This file is indexed.

/usr/include/openvdb/math/Stats.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Stats.h
///
/// @author Ken Museth
///
/// @brief Classes to compute statistics and histograms

#ifndef OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED

#include <iosfwd> // for ostringstream
#include <openvdb/version.h>
#include <iostream>
#include <iomanip>
#include <sstream>
#include <vector>
#include <functional>// for std::less
#include "Math.h"

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {

/// @brief Templated class to compute the minimum and maximum values.
template <typename ValueType, typename Less = std::less<ValueType> >
class MinMax
{
public:

    /// @brief Constructor
    MinMax(const ValueType &min, const ValueType &max) : mMin(min), mMax(max)
    {
    }

    /// Add a single sample.
    inline void add(const ValueType &val, const Less &less = Less())
    {
        if (less(val, mMin)) mMin = val;
        if (less(mMax, val)) mMax = val;
    }

    /// Return the minimum value.
    inline const ValueType& min() const { return mMin; }

    /// Return the maximum value.
    inline const ValueType& max() const { return mMax; }

    /// Add the samples from the other Stats instance.
    inline void add(const MinMax& other, const Less &less = Less())
    {
        if (less(other.mMin, mMin)) mMin = other.mMin;
        if (less(mMax, other.mMax)) mMax = other.mMax;
    }

    /// @brief Print MinMax to the specified output stream.
    void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
    {
        // Write to a temporary string stream so as not to affect the state
        // (precision, field width, etc.) of the output stream.
        std::ostringstream os;
        os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
        os << "MinMax ";
        if (!name.empty()) os << "for \"" << name << "\" ";
        os << "  Min="  << mMin << ", Max="  << mMax << std::endl;
        strm << os.str();
    }

protected:
    
    ValueType mMin, mMax;
};//end MinMax
    
/// @brief This class computes the minimum and maximum values of a population
/// of floating-point values.
class Extrema
{
public:

    /// @brief Constructor
    /// @warning The min/max values are initiated to extreme values
    Extrema()
        : mSize(0)
        , mMin(std::numeric_limits<double>::max())
        , mMax(-mMin)
    {
    }

    /// Add a single sample.
    void add(double val)
    {
        ++mSize;
        mMin = std::min<double>(val, mMin);
        mMax = std::max<double>(val, mMax);
    }

    /// Add @a n samples with constant value @a val.
    void add(double val, uint64_t n)
    {
        mSize += n;
        mMin  = std::min<double>(val, mMin);
        mMax  = std::max<double>(val, mMax);
    }

    /// Return the size of the population, i.e., the total number of samples.
    inline uint64_t size() const { return mSize; }

    /// Return the minimum value.
    inline double min() const { return mMin; }

    /// Return the maximum value.
    inline double max() const { return mMax; }

    /// Return the range defined as the maximum value minus the minimum value.
    inline double range() const { return mMax - mMin; }

    /// Add the samples from the other Stats instance.
    void add(const Extrema& other)
    {
        if (other.mSize > 0) this->join(other);
    }

    /// @brief Print extrema to the specified output stream.
    void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
    {
        // Write to a temporary string stream so as not to affect the state
        // (precision, field width, etc.) of the output stream.
        std::ostringstream os;
        os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
        os << "Extrema ";
        if (!name.empty()) os << "for \"" << name << "\" ";
        if (mSize>0) {
            os << "with "   << mSize << " samples:\n"
               << "  Min="  << mMin
               << ", Max="  << mMax
               << ", Range="<< this->range() << std::endl;
        } else {
            os << ": no samples were added." << std::endl;
        }
        strm << os.str();
    }

protected:

    inline void join(const Extrema& other)
    {
        assert(other.mSize > 0);
        mSize += other.mSize;
        mMin   = std::min<double>(mMin, other.mMin);
        mMax   = std::max<double>(mMax, other.mMax);
    }

    uint64_t mSize;
    double mMin, mMax;
};//end Extrema


/// @brief This class computes statistics (minimum value, maximum
/// value, mean, variance and standard deviation) of a population
/// of floating-point values.
///
/// @details variance = Mean[ (X-Mean[X])^2 ] = Mean[X^2] - Mean[X]^2,
///          standard deviation = sqrt(variance)
///
/// @note This class employs incremental computation and double precision.
class Stats : public Extrema
{
public:
    Stats()
        : Extrema()
        , mAvg(0.0)
        , mAux(0.0)
    {
    }

    /// Add a single sample.
    void add(double val)
    {
        Extrema::add(val);
        const double delta = val - mAvg;
        mAvg += delta/double(mSize);
        mAux += delta*(val - mAvg);
    }

    /// Add @a n samples with constant value @a val.
    void add(double val, uint64_t n)
    {
        const double denom = 1.0/double(mSize + n);
        const double delta = val - mAvg;
        mAvg += denom * delta * double(n);
        mAux += denom * delta * delta * double(mSize) * double(n);
        Extrema::add(val, n);
    }

    /// Add the samples from the other Stats instance.
    void add(const Stats& other)
    {
        if (other.mSize > 0) {
            const double denom = 1.0/double(mSize + other.mSize);
            const double delta = other.mAvg - mAvg;
            mAvg += denom * delta * double(other.mSize);
            mAux += other.mAux + denom * delta * delta * double(mSize) * double(other.mSize);
            Extrema::join(other);
        }
    }

    //@{
    /// Return the  arithmetic mean, i.e. average, value.
    inline double avg()  const { return mAvg; }
    inline double mean() const { return mAvg; }
    //@}

    //@{
    /// @brief Return the population variance.
    /// @note The unbiased sample variance = population variance *
    //num/(num-1)
    inline double var()      const { return mSize<2 ? 0.0 : mAux/double(mSize); }
    inline double variance() const { return this->var(); }
    //@}

    //@{
    /// @brief Return the standard deviation (=Sqrt(variance)) as
    /// defined from the (biased) population variance.
    inline double std()    const { return sqrt(this->var()); }
    inline double stdDev() const { return this->std(); }
    //@}

    /// @brief Print statistics to the specified output stream.
    void print(const std::string &name= "", std::ostream &strm=std::cout, int precision=3) const
    {
        // Write to a temporary string stream so as not to affect the state
        // (precision, field width, etc.) of the output stream.
        std::ostringstream os;
        os << std::setprecision(precision) << std::setiosflags(std::ios::fixed);
        os << "Statistics ";
        if (!name.empty()) os << "for \"" << name << "\" ";
        if (mSize>0) {
            os << "with " << mSize << " samples:\n"
               << "  Min=" << mMin
               << ", Max=" << mMax
               << ", Ave=" << mAvg
               << ", Std=" << this->stdDev()
               << ", Var=" << this->variance() << std::endl;
        } else {
            os << ": no samples were added." << std::endl;
        }
        strm << os.str();
    }

protected:
    using Extrema::mSize;
    using Extrema::mMin;
    using Extrema::mMax;
    double mAvg, mAux;
}; // end Stats


////////////////////////////////////////


/// @brief This class computes a histogram, with a fixed interval width,
/// of a population of floating-point values.
class Histogram
{
public:
    /// Construct with given minimum and maximum values and the given bin count.
    Histogram(double min, double max, size_t numBins = 10)
        : mSize(0), mMin(min), mMax(max + 1e-10),
          mDelta(double(numBins)/(max-min)), mBins(numBins)
    {
        if ( mMax <= mMin ) {
            OPENVDB_THROW(ValueError, "Histogram: expected min < max");
        } else if ( numBins == 0 ) {
            OPENVDB_THROW(ValueError, "Histogram: expected at least one bin");
        }
        for (size_t i=0; i<numBins; ++i) mBins[i]=0;
    }

    /// @brief Construct with the given bin count and with minimum and maximum values
    /// taken from a Stats object.
    Histogram(const Stats& s, size_t numBins = 10):
        mSize(0), mMin(s.min()), mMax(s.max()+1e-10),
        mDelta(double(numBins)/(mMax-mMin)), mBins(numBins)
    {
        if ( mMax <= mMin ) {
            OPENVDB_THROW(ValueError, "Histogram: expected min < max");
        } else if ( numBins == 0 ) {
            OPENVDB_THROW(ValueError, "Histogram: expected at least one bin");
        }
        for (size_t i=0; i<numBins; ++i) mBins[i]=0;
    }

    /// @brief Add @a n samples with constant value @a val, provided that the
    /// @a val falls within this histogram's value range.
    /// @return @c true if the sample value falls within this histogram's value range.
    inline bool add(double val, uint64_t n = 1)
    {
        if (val<mMin || val>mMax) return false;
        mBins[size_t(mDelta*(val-mMin))] += n;
        mSize += n;
        return true;
    }

    /// @brief Add all the contributions from the other histogram, provided that
    /// it has the same configuration as this histogram.
    bool add(const Histogram& other)
    {
        if (!isApproxEqual(mMin, other.mMin) || !isApproxEqual(mMax, other.mMax) ||
            mBins.size() != other.mBins.size()) return false;
        for (size_t i=0, e=mBins.size(); i!=e; ++i) mBins[i] += other.mBins[i];
        mSize += other.mSize;
        return true;
    }

    /// Return the number of bins in this histogram.
    inline size_t numBins() const { return mBins.size(); }
    /// Return the lower bound of this histogram's value range.
    inline double min() const { return mMin; }
    /// Return the upper bound of this histogram's value range.
    inline double max() const { return mMax; }
    /// Return the minimum value in the <i>n</i>th bin.
    inline double min(int n) const { return mMin+n/mDelta; }
    /// Return the maximum value in the <i>n</i>th bin.
    inline double max(int n) const { return mMin+(n+1)/mDelta; }
    /// Return the number of samples in the <i>n</i>th bin.
    inline uint64_t count(int n) const { return mBins[n]; }
    /// Return the population size, i.e., the total number of samples.
    inline uint64_t size() const { return mSize; }

    /// Print the histogram to the specified output stream.
    void print(const std::string& name = "", std::ostream& strm = std::cout) const
    {
        // Write to a temporary string stream so as not to affect the state
        // (precision, field width, etc.) of the output stream.
        std::ostringstream os;
        os << std::setprecision(6) << std::setiosflags(std::ios::fixed) << std::endl;
        os << "Histogram ";
        if (!name.empty()) os << "for \"" << name << "\" ";
        if (mSize > 0) {
            os << "with " << mSize << " samples:\n";
            os << "==============================================================\n";
            os << "||  #   |       Min      |       Max      | Frequency |  %  ||\n";
            os << "==============================================================\n";
            for (int i = 0, e = int(mBins.size()); i != e; ++i) {
                os << "|| " << std::setw(4) << i << " | " << std::setw(14) << this->min(i) << " | "
                   << std::setw(14) << this->max(i) << " | " << std::setw(9) << mBins[i] << " | "
                   << std::setw(3) << (100*mBins[i]/mSize) << " ||\n";
            }
            os << "==============================================================\n";
        } else {
            os << ": no samples were added." << std::endl;
        }
        strm << os.str();
    }

private:
    uint64_t mSize;
    double mMin, mMax, mDelta;
    std::vector<uint64_t> mBins;
};

} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_MATH_STATS_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )