/usr/include/openvdb/math/Stats.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Stats.h
///
/// @author Ken Museth
///
/// @brief Classes to compute statistics and histograms
#ifndef OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED
#include <iosfwd> // for ostringstream
#include <openvdb/version.h>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <vector>
#include <functional>// for std::less
#include "Math.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
/// @brief Templated class to compute the minimum and maximum values.
template <typename ValueType, typename Less = std::less<ValueType> >
class MinMax
{
public:
/// @brief Constructor
MinMax(const ValueType &min, const ValueType &max) : mMin(min), mMax(max)
{
}
/// Add a single sample.
inline void add(const ValueType &val, const Less &less = Less())
{
if (less(val, mMin)) mMin = val;
if (less(mMax, val)) mMax = val;
}
/// Return the minimum value.
inline const ValueType& min() const { return mMin; }
/// Return the maximum value.
inline const ValueType& max() const { return mMax; }
/// Add the samples from the other Stats instance.
inline void add(const MinMax& other, const Less &less = Less())
{
if (less(other.mMin, mMin)) mMin = other.mMin;
if (less(mMax, other.mMax)) mMax = other.mMax;
}
/// @brief Print MinMax to the specified output stream.
void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
{
// Write to a temporary string stream so as not to affect the state
// (precision, field width, etc.) of the output stream.
std::ostringstream os;
os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
os << "MinMax ";
if (!name.empty()) os << "for \"" << name << "\" ";
os << " Min=" << mMin << ", Max=" << mMax << std::endl;
strm << os.str();
}
protected:
ValueType mMin, mMax;
};//end MinMax
/// @brief This class computes the minimum and maximum values of a population
/// of floating-point values.
class Extrema
{
public:
/// @brief Constructor
/// @warning The min/max values are initiated to extreme values
Extrema()
: mSize(0)
, mMin(std::numeric_limits<double>::max())
, mMax(-mMin)
{
}
/// Add a single sample.
void add(double val)
{
++mSize;
mMin = std::min<double>(val, mMin);
mMax = std::max<double>(val, mMax);
}
/// Add @a n samples with constant value @a val.
void add(double val, uint64_t n)
{
mSize += n;
mMin = std::min<double>(val, mMin);
mMax = std::max<double>(val, mMax);
}
/// Return the size of the population, i.e., the total number of samples.
inline uint64_t size() const { return mSize; }
/// Return the minimum value.
inline double min() const { return mMin; }
/// Return the maximum value.
inline double max() const { return mMax; }
/// Return the range defined as the maximum value minus the minimum value.
inline double range() const { return mMax - mMin; }
/// Add the samples from the other Stats instance.
void add(const Extrema& other)
{
if (other.mSize > 0) this->join(other);
}
/// @brief Print extrema to the specified output stream.
void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
{
// Write to a temporary string stream so as not to affect the state
// (precision, field width, etc.) of the output stream.
std::ostringstream os;
os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
os << "Extrema ";
if (!name.empty()) os << "for \"" << name << "\" ";
if (mSize>0) {
os << "with " << mSize << " samples:\n"
<< " Min=" << mMin
<< ", Max=" << mMax
<< ", Range="<< this->range() << std::endl;
} else {
os << ": no samples were added." << std::endl;
}
strm << os.str();
}
protected:
inline void join(const Extrema& other)
{
assert(other.mSize > 0);
mSize += other.mSize;
mMin = std::min<double>(mMin, other.mMin);
mMax = std::max<double>(mMax, other.mMax);
}
uint64_t mSize;
double mMin, mMax;
};//end Extrema
/// @brief This class computes statistics (minimum value, maximum
/// value, mean, variance and standard deviation) of a population
/// of floating-point values.
///
/// @details variance = Mean[ (X-Mean[X])^2 ] = Mean[X^2] - Mean[X]^2,
/// standard deviation = sqrt(variance)
///
/// @note This class employs incremental computation and double precision.
class Stats : public Extrema
{
public:
Stats()
: Extrema()
, mAvg(0.0)
, mAux(0.0)
{
}
/// Add a single sample.
void add(double val)
{
Extrema::add(val);
const double delta = val - mAvg;
mAvg += delta/double(mSize);
mAux += delta*(val - mAvg);
}
/// Add @a n samples with constant value @a val.
void add(double val, uint64_t n)
{
const double denom = 1.0/double(mSize + n);
const double delta = val - mAvg;
mAvg += denom * delta * double(n);
mAux += denom * delta * delta * double(mSize) * double(n);
Extrema::add(val, n);
}
/// Add the samples from the other Stats instance.
void add(const Stats& other)
{
if (other.mSize > 0) {
const double denom = 1.0/double(mSize + other.mSize);
const double delta = other.mAvg - mAvg;
mAvg += denom * delta * double(other.mSize);
mAux += other.mAux + denom * delta * delta * double(mSize) * double(other.mSize);
Extrema::join(other);
}
}
//@{
/// Return the arithmetic mean, i.e. average, value.
inline double avg() const { return mAvg; }
inline double mean() const { return mAvg; }
//@}
//@{
/// @brief Return the population variance.
/// @note The unbiased sample variance = population variance *
//num/(num-1)
inline double var() const { return mSize<2 ? 0.0 : mAux/double(mSize); }
inline double variance() const { return this->var(); }
//@}
//@{
/// @brief Return the standard deviation (=Sqrt(variance)) as
/// defined from the (biased) population variance.
inline double std() const { return sqrt(this->var()); }
inline double stdDev() const { return this->std(); }
//@}
/// @brief Print statistics to the specified output stream.
void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
{
// Write to a temporary string stream so as not to affect the state
// (precision, field width, etc.) of the output stream.
std::ostringstream os;
os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
os << "Statistics ";
if (!name.empty()) os << "for \"" << name << "\" ";
if (mSize>0) {
os << "with " << mSize << " samples:\n"
<< " Min=" << mMin
<< ", Max=" << mMax
<< ", Ave=" << mAvg
<< ", Std=" << this->stdDev()
<< ", Var=" << this->variance() << std::endl;
} else {
os << ": no samples were added." << std::endl;
}
strm << os.str();
}
protected:
using Extrema::mSize;
using Extrema::mMin;
using Extrema::mMax;
double mAvg, mAux;
}; // end Stats
////////////////////////////////////////
/// @brief This class computes a histogram, with a fixed interval width,
/// of a population of floating-point values.
class Histogram
{
public:
/// Construct with given minimum and maximum values and the given bin count.
Histogram(double min, double max, size_t numBins = 10)
: mSize(0), mMin(min), mMax(max + 1e-10),
mDelta(double(numBins)/(max-min)), mBins(numBins)
{
if ( mMax <= mMin ) {
OPENVDB_THROW(ValueError, "Histogram: expected min < max");
} else if ( numBins == 0 ) {
OPENVDB_THROW(ValueError, "Histogram: expected at least one bin");
}
for (size_t i=0; i<numBins; ++i) mBins[i]=0;
}
/// @brief Construct with the given bin count and with minimum and maximum values
/// taken from a Stats object.
Histogram(const Stats& s, size_t numBins = 10):
mSize(0), mMin(s.min()), mMax(s.max()+1e-10),
mDelta(double(numBins)/(mMax-mMin)), mBins(numBins)
{
if ( mMax <= mMin ) {
OPENVDB_THROW(ValueError, "Histogram: expected min < max");
} else if ( numBins == 0 ) {
OPENVDB_THROW(ValueError, "Histogram: expected at least one bin");
}
for (size_t i=0; i<numBins; ++i) mBins[i]=0;
}
/// @brief Add @a n samples with constant value @a val, provided that the
/// @a val falls within this histogram's value range.
/// @return @c true if the sample value falls within this histogram's value range.
inline bool add(double val, uint64_t n = 1)
{
if (val<mMin || val>mMax) return false;
mBins[size_t(mDelta*(val-mMin))] += n;
mSize += n;
return true;
}
/// @brief Add all the contributions from the other histogram, provided that
/// it has the same configuration as this histogram.
bool add(const Histogram& other)
{
if (!isApproxEqual(mMin, other.mMin) || !isApproxEqual(mMax, other.mMax) ||
mBins.size() != other.mBins.size()) return false;
for (size_t i=0, e=mBins.size(); i!=e; ++i) mBins[i] += other.mBins[i];
mSize += other.mSize;
return true;
}
/// Return the number of bins in this histogram.
inline size_t numBins() const { return mBins.size(); }
/// Return the lower bound of this histogram's value range.
inline double min() const { return mMin; }
/// Return the upper bound of this histogram's value range.
inline double max() const { return mMax; }
/// Return the minimum value in the <i>n</i>th bin.
inline double min(int n) const { return mMin+n/mDelta; }
/// Return the maximum value in the <i>n</i>th bin.
inline double max(int n) const { return mMin+(n+1)/mDelta; }
/// Return the number of samples in the <i>n</i>th bin.
inline uint64_t count(int n) const { return mBins[n]; }
/// Return the population size, i.e., the total number of samples.
inline uint64_t size() const { return mSize; }
/// Print the histogram to the specified output stream.
void print(const std::string& name = "", std::ostream& strm = std::cout) const
{
// Write to a temporary string stream so as not to affect the state
// (precision, field width, etc.) of the output stream.
std::ostringstream os;
os << std::setprecision(6) << std::setiosflags(std::ios::fixed) << std::endl;
os << "Histogram ";
if (!name.empty()) os << "for \"" << name << "\" ";
if (mSize > 0) {
os << "with " << mSize << " samples:\n";
os << "==============================================================\n";
os << "|| # | Min | Max | Frequency | % ||\n";
os << "==============================================================\n";
for (int i = 0, e = int(mBins.size()); i != e; ++i) {
os << "|| " << std::setw(4) << i << " | " << std::setw(14) << this->min(i) << " | "
<< std::setw(14) << this->max(i) << " | " << std::setw(9) << mBins[i] << " | "
<< std::setw(3) << (100*mBins[i]/mSize) << " ||\n";
}
os << "==============================================================\n";
} else {
os << ": no samples were added." << std::endl;
}
strm << os.str();
}
private:
uint64_t mSize;
double mMin, mMax, mDelta;
std::vector<uint64_t> mBins;
};
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|