/usr/include/openvdb/math/Vec3.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
#define OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
#include <cmath>
#include <openvdb/Exceptions.h>
#include "Math.h"
#include "Tuple.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace math {
template<typename T> class Mat3;
template<typename T>
class Vec3: public Tuple<3, T>
{
public:
typedef T value_type;
typedef T ValueType;
/// Trivial constructor, the vector is NOT initialized
Vec3() {}
/// Constructor with one argument, e.g. Vec3f v(0);
explicit Vec3(T val) { this->mm[0] = this->mm[1] = this->mm[2] = val; }
/// Constructor with three arguments, e.g. Vec3d v(1,2,3);
Vec3(T x, T y, T z)
{
this->mm[0] = x;
this->mm[1] = y;
this->mm[2] = z;
}
/// Constructor with array argument, e.g. double a[3]; Vec3d v(a);
template <typename Source>
Vec3(Source *a)
{
this->mm[0] = a[0];
this->mm[1] = a[1];
this->mm[2] = a[2];
}
/// @brief Construct a Vec3 from a 3-Tuple with a possibly different value type.
/// @details Type conversion warnings are suppressed.
template<typename Source>
explicit Vec3(const Tuple<3, Source> &v)
{
this->mm[0] = static_cast<T>(v[0]);
this->mm[1] = static_cast<T>(v[1]);
this->mm[2] = static_cast<T>(v[2]);
}
/// @brief Construct a Vec3 from another Vec3 with a possibly different value type.
/// @details Type conversion warnings are suppressed.
template<typename Other>
Vec3(const Vec3<Other>& v)
{
this->mm[0] = static_cast<T>(v[0]);
this->mm[1] = static_cast<T>(v[1]);
this->mm[2] = static_cast<T>(v[2]);
}
/// Reference to the component, e.g. v.x() = 4.5f;
T& x() { return this->mm[0]; }
T& y() { return this->mm[1]; }
T& z() { return this->mm[2]; }
/// Get the component, e.g. float f = v.y();
T x() const { return this->mm[0]; }
T y() const { return this->mm[1]; }
T z() const { return this->mm[2]; }
T* asPointer() { return this->mm; }
const T* asPointer() const { return this->mm; }
/// Alternative indexed reference to the elements
T& operator()(int i) { return this->mm[i]; }
/// Alternative indexed constant reference to the elements,
T operator()(int i) const { return this->mm[i]; }
/// "this" vector gets initialized to [x, y, z],
/// calling v.init(); has same effect as calling v = Vec3::zero();
const Vec3<T>& init(T x=0, T y=0, T z=0)
{
this->mm[0] = x; this->mm[1] = y; this->mm[2] = z;
return *this;
}
/// Set "this" vector to zero
const Vec3<T>& setZero()
{
this->mm[0] = 0; this->mm[1] = 0; this->mm[2] = 0;
return *this;
}
/// @brief Assignment operator
/// @details Type conversion warnings are not suppressed.
template<typename Source>
const Vec3<T>& operator=(const Vec3<Source> &v)
{
// note: don't static_cast because that suppresses warnings
this->mm[0] = v[0];
this->mm[1] = v[1];
this->mm[2] = v[2];
return *this;
}
/// Test if "this" vector is equivalent to vector v with tolerance of eps
bool eq(const Vec3<T> &v, T eps = static_cast<T>(1.0e-7)) const
{
return isRelOrApproxEqual(this->mm[0], v.mm[0], eps, eps) &&
isRelOrApproxEqual(this->mm[1], v.mm[1], eps, eps) &&
isRelOrApproxEqual(this->mm[2], v.mm[2], eps, eps);
}
/// Negation operator, for e.g. v1 = -v2;
Vec3<T> operator-() const { return Vec3<T>(-this->mm[0], -this->mm[1], -this->mm[2]); }
/// this = v1 + v2
/// "this", v1 and v2 need not be distinct objects, e.g. v.add(v1,v);
template <typename T0, typename T1>
const Vec3<T>& add(const Vec3<T0> &v1, const Vec3<T1> &v2)
{
this->mm[0] = v1[0] + v2[0];
this->mm[1] = v1[1] + v2[1];
this->mm[2] = v1[2] + v2[2];
return *this;
}
/// this = v1 - v2
/// "this", v1 and v2 need not be distinct objects, e.g. v.sub(v1,v);
template <typename T0, typename T1>
const Vec3<T>& sub(const Vec3<T0> &v1, const Vec3<T1> &v2)
{
this->mm[0] = v1[0] - v2[0];
this->mm[1] = v1[1] - v2[1];
this->mm[2] = v1[2] - v2[2];
return *this;
}
/// this = scalar*v, v need not be a distinct object from "this",
/// e.g. v.scale(1.5,v1);
template <typename T0, typename T1>
const Vec3<T>& scale(T0 scale, const Vec3<T1> &v)
{
this->mm[0] = scale * v[0];
this->mm[1] = scale * v[1];
this->mm[2] = scale * v[2];
return *this;
}
template <typename T0, typename T1>
const Vec3<T> &div(T0 scale, const Vec3<T1> &v)
{
this->mm[0] = v[0] / scale;
this->mm[1] = v[1] / scale;
this->mm[2] = v[2] / scale;
return *this;
}
/// Dot product
T dot(const Vec3<T> &v) const
{
return
this->mm[0]*v.mm[0] +
this->mm[1]*v.mm[1] +
this->mm[2]*v.mm[2];
}
/// Length of the vector
T length() const
{
return static_cast<T>(sqrt(double(
this->mm[0]*this->mm[0] +
this->mm[1]*this->mm[1] +
this->mm[2]*this->mm[2])));
}
/// Squared length of the vector, much faster than length() as it
/// does not involve square root
T lengthSqr() const
{
return
this->mm[0]*this->mm[0] +
this->mm[1]*this->mm[1] +
this->mm[2]*this->mm[2];
}
/// Return the cross product of "this" vector and v;
Vec3<T> cross(const Vec3<T> &v) const
{
return Vec3<T>(this->mm[1]*v.mm[2] - this->mm[2]*v.mm[1],
this->mm[2]*v.mm[0] - this->mm[0]*v.mm[2],
this->mm[0]*v.mm[1] - this->mm[1]*v.mm[0]);
}
/// this = v1 cross v2, v1 and v2 must be distinct objects than "this"
const Vec3<T>& cross(const Vec3<T> &v1, const Vec3<T> &v2)
{
// assert(this!=&v1);
// assert(this!=&v2);
this->mm[0] = v1.mm[1]*v2.mm[2] - v1.mm[2]*v2.mm[1];
this->mm[1] = v1.mm[2]*v2.mm[0] - v1.mm[0]*v2.mm[2];
this->mm[2] = v1.mm[0]*v2.mm[1] - v1.mm[1]*v2.mm[0];
return *this;
}
/// Returns v, where \f$v_i *= scalar\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator*=(S scalar)
{
this->mm[0] = static_cast<T>(this->mm[0] * scalar);
this->mm[1] = static_cast<T>(this->mm[1] * scalar);
this->mm[2] = static_cast<T>(this->mm[2] * scalar);
return *this;
}
/// Returns v0, where \f$v0_i *= v1_i\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator*=(const Vec3<S> &v1)
{
this->mm[0] *= v1[0];
this->mm[1] *= v1[1];
this->mm[2] *= v1[2];
return *this;
}
/// Returns v, where \f$v_i /= scalar\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator/=(S scalar)
{
this->mm[0] /= scalar;
this->mm[1] /= scalar;
this->mm[2] /= scalar;
return *this;
}
/// Returns v0, where \f$v0_i /= v1_i\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator/=(const Vec3<S> &v1)
{
this->mm[0] /= v1[0];
this->mm[1] /= v1[1];
this->mm[2] /= v1[2];
return *this;
}
/// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator+=(S scalar)
{
this->mm[0] = static_cast<T>(this->mm[0] + scalar);
this->mm[1] = static_cast<T>(this->mm[1] + scalar);
this->mm[2] = static_cast<T>(this->mm[2] + scalar);
return *this;
}
/// Returns v0, where \f$v0_i += v1_i\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator+=(const Vec3<S> &v1)
{
this->mm[0] += v1[0];
this->mm[1] += v1[1];
this->mm[2] += v1[2];
return *this;
}
/// Returns v, where \f$v_i += scalar\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator-=(S scalar)
{
this->mm[0] -= scalar;
this->mm[1] -= scalar;
this->mm[2] -= scalar;
return *this;
}
/// Returns v0, where \f$v0_i -= v1_i\f$ for \f$i \in [0, 2]\f$
template <typename S>
const Vec3<T> &operator-=(const Vec3<S> &v1)
{
this->mm[0] -= v1[0];
this->mm[1] -= v1[1];
this->mm[2] -= v1[2];
return *this;
}
/// Return a reference to itsef after the exponent has been
/// applied to all the vector components.
inline const Vec3<T>& exp()
{
this->mm[0] = std::exp(this->mm[0]);
this->mm[1] = std::exp(this->mm[1]);
this->mm[2] = std::exp(this->mm[2]);
return *this;
}
/// Return the sum of all the vector components.
inline T sum() const
{
return this->mm[0] + this->mm[1] + this->mm[2];
}
/// this = normalized this
bool normalize(T eps = T(1.0e-7))
{
T d = length();
if (isApproxEqual(d, T(0), eps)) {
return false;
}
*this *= (T(1) / d);
return true;
}
/// return normalized this, throws if null vector
Vec3<T> unit(T eps=0) const
{
T d;
return unit(eps, d);
}
/// return normalized this and length, throws if null vector
Vec3<T> unit(T eps, T& len) const
{
len = length();
if (isApproxEqual(len, T(0), eps)) {
OPENVDB_THROW(ArithmeticError, "Normalizing null 3-vector");
}
return *this / len;
}
// Number of cols, rows, elements
static unsigned numRows() { return 1; }
static unsigned numColumns() { return 3; }
static unsigned numElements() { return 3; }
/// Returns the scalar component of v in the direction of onto, onto need
/// not be unit. e.g double c = Vec3d::component(v1,v2);
T component(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
{
T l = onto.length();
if (isApproxEqual(l, T(0), eps)) return 0;
return dot(onto)*(T(1)/l);
}
/// Return the projection of v onto the vector, onto need not be unit
/// e.g. Vec3d a = vprojection(n);
Vec3<T> projection(const Vec3<T> &onto, T eps = static_cast<T>(1.0e-7)) const
{
T l = onto.lengthSqr();
if (isApproxEqual(l, T(0), eps)) return Vec3::zero();
return onto*(dot(onto)*(T(1)/l));
}
/// Return an arbitrary unit vector perpendicular to v
/// Vector this must be a unit vector
/// e.g. v = v.normalize(); Vec3d n = v.getArbPerpendicular();
Vec3<T> getArbPerpendicular() const
{
Vec3<T> u;
T l;
if ( fabs(this->mm[0]) >= fabs(this->mm[1]) ) {
// v.x or v.z is the largest magnitude component, swap them
l = this->mm[0]*this->mm[0] + this->mm[2]*this->mm[2];
l = static_cast<T>(T(1)/sqrt(double(l)));
u.mm[0] = -this->mm[2]*l;
u.mm[1] = (T)0.0;
u.mm[2] = +this->mm[0]*l;
} else {
// W.y or W.z is the largest magnitude component, swap them
l = this->mm[1]*this->mm[1] + this->mm[2]*this->mm[2];
l = static_cast<T>(T(1)/sqrt(double(l)));
u.mm[0] = (T)0.0;
u.mm[1] = +this->mm[2]*l;
u.mm[2] = -this->mm[1]*l;
}
return u;
}
/// True if a Nan is present in vector
bool isNan() const { return isnan(this->mm[0]) || isnan(this->mm[1]) || isnan(this->mm[2]); }
/// True if an Inf is present in vector
bool isInfinite() const
{
return isinf(this->mm[0]) || isinf(this->mm[1]) || isinf(this->mm[2]);
}
/// True if all no Nan or Inf values present
bool isFinite() const
{
return finite(this->mm[0]) && finite(this->mm[1]) && finite(this->mm[2]);
}
/// Predefined constants, e.g. Vec3d v = Vec3d::xNegAxis();
static Vec3<T> zero() { return Vec3<T>(0, 0, 0); }
};
/// Equality operator, does exact floating point comparisons
template <typename T0, typename T1>
inline bool operator==(const Vec3<T0> &v0, const Vec3<T1> &v1)
{
return isExactlyEqual(v0[0], v1[0]) && isExactlyEqual(v0[1], v1[1])
&& isExactlyEqual(v0[2], v1[2]);
}
/// Inequality operator, does exact floating point comparisons
template <typename T0, typename T1>
inline bool operator!=(const Vec3<T0> &v0, const Vec3<T1> &v1) { return !(v0==v1); }
/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator*(S scalar, const Vec3<T> &v) { return v*scalar; }
/// Returns V, where \f$V_i = v_i * scalar\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator*(const Vec3<T> &v, S scalar)
{
Vec3<typename promote<S, T>::type> result(v);
result *= scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i * v1_i\f$ for \f$i \in [0, 2]\f$
template <typename T0, typename T1>
inline Vec3<typename promote<T0, T1>::type> operator*(const Vec3<T0> &v0, const Vec3<T1> &v1)
{
Vec3<typename promote<T0, T1>::type> result(v0[0] * v1[0], v0[1] * v1[1], v0[2] * v1[2]);
return result;
}
/// Returns V, where \f$V_i = scalar / v_i\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator/(S scalar, const Vec3<T> &v)
{
return Vec3<typename promote<S, T>::type>(scalar/v[0], scalar/v[1], scalar/v[2]);
}
/// Returns V, where \f$V_i = v_i / scalar\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator/(const Vec3<T> &v, S scalar)
{
Vec3<typename promote<S, T>::type> result(v);
result /= scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i / v1_i\f$ for \f$i \in [0, 2]\f$
template <typename T0, typename T1>
inline Vec3<typename promote<T0, T1>::type> operator/(const Vec3<T0> &v0, const Vec3<T1> &v1)
{
Vec3<typename promote<T0, T1>::type> result(v0[0] / v1[0], v0[1] / v1[1], v0[2] / v1[2]);
return result;
}
/// Returns V, where \f$V_i = v0_i + v1_i\f$ for \f$i \in [0, 2]\f$
template <typename T0, typename T1>
inline Vec3<typename promote<T0, T1>::type> operator+(const Vec3<T0> &v0, const Vec3<T1> &v1)
{
Vec3<typename promote<T0, T1>::type> result(v0);
result += v1;
return result;
}
/// Returns V, where \f$V_i = v_i + scalar\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator+(const Vec3<T> &v, S scalar)
{
Vec3<typename promote<S, T>::type> result(v);
result += scalar;
return result;
}
/// Returns V, where \f$V_i = v0_i - v1_i\f$ for \f$i \in [0, 2]\f$
template <typename T0, typename T1>
inline Vec3<typename promote<T0, T1>::type> operator-(const Vec3<T0> &v0, const Vec3<T1> &v1)
{
Vec3<typename promote<T0, T1>::type> result(v0);
result -= v1;
return result;
}
/// Returns V, where \f$V_i = v_i - scalar\f$ for \f$i \in [0, 2]\f$
template <typename S, typename T>
inline Vec3<typename promote<S, T>::type> operator-(const Vec3<T> &v, S scalar)
{
Vec3<typename promote<S, T>::type> result(v);
result -= scalar;
return result;
}
/// Angle between two vectors, the result is between [0, pi],
/// e.g. double a = Vec3d::angle(v1,v2);
template <typename T>
inline T angle(const Vec3<T> &v1, const Vec3<T> &v2)
{
Vec3<T> c = v1.cross(v2);
return static_cast<T>(atan2(c.length(), v1.dot(v2)));
}
template <typename T>
inline bool
isApproxEqual(const Vec3<T>& a, const Vec3<T>& b)
{
return a.eq(b);
}
template <typename T>
inline bool
isApproxEqual(const Vec3<T>& a, const Vec3<T>& b, const Vec3<T>& eps)
{
return isApproxEqual(a.x(), b.x(), eps.x()) &&
isApproxEqual(a.y(), b.y(), eps.y()) &&
isApproxEqual(a.z(), b.z(), eps.z());
}
template<typename T>
inline bool
isFinite(const Vec3<T>& v)
{
return isFinite(v[0]) && isFinite(v[1]) && isFinite(v[2]);
}
/// Return @c true if all components are exactly equal to zero.
template<typename T>
inline bool
isZero(const Vec3<T>& v)
{
return isZero(v[0]) && isZero(v[1]) && isZero(v[2]);
}
template<typename T>
inline Vec3<T>
Abs(const Vec3<T>& v)
{
return Vec3<T>(Abs(v[0]), Abs(v[1]), Abs(v[2]));
}
/// Orthonormalize vectors v1, v2 and v3 and store back the resulting
/// basis e.g. Vec3d::orthonormalize(v1,v2,v3);
template <typename T>
inline void orthonormalize(Vec3<T> &v1, Vec3<T> &v2, Vec3<T> &v3)
{
// If the input vectors are v0, v1, and v2, then the Gram-Schmidt
// orthonormalization produces vectors u0, u1, and u2 as follows,
//
// u0 = v0/|v0|
// u1 = (v1-(u0*v1)u0)/|v1-(u0*v1)u0|
// u2 = (v2-(u0*v2)u0-(u1*v2)u1)/|v2-(u0*v2)u0-(u1*v2)u1|
//
// where |A| indicates length of vector A and A*B indicates dot
// product of vectors A and B.
// compute u0
v1.normalize();
// compute u1
T d0 = v1.dot(v2);
v2 -= v1*d0;
v2.normalize();
// compute u2
T d1 = v2.dot(v3);
d0 = v1.dot(v3);
v3 -= v1*d0 + v2*d1;
v3.normalize();
}
/// @remark We are switching to a more explicit name because the semantics
/// are different from std::min/max. In that case, the function returns a
/// reference to one of the objects based on a comparator. Here, we must
/// fabricate a new object which might not match either of the inputs.
/// Return component-wise minimum of the two vectors.
template <typename T>
inline Vec3<T> minComponent(const Vec3<T> &v1, const Vec3<T> &v2)
{
return Vec3<T>(
std::min(v1.x(), v2.x()),
std::min(v1.y(), v2.y()),
std::min(v1.z(), v2.z()));
}
/// Return component-wise maximum of the two vectors.
template <typename T>
inline Vec3<T> maxComponent(const Vec3<T> &v1, const Vec3<T> &v2)
{
return Vec3<T>(
std::max(v1.x(), v2.x()),
std::max(v1.y(), v2.y()),
std::max(v1.z(), v2.z()));
}
/// @brief Return a vector with the exponent applied to each of
/// the components of the input vector.
template <typename T>
inline Vec3<T> Exp(Vec3<T> v) { return v.exp(); }
typedef Vec3<int32_t> Vec3i;
typedef Vec3<uint32_t> Vec3ui;
typedef Vec3<float> Vec3s;
typedef Vec3<double> Vec3d;
} // namespace math
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_MATH_VEC3_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|