal<T>(); } };
template<> struct Tolerance<float> { static float value() { return 1e-8f; } };
template<> struct Tolerance<double> { static double value() { return 1e-15; } };
//@}
//@{
/// Delta for small floating-point offsets
template<typename T> struct Delta { static T value() { return zeroVal<T>(); } };
template<> struct Delta<float> { static float value() { return 1e-5f; } };
template<> struct Delta<double> { static double value() { return 1e-9; } };
//@}
// ==========> Random Values <==================
/// @brief Simple generator of random numbers over the range [0, 1)
/// @details Thread-safe as long as each thread has its own Rand01 instance
template<typename FloatType = double, typename EngineType = boost::mt19937>
class Rand01
{
private:
EngineType mEngine;
boost::uniform_01<FloatType> mRand;
public:
typedef FloatType ValueType;
/// @brief Initialize the generator.
/// @param engine random number generator
Rand01(const EngineType& engine): mEngine(engine) {}
/// @brief Initialize the generator.
/// @param seed seed value for the random number generator
Rand01(unsigned int seed): mEngine(static_cast<typename EngineType::result_type>(seed)) {}
/// Set the seed value for the random number generator
void setSeed(unsigned int seed)
{
mEngine.seed(static_cast<typename EngineType::result_type>(seed));
}
/// Return a const reference to the random number generator.
const EngineType& engine() const { return mEngine; }
/// Return a uniformly distributed random number in the range [0, 1).
FloatType operator()() { return mRand(mEngine); }
};
typedef Rand01<double, boost::mt19937> Random01;
/// @brief Simple random integer generator
/// @details Thread-safe as long as each thread has its own RandInt instance
template<typename IntType = int, typename EngineType = boost::mt19937>
class RandInt
{
private:
#if BOOST_VERSION >= 104700
typedef boost::random::uniform_int_distribution<IntType> Distr;
#else
typedef boost::uniform_int<IntType> Distr;
#endif
EngineType mEngine;
Distr mRand;
public:
/// @brief Initialize the generator.
/// @param engine random number generator
/// @param imin,imax generate integers that are uniformly distributed over [imin, imax]
RandInt(const EngineType& engine, IntType imin, IntType imax):
mEngine(engine),
mRand(std::min(imin, imax), std::max(imin, imax))
{}
/// @brief Initialize the generator.
/// @param seed seed value for the random number generator
/// @param imin,imax generate integers that are uniformly distributed over [imin, imax]
RandInt(unsigned int seed, IntType imin, IntType imax):
mEngine(static_cast<typename EngineType::result_type>(seed)),
mRand(std::min(imin, imax), std::max(imin, imax))
{}
/// Change the range over which integers are distributed to [imin, imax].
void setRange(IntType imin, IntType imax)
{
mRand = Distr(std::min(imin, imax), std::max(imin, imax));
}
/// Set the seed value for the random number generator
void setSeed(unsigned int seed)
{
mEngine.seed(static_cast<typename EngineType::result_type>(seed));
}
/// Return a const reference to the random number generator.
const EngineType& engine() const { return mEngine; }
/// Return a randomly-generated integer in the current range.
IntType operator()() { return mRand(mEngine); }
/// @brief Return a randomly-generated integer in the new range [imin, imax],
/// without changing the current range.
IntType operator()(IntType imin, IntType imax)
{
const IntType lo = std::min(imin, imax), hi = std::max(imin, imax);
#if BOOST_VERSION >= 104700
return mRand(mEngine, typename Distr::param_type(lo, hi));
#else
return Distr(lo, hi)(mEngine);
#endif
}
};
typedef RandInt<int, boost::mt19937> RandomInt;
// ==========> Clamp <==================
/// Return @a x clamped to [@a min, @a max]
template<typename Type>
inline Type
Clamp(Type x, Type min, Type max)
{
assert( !(min>max) );
return x > min ? x < max ? x : max : min;
}
/// Return @a x clamped to [0, 1]
template<typename Type>
inline Type
Clamp01(Type x) { return x > Type(0) ? x < Type(1) ? x : Type(1) : Type(0); }
/// Return @c true if @a x is outside [0,1]
template<typename Type>
inline bool
ClampTest01(Type &x)
{
if (x >= Type(0) && x <= Type(1)) return false;
x = x < Type(0) ? Type(0) : Type(1);
return true;
}
/// @brief Return 0 if @a x < @a 0, 1 if @a x > 1 or else @f$(3-2x)x^2@f$.
template<typename Type>
inline Type
SmoothUnitStep(Type x)
{
return x > 0 ? x < 1 ? (3-2*x)*x*x : Type(1) : Type(0);
}
/// @brief Return 0 if @a x < @a min, 1 if @a x > @a max or else @f$(3-2t)t^2@f$,
/// where @f$t = (x-min)/(max-min)@f$.
template<typename Type>
inline Type
SmoothUnitStep(Type x, Type min, Type max)
{
assert(min < max);
return SmoothUnitStep((x-min)/(max-min));
}
// ==========> Absolute Value <==================
//@{
/// Return the absolute value of the given quantity.
inline int32_t Abs(int32_t i) { return abs(i); }
inline int64_t Abs(int64_t i)
{
#ifdef _MSC_VER
return (i < int64_t(0) ? -i : i);
#else
return labs(i);
#endif
}
inline float Abs(float x) { return fabsf(x); }
inline double Abs(double x) { return fabs(x); }
inline long double Abs(long double x) { return fabsl(x); }
inline uint32_t Abs(uint32_t i) { return i; }
inline uint64_t Abs(uint64_t i) { return i; }
inline bool Abs(bool b) { return b; }
// On OSX size_t and uint64_t are different types
#if defined(__APPLE__) || defined(MACOSX)
inline size_t Abs(size_t i) { return i; }
#endif
//@}
////////////////////////////////////////
// ==========> Value Comparison <==================
/// Return @c true if @a x is exactly equal to zero.
template<typename Type>
inline bool
isZero(const Type& x)
{
OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN
return x == zeroVal<Type>();
OPENVDB_NO_FP_EQUALITY_WARNING_END
}
/// @brief Return @c true if @a x is equal to zero to within
/// the default floating-point comparison tolerance.
template<typename Type>
inline bool
isApproxZero(const Type& x)
{
const Type tolerance = Type(zeroVal<Type>() + Tolerance<Type>::value());
return !(x > tolerance) && !(x < -tolerance);
}
/// Return @c true if @a x is equal to zero to within the given tolerance.
template<typename Type>
inline bool
isApproxZero(const Type& x, const Type& tolerance)
{
return !(x > tolerance) && !(x < -tolerance);
}
/// Return @c true if @a x is less than zero.
template<typename Type>
inline bool
isNegative(const Type& x) { return x < zeroVal<Type>(); }
/// Return @c false, since @c bool values are never less than zero.
template<> inline bool isNegative<bool>(const bool&) { return false; }
/// Return @c true if @a x is finite.
template<typename Type>
inline bool
isFinite(const Type& x) { return boost::math::isfinite(x); }
/// @brief Return @c true if @a a is equal to @a b to within
/// the default floating-point comparison tolerance.
template<typename Type>
inline bool
isApproxEqual(const Type& a, const Type& b)
{
const Type tolerance = Type(zeroVal<Type>() + Tolerance<Type>::value());
return !(Abs(a - b) > tolerance);
}
/// Return @c true if @a a is equal to @a b to within the given tolerance.
template<typename Type>
inline bool
isApproxEqual(const Type& a, const Type& b, const Type& tolerance)
{
return !(Abs(a - b) > tolerance);
}
#define OPENVDB_EXACT_IS_APPROX_EQUAL(T) \
template<> inline bool isApproxEqual<T>(const T& a, const T& b) { return a == b; } \
template<> inline bool isApproxEqual<T>(const T& a, const T& b, const T&) { return a == b; } \
/**/
OPENVDB_EXACT_IS_APPROX_EQUAL(bool)
OPENVDB_EXACT_IS_APPROX_EQUAL(std::string)
/// @brief Return @c true if @a a is larger than @a b to within
/// the given tolerance, i.e., if @a b - @a a < @a tolerance.
template<typename Type>
inline bool
isApproxLarger(const Type& a, const Type& b, const Type& tolerance)
{
return (b - a < tolerance);
}
/// @brief Return @c true if @a a is exactly equal to @a b.
template<typename T0, typename T1>
inline bool
isExactlyEqual(const T0& a, const T1& b)
{
OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN
return a == b;
OPENVDB_NO_FP_EQUALITY_WARNING_END
}
template<typename Type>
inline bool
isRelOrApproxEqual(const Type& a, const Type& b, const Type& absTol, const Type& relTol)
{
// First check to see if we are inside the absolute tolerance
// Necessary for numbers close to 0
if (!(Abs(a - b) > absTol)) return true;
// Next check to see if we are inside the relative tolerance
// to handle large numbers that aren't within the abs tolerance
// but could be the closest floating point representation
double relError;
if (Abs(b) > Abs(a)) {
relError = Abs((a - b) / b);
} else {
relError = Abs((a - b) / a);
}
return (relError <= relTol);
}
template<>
inline bool
isRelOrApproxEqual(const bool& a, const bool& b, const bool&, const bool&)
{
return (a == b);
}
// Avoid strict aliasing issues by using type punning
// http://cellperformance.beyond3d.com/articles/2006/06/understanding-strict-aliasing.html
// Using "casting through a union(2)"
inline int32_t
floatToInt32(const float aFloatValue)
{
union FloatOrInt32 { float floatValue; int32_t int32Value; };
const FloatOrInt32* foi = reinterpret_cast<const FloatOrInt32*>(&aFloatValue);
return foi->int32Value;
}
inline int64_t
doubleToInt64(const double aDoubleValue)
{
union DoubleOrInt64 { double doubleValue; int64_t int64Value; };
const DoubleOrInt64* dol = reinterpret_cast<const DoubleOrInt64*>(&aDoubleValue);
return dol->int64Value;
}
// aUnitsInLastPlace is the allowed difference between the least significant digits
// of the numbers' floating point representation
// Please read the reference paper before trying to use isUlpsEqual
// http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
inline bool
isUlpsEqual(const double aLeft, const double aRight, const int64_t aUnitsInLastPlace)
{
int64_t longLeft = doubleToInt64(aLeft);
// Because of 2's complement, must restore lexicographical order
if (longLeft < 0) {
longLeft = INT64_C(0x8000000000000000) - longLeft;
}
int64_t longRight = doubleToInt64(aRight);
// Because of 2's complement, must restore lexicographical order
if (longRight < 0) {
longRight = INT64_C(0x8000000000000000) - longRight;
}
int64_t difference = labs(longLeft - longRight);
return (difference <= aUnitsInLastPlace);
}
inline bool
isUlpsEqual(const float aLeft, const float aRight, const int32_t aUnitsInLastPlace)
{
int32_t intLeft = floatToInt32(aLeft);
// Because of 2's complement, must restore lexicographical order
if (intLeft < 0) {
intLeft = 0x80000000 - intLeft;
}
int32_t intRight = floatToInt32(aRight);
// Because of 2's complement, must restore lexicographical order
if (intRight < 0) {
intRight = 0x80000000 - intRight;
}
int32_t difference = abs(intLeft - intRight);
return (difference <= aUnitsInLastPlace);
}
////////////////////////////////////////
// ==========> Pow <==================
/// Return @f$ x^2 @f$.
template<typename Type>
inline Type Pow2(Type x) { return x*x; }
/// Return @f$ x^3 @f$.
template<typename Type>
inline Type Pow3(Type x) { return x*x*x; }
/// Return @f$ x^4 @f$.
template<typename Type>
inline Type Pow4(Type x) { return Pow2(Pow2(x)); }
/// Return @f$ x^n @f$.
template<typename Type>
Type
Pow(Type x, int n)
{
Type ans = 1;
if (n < 0) {
n = -n;
x = Type(1)/x;
}
while (n--) ans *= x;
return ans;
}
//@{
/// Return @f$ b^e @f$.
inline float
Pow(float b, float e)
{
assert( b >= 0.0f && "Pow(float,float): base is negative" );
return powf(b,e);
}
inline double
Pow(double b, double e)
{
assert( b >= 0.0 && "Pow(double,double): base is negative" );
return pow(b,e);
}
//@}
// ==========> Max <==================
/// Return the maximum of two values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b)
{
return std::max(a,b) ;
}
/// Return the maximum of three values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c)
{
return std::max( std::max(a,b), c ) ;
}
/// Return the maximum of four values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c, const Type& d)
{
return std::max(std::max(a,b), std::max(c,d));
}
/// Return the maximum of five values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c, const Type& d, const Type& e)
{
return std::max(std::max(a,b), Max(c,d,e));
}
/// Return the maximum of six values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c, const Type& d, const Type& e, const Type& f)
{
return std::max(Max(a,b,c), Max(d,e,f));
}
/// Return the maximum of seven values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c, const Type& d,
const Type& e, const Type& f, const Type& g)
{
return std::max(Max(a,b,c,d), Max(e,f,g));
}
/// Return the maximum of eight values
template<typename Type>
inline const Type&
Max(const Type& a, const Type& b, const Type& c, const Type& d,
const Type& e, const Type& f, const Type& g, const Type& h)
{
return std::max(Max(a,b,c,d), Max(e,f,g,h));
}
// ==========> Min <==================
/// Return the minimum of two values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b) { return std::min(a, b); }
/// Return the minimum of three values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c) { return std::min(std::min(a, b), c); }
/// Return the minimum of four values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c, const Type& d)
{
return std::min(std::min(a, b), std::min(c, d));
}
/// Return the minimum of five values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c, const Type& d, const Type& e)
{
return std::min(std::min(a,b), Min(c,d,e));
}
/// Return the minimum of six values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c, const Type& d, const Type& e, const Type& f)
{
return std::min(Min(a,b,c), Min(d,e,f));
}
/// Return the minimum of seven values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c, const Type& d,
const Type& e, const Type& f, const Type& g)
{
return std::min(Min(a,b,c,d), Min(e,f,g));
}
/// Return the minimum of eight values
template<typename Type>
inline const Type&
Min(const Type& a, const Type& b, const Type& c, const Type& d,
const Type& e, const Type& f, const Type& g, const Type& h)
{
return std::min(Min(a,b,c,d), Min(e,f,g,h));
}
// ============> Exp <==================
/// Return @f$ e^x @f$.
template<typename Type>
inline Type Exp(const Type& x) { return std::exp(x); }
// ============> Sin <==================
//@{
/// Return @f$ sin(x) @f$.
inline float Sin(const float& x) { return sinf(x); }
inline double Sin(const double& x) { return sin(x); }
//@}
// ============> Cos <==================
//@{
/// Return @f$ cos(x) @f$.
inline float Cos(const float& x) { return cosf(x); }
inline double Cos(const double& x) { return cos(x); }
//@}
////////////////////////////////////////
/// Return the sign of the given value as an integer (either -1, 0 or 1).
template <typename Type>
inline int Sign(const Type &x) { return (zeroVal<Type>() < x) - (x < zeroVal<Type>()); }
/// @brief Return @c true if @a a and @a b have different signs.
/// @note Zero is considered a positive number.
template <typename Type>
inline bool
SignChange(const Type& a, const Type& b)
{
return ( (a<zeroVal<Type>()) ^ (b<zeroVal<Type>()) );
}
/// @brief Return @c true if the interval [@a a, @a b] includes zero,
/// i.e., if either @a a or @a b is zero or if they have different signs.
template <typename Type>
inline bool
ZeroCrossing(const Type& a, const Type& b)
{
return a * b <= zeroVal<Type>();
}
//@{
/// Return the square root of a floating-point value.
inline float Sqrt(float x) { return sqrtf(x); }
inline double Sqrt(double x) { return sqrt(x); }
inline long double Sqrt(long double x) { return sqrtl(x); }
//@}
//@{
/// Return the cube root of a floating-point value.
inline float Cbrt(float x) { return boost::math::cbrt(x); }
inline double Cbrt(double x) { return boost::math::cbrt(x); }
inline long double Cbrt(long double x) { return boost::math::cbrt(x); }
//@}
//@{
/// Return the remainder of @a x / @a y.
inline int Mod(int x, int y) { return (x % y); }
inline float Mod(float x, float y) { return fmodf(x,y); }
inline double Mod(double x, double y) { return fmod(x,y); }
inline long double Mod(long double x, long double y) { return fmodl(x,y); }
template<typename Type> inline Type Remainder(Type x, Type y) { return Mod(x,y); }
//@}
//@{
/// Return @a x rounded up to the nearest integer.
inline float RoundUp(float x) { return ceilf(x); }
inline double RoundUp(double x) { return ceil(x); }
inline long double RoundUp(long double x) { return ceill(x); }
//@}
/// Return @a x rounded up to the nearest multiple of @a base.
template<typename Type>
inline Type
RoundUp(Type x, Type base)
{
Type remainder = Remainder(x, base);
return remainder ? x-remainder+base : x;
}
//@{
/// Return @a x rounded down to the nearest integer.
inline float RoundDown(float x) { return floorf(x); }
inline double RoundDown(double x) { return floor(x); }
inline long double RoundDown(long double x) { return floorl(x); }
//@}
/// Return @a x rounded down to the nearest multiple of @a base.
template<typename Type>
inline Type
RoundDown(Type x, Type base)
{
Type remainder = Remainder(x, base);
return remainder ? x-remainder : x;
}
//@{
/// Return @a x rounded to the nearest integer.
inline float Round(float x) { return RoundDown(x + 0.5f); }
inline double Round(double x) { return RoundDown(x + 0.5); }
inline long double Round(long double x) { return RoundDown(x + 0.5l); }
//@}
/// Return the euclidean remainder of @a x.
/// Note unlike % operator this will always return a positive result
template<typename Type>
inline Type
EuclideanRemainder(Type x) { return x - RoundDown(x); }
/// Return the integer part of @a x.
template<typename Type>
inline Type
IntegerPart(Type x)
{
return (x > 0 ? RoundDown(x) : RoundUp(x));
}
/// Return the fractional part of @a x.
template<typename Type>
inline Type
FractionalPart(Type x) { return Mod(x,Type(1)); }
//@{
/// Return the floor of @a x.
inline int Floor(float x) { return int(RoundDown(x)); }
inline int Floor(double x) { return int(RoundDown(x)); }
inline int Floor(long double x) { return int(RoundDown(x)); }
//@}
//@{
/// Return the ceiling of @a x.
inline int Ceil(float x) { return int(RoundUp(x)); }
inline int Ceil(double x) { return int(RoundUp(x)); }
inline int Ceil(long double x) { return int(RoundUp(x)); }
//@}
/// Return @a x if it is greater or equal in magnitude than @a delta. Otherwise, return zero.
template<typename Type>
inline Type Chop(Type x, Type delta) { return (Abs(x) < delta ? zeroVal<Type>() : x); }
/// Return @a x truncated to the given number of decimal digits.
template<typename Type>
inline Type
Truncate(Type x, unsigned int digits)
{
Type tenth = Pow(10,digits);
return RoundDown(x*tenth+0.5)/tenth;
}
////////////////////////////////////////
/// Return the inverse of @a x.
template<typename Type>
inline Type
Inv(Type x)
{
assert(x);
return Type(1)/x;
}
enum Axis {
X_AXIS = 0,
Y_AXIS = 1,
Z_AXIS = 2
};
// enum values are consistent with their historical mx analogs.
enum RotationOrder {
XYZ_ROTATION = 0,
XZY_ROTATION,
YXZ_ROTATION,
YZX_ROTATION,
ZXY_ROTATION,
ZYX_ROTATION,
XZX_ROTATION,
ZXZ_ROTATION
};
template <typename S, typename T>
struct promote {
typedef typename boost::numeric::conversion_traits<S, T>::supertype type;
};
/// @brief Return the index [0,1,2] of the smallest value in a 3D vector.
/// @note This methods assumes operator[] exists and avoids branching.
/// @details If two components of the input vector are equal and smaller than the
/// third component, the largest index of the two is always returned.
/// If all three vector components are equal the largest index, i.e. 2, is
/// returned. In other words the return value corresponds to the largest index
/// of the of the smallest vector components.
template<typename Vec3T>
size_t
MinIndex(const Vec3T& v)
{
#ifndef _MSC_VER // Visual C++ doesn't guarantee thread-safe initialization of local statics
static
#endif
const size_t hashTable[8] = { 2, 1, 9, 1, 2, 9, 0, 0 };//9 is a dummy value
const size_t hashKey =
((v[0] < v[1]) << 2) + ((v[0] < v[2]) << 1) + (v[1] < v[2]);// ?*4+?*2+?*1
return hashTable[hashKey];
}
/// @brief Return the index [0,1,2] of the largest value in a 3D vector.
/// @note This methods assumes operator[] exists and avoids branching.
/// @details If two components of the input vector are equal and larger than the
/// third component, the largest index of the two is always returned.
/// If all three vector components are equal the largest index, i.e. 2, is
/// returned. In other words the return value corresponds to the largest index
/// of the largest vector components.
template<typename Vec3T>
size_t
MaxIndex(const Vec3T& v)
{
#ifndef _MSC_VER // Visual C++ doesn't guarantee thread-safe initialization of local statics
static
#endif
const size_t hashTable[8] = { 2, 1, 9, 1, 2, 9, 0, 0 };//9 is a dummy value
const size_t hashKey =
((v[0] > v[1]) << 2) + ((v[0] > v[2]) << 1) + (v[1] > v[2]);// ?*4+?*2+?*1
return hashTable[hashKey];
}
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_MATH_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|