This file is indexed.

/usr/include/openvdb/math/Ray.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Ray.h
///
/// @author Ken Museth
///
/// @brief A Ray class.

#ifndef OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED

#include "Math.h"
#include "Vec3.h"
#include "Transform.h"
#include <iostream> // for std::ostream
#include <boost/type_traits/is_floating_point.hpp>
#include <limits>// for std::numeric_limits<Type>::max()

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

template<typename RealT = double>
class Ray
{
public:
    BOOST_STATIC_ASSERT(boost::is_floating_point<RealT>::value);
    typedef RealT       RealType;
    typedef Vec3<RealT> Vec3Type;
    typedef Vec3Type    Vec3T;
    struct TimeSpan {
        RealT t0, t1;
        /// @brief Default constructor
        TimeSpan() {}
        /// @brief Constructor
        TimeSpan(RealT _t0, RealT _t1) : t0(_t0), t1(_t1) {}
        /// @brief Set both times
        inline void set(RealT _t0, RealT _t1) { t0=_t0; t1=_t1; }
        /// @brief Get both times
        inline void get(RealT& _t0, RealT& _t1) const { _t0=t0; _t1=t1; }
        /// @brief Return @c true if t1 is larger than t0 by at least eps.
        inline bool valid(RealT eps=math::Delta<RealT>::value()) const { return (t1-t0)>eps; }
        /// @brief Return the midpoint of the ray.
        inline RealT mid() const { return 0.5*(t0 + t1); }
        /// @brief Multiplies both times
        inline void scale(RealT s) {assert(s>0); t0*=s; t1*=s; }
        /// @brief Return @c true if time is inclusive
        inline bool test(RealT t) const { return (t>=t0 && t<=t1); }
    };

    Ray(const Vec3Type& eye = Vec3Type(0,0,0),
        const Vec3Type& direction = Vec3Type(1,0,0),
        RealT t0 = math::Delta<RealT>::value(),
        RealT t1 = std::numeric_limits<RealT>::max())
        : mEye(eye), mDir(direction), mInvDir(1/mDir), mTimeSpan(t0, t1)
    {
    }

    inline void setEye(const Vec3Type& eye) { mEye = eye; }

    inline void setDir(const Vec3Type& dir)
      {
          mDir = dir;
          mInvDir = 1/mDir;
      }

    inline void setMinTime(RealT t0) { assert(t0>0); mTimeSpan.t0 = t0; }

    inline void setMaxTime(RealT t1) { assert(t1>0); mTimeSpan.t1 = t1; }

    inline void setTimes(RealT t0 = math::Delta<RealT>::value(),
                         RealT t1 = std::numeric_limits<RealT>::max())
    {
        assert(t0>0 && t1>0);
        mTimeSpan.set(t0, t1);
    }

    inline void scaleTimes(RealT scale) { mTimeSpan.scale(scale); }

    inline void reset(const Vec3Type& eye,
                      const Vec3Type& direction,
                      RealT t0 = math::Delta<RealT>::value(),
                      RealT t1 = std::numeric_limits<RealT>::max())
    {
        this->setEye(eye);
        this->setDir(direction);
        this->setTimes(t0, t1);
    }

    inline const Vec3T& eye() const {return mEye;}

    inline const Vec3T& dir() const {return mDir;}

    inline const Vec3T& invDir() const {return mInvDir;}

    inline RealT t0() const {return mTimeSpan.t0;}

    inline RealT t1() const {return mTimeSpan.t1;}

    /// @brief Return the position along the ray at the specified time.
    inline Vec3R operator()(RealT time) const { return mEye + mDir * time; }

    /// @brief Return the starting point of the ray.
    inline Vec3R start() const { return (*this)(mTimeSpan.t0); }

    /// @brief Return the endpoint of the ray.
    inline Vec3R end() const { return (*this)(mTimeSpan.t1); }

    /// @brief Return the midpoint of the ray.
    inline Vec3R mid() const { return (*this)(mTimeSpan.mid()); }

    /// @brief Return @c true if t0 is strictly less than t1.
    OPENVDB_DEPRECATED inline bool test() const { return mTimeSpan.valid(RealT(0)); }

    /// @brief Return @c true if t1 is larger than t0 by at least eps.
    inline bool valid(RealT eps=math::Delta<float>::value()) const
      {
          return mTimeSpan.valid(eps);
      }

    /// @brief Return @c true if @a time is within t0 and t1, both inclusive.
    inline bool test(RealT time) const { return mTimeSpan.test(time); }

    /// @brief Return a new Ray that is transformed with the specified map.
    /// @param map  the map from which to construct the new Ray.
    /// @warning Assumes a linear map and a normalized direction.
    /// @details The requirement that the direction is normalized
    /// follows from the transformation of t0 and t1 - and that fact that
    /// we want applyMap and applyInverseMap to be inverse operations.
    template<typename MapType>
    inline Ray applyMap(const MapType& map) const
    {
        assert(map.isLinear());
        assert(math::isRelOrApproxEqual(mDir.length(), RealT(1), Tolerance<RealT>::value(), Delta<RealT>::value()));
        const Vec3T eye = map.applyMap(mEye);
        const Vec3T dir = map.applyJacobian(mDir);
        const RealT length = dir.length();
        return Ray(eye, dir/length, length*mTimeSpan.t0, length*mTimeSpan.t1);
    }

    /// @brief Return a new Ray that is transformed with the inverse of the specified map.
    /// @param map  the map from which to construct the new Ray by inverse mapping.
    /// @warning Assumes a linear map and a normalized direction.
    /// @details The requirement that the direction is normalized
    /// follows from the transformation of t0 and t1 - and that fact that
    /// we want applyMap and applyInverseMap to be inverse operations.
    template<typename MapType>
    inline Ray applyInverseMap(const MapType& map) const
    {
        assert(map.isLinear());
        assert(math::isRelOrApproxEqual(mDir.length(), RealT(1), Tolerance<RealT>::value(), Delta<RealT>::value()));
        const Vec3T eye = map.applyInverseMap(mEye);
        const Vec3T dir = map.applyInverseJacobian(mDir);
        const RealT length = dir.length();
        return Ray(eye, dir/length, length*mTimeSpan.t0, length*mTimeSpan.t1);
    }

    /// @brief Return a new ray in world space, assuming the existing
    /// ray is represented in the index space of the specified grid.
    template<typename GridType>
    inline Ray indexToWorld(const GridType& grid) const
    {
        return this->applyMap(*(grid.transform().baseMap()));
    }

    /// @brief Return a new ray in the index space of the specified
    /// grid, assuming the existing ray is represented in world space.
    template<typename GridType>
    inline Ray worldToIndex(const GridType& grid) const
    {
        return this->applyInverseMap(*(grid.transform().baseMap()));
    }

    /// @brief Return true if this ray intersects the specified sphere.
    /// @param center The center of the sphere in the same space as this ray.
    /// @param radius The radius of the sphere in the same units as this ray.
    /// @param t0     The first intersection point if an intersection exists.
    /// @param t1     The second intersection point if an intersection exists.
    /// @note If the return value is true, i.e. a hit, and t0 =
    /// this->t0() or t1 == this->t1() only one true intersection exist.
    inline bool intersects(const Vec3T& center, RealT radius, RealT& t0, RealT& t1) const
    {
        const Vec3T origin = mEye - center;
        const RealT A = mDir.lengthSqr();
        const RealT B = 2 * mDir.dot(origin);
        const RealT C = origin.lengthSqr() - radius * radius;
        const RealT D = B * B - 4 * A * C;

        if (D < 0) return false;

        const RealT Q = RealT(-0.5)*(B<0 ? (B + Sqrt(D)) : (B - Sqrt(D)));

        t0 = Q / A;
        t1 = C / Q;

        if (t0 > t1) std::swap(t0, t1);
        if (t0 < mTimeSpan.t0) t0 = mTimeSpan.t0;
        if (t1 > mTimeSpan.t1) t1 = mTimeSpan.t1;
        return t0 <= t1;
    }

    /// @brief Return true if this ray intersects the specified sphere.
    /// @param center The center of the sphere in the same space as this ray.
    /// @param radius The radius of the sphere in the same units as this ray.
    inline bool intersects(const Vec3T& center, RealT radius) const
    {
        RealT t0, t1;
        return this->intersects(center, radius, t0, t1)>0;
    }

    /// @brief Return true if this ray intersects the specified sphere.
    /// @note For intersection this ray is clipped to the two intersection points.
    /// @param center The center of the sphere in the same space as this ray.
    /// @param radius The radius of the sphere in the same units as this ray.
    inline bool clip(const Vec3T& center, RealT radius)
    {
        RealT t0, t1;
        const bool hit = this->intersects(center, radius, t0, t1);
        if (hit) mTimeSpan.set(t0, t1);
        return hit;
    }

    /// @brief Return true if the Ray intersects the specified
    /// axisaligned bounding box.
    /// @param bbox Axis-aligned bounding box in the same space as the Ray.
    /// @param t0   If an intersection is detected this is assigned
    ///             the time for the first intersection point.
    /// @param t1   If an intersection is detected this is assigned
    ///             the time for the second intersection point.
    template<typename BBoxT>
    inline bool intersects(const BBoxT& bbox, RealT& t0, RealT& t1) const
    {
        mTimeSpan.get(t0, t1);
        for (int i = 0; i < 3; ++i) {
            RealT a = (bbox.min()[i] - mEye[i]) * mInvDir[i];
            RealT b = (bbox.max()[i] - mEye[i]) * mInvDir[i];
            if (a > b) std::swap(a, b);
            if (a > t0) t0 = a;
            if (b < t1) t1 = b;
            if (t0 > t1) return false;
        }
        return true;
    }

    /// @brief Return true if this ray intersects the specified bounding box.
    /// @param bbox Axis-aligned bounding box in the same space as this ray.
    template<typename BBoxT>
    inline bool intersects(const BBoxT& bbox) const
    {
        RealT t0, t1;
        return this->intersects(bbox, t0, t1);
    }

    /// @brief Return true if this ray intersects the specified bounding box.
    /// @note For intersection this ray is clipped to the two intersection points.
    /// @param bbox Axis-aligned bounding box in the same space as this ray.
    template<typename BBoxT>
    inline bool clip(const BBoxT& bbox)
    {
        RealT t0, t1;
        const bool hit = this->intersects(bbox, t0, t1);
        if (hit) mTimeSpan.set(t0, t1);
        return hit;
    }

    /// @brief Return true if the Ray intersects the plane specified
    /// by a normal and distance from the origin.
    /// @param normal   Normal of the plane.
    /// @param distance Distance of the plane to the origin.
    /// @param t        Time of intersection, if one exists.
    inline bool intersects(const Vec3T& normal, RealT distance, RealT& t) const
      {
          const RealT cosAngle = mDir.dot(normal);
          if (math::isApproxZero(cosAngle)) return false;//parallel
          t = (distance - mEye.dot(normal))/cosAngle;
          return this->test(t);
      }

    /// @brief Return true if the Ray intersects the plane specified
    /// by a normal and point.
    /// @param normal   Normal of the plane.
    /// @param point    Point in the plane.
    /// @param t        Time of intersection, if one exists.
    inline bool intersects(const Vec3T& normal, const Vec3T& point, RealT& t) const
      {
          return this->intersects(normal, point.dot(normal), t);
      }

private:
    Vec3T mEye, mDir, mInvDir;
    TimeSpan mTimeSpan;
}; // end of Ray class

/// @brief Output streaming of the Ray class.
/// @note Primarily intended for debugging.
template<typename RealT>
inline std::ostream& operator<<(std::ostream& os, const Ray<RealT>& r)
{
    os << "eye=" << r.eye() << " dir=" << r.dir() << " 1/dir="<<r.invDir()
       << " t0=" << r.t0()  << " t1="  << r.t1();
    return os;
}


} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_RAY_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )