This file is indexed.

/usr/include/openvdb/tools/Dense.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @file Dense.h
///
/// @brief This file defines a simple dense grid and efficient
/// converters to and from VDB grids.

#ifndef OPENVDB_TOOLS_DENSE_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_DENSE_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/Grid.h>
#include <openvdb/tree/ValueAccessor.h>
#include <openvdb/Exceptions.h>
#include <openvdb/util/Formats.h>
#include <tbb/parallel_for.h>
#include <boost/scoped_array.hpp>
#include <boost/scoped_ptr.hpp>
#include "Prune.h"

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

/// @brief Populate a dense grid with the values of voxels from a sparse grid,
/// where the sparse grid intersects the dense grid.
/// @param sparse  an OpenVDB grid or tree from which to copy values
/// @param dense   the dense grid into which to copy values
/// @param serial  if false, process voxels in parallel
template<typename DenseT, typename GridOrTreeT>
void
copyToDense(
    const GridOrTreeT& sparse,
    DenseT& dense,
    bool serial = false);


/// @brief Populate a sparse grid with the values of all of the voxels of a dense grid.
/// @param dense      the dense grid from which to copy values
/// @param sparse     an OpenVDB grid or tree into which to copy values
/// @param tolerance  values in the dense grid that are within this tolerance of the sparse
///     grid's background value become inactive background voxels or tiles in the sparse grid
/// @param serial     if false, process voxels in parallel
template<typename DenseT, typename GridOrTreeT>
void
copyFromDense(
    const DenseT& dense,
    GridOrTreeT& sparse,
    const typename GridOrTreeT::ValueType& tolerance,
    bool serial = false);


////////////////////////////////////////

/// We currently support the following two 3D memory layouts for dense
/// volumes: XYZ, i.e. x is the fastest moving index, and ZYX, i.e. z
/// is the fastest moving index. The ZYX memory layout leads to nested
/// for-loops of the order x, y, z, which we find to be the most
/// intuitive. Hence, ZYX is the layout used throughout VDB. However,
/// other data structures, e.g. Houdini and Maya, employ the XYZ
/// layout. Clearly a dense volume with the ZYX layout converts more
/// efficiently to a VDB, but we support both for convenience.
enum MemoryLayout { LayoutXYZ, LayoutZYX };

/// @brief Base class for Dense which is defined below.
/// @note The constructor of this class is protected to prevent direct
/// instantiation.
template<typename ValueT, MemoryLayout Layout> class DenseBase;

/// @brief Partial template specialization of DenseBase.
/// @note ZYX is the memory-layout in VDB. It leads to nested
/// for-loops of the order x, y, z which we find to be the most intuitive.
template<typename ValueT>
class DenseBase<ValueT, LayoutZYX>
{
public:
    /// @brief Return the linear offset into this grid's value array given by
    /// unsigned coordinates (i, j, k), i.e., coordinates relative to
    /// the origin of this grid's bounding box.
    ///
    /// @warning The input coordinates are assume to be relative to
    /// the grid's origin, i.e. minimum of its index bounding box!
    inline size_t coordToOffset(size_t i, size_t j, size_t k) const { return i*mX + j*mY + k; }

    /// @brief Return the local coordinate corresponding to the specified linear offset.
    ///
    /// @warning The returned coordinate is relative to the origin of this
    /// grid's bounding box so add dense.origin() to get absolute coordinates.
    inline Coord offsetToLocalCoord(size_t n) const
    {
      const size_t x = n / mX;
      n -= mX*x;
      const size_t y = n / mY;
      return Coord(Coord::ValueType(x), Coord::ValueType(y), Coord::ValueType(n - mY*y));
    }

    /// @brief Return the stride of the array in the x direction ( = dimY*dimZ).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    inline size_t xStride() const { return mX; }

    /// @brief Return the stride of the array in the y direction ( = dimZ).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    inline size_t yStride() const { return mY; }

    /// @brief Return the stride of the array in the z direction ( = 1).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    static size_t zStride() { return 1; }

protected:
    /// Protected constructor so as to prevent direct instantiation
    DenseBase(const CoordBBox& bbox) : mBBox(bbox), mY(bbox.dim()[2]), mX(mY*bbox.dim()[1]) {}

    const CoordBBox mBBox;//signed coordinates of the domain represented by the grid
    const size_t mY, mX;//strides in the y and x direction
};// end of DenseBase<ValueT, LayoutZYX>

/// @brief Partial template specialization of DenseBase.
/// @note This is the memory-layout employed in Houdini and Maya. It leads
/// to nested for-loops of the order z, y, x.
template<typename ValueT>
class DenseBase<ValueT, LayoutXYZ>
{
public:
    /// @brief Return the linear offset into this grid's value array given by
    /// unsigned coordinates (i, j, k), i.e., coordinates relative to
    /// the origin of this grid's bounding box.
    ///
    /// @warning The input coordinates are assume to be relative to
    /// the grid's origin, i.e. minimum of its index bounding box!
    inline size_t coordToOffset(size_t i, size_t j, size_t k) const { return i + j*mY + k*mZ; }

    /// @brief Return the index coordinate corresponding to the specified linear offset.
    ///
    /// @warning The returned coordinate is relative to the origin of this
    /// grid's bounding box so add dense.origin() to get absolute coordinates.
    inline Coord offsetToLocalCoord(size_t n) const
    {
        const size_t z = n / mZ;
        n -= mZ*z;
        const size_t y = n / mY;
        return Coord(Coord::ValueType(n - mY*y), Coord::ValueType(y), Coord::ValueType(z));
    }

    /// @brief Return the stride of the array in the x direction ( = 1).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    static size_t xStride() { return 1; }

    /// @brief Return the stride of the array in the y direction ( = dimX).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    inline size_t yStride() const { return mY; }

    /// @brief Return the stride of the array in the y direction ( = dimX*dimY).
    /// @note This method is required by both CopyToDense and CopyFromDense.
    inline size_t zStride() const { return mZ; }

protected:
    /// Protected constructor so as to prevent direct instantiation
    DenseBase(const CoordBBox& bbox) : mBBox(bbox), mY(bbox.dim()[0]), mZ(mY*bbox.dim()[1]) {}

    const CoordBBox mBBox;//signed coordinates of the domain represented by the grid
    const size_t mY, mZ;//strides in the y and z direction
};// end of DenseBase<ValueT, LayoutXYZ>

/// @brief Dense is a simple dense grid API used by the CopyToDense and
/// CopyFromDense classes defined below.
/// @details Use the Dense class to efficiently produce a dense in-memory
/// representation of an OpenVDB grid.  However, be aware that a dense grid
/// could have a memory footprint that is orders of magnitude larger than
/// the sparse grid from which it originates.
///
/// @note This class can be used as a simple wrapper for existing dense grid
/// classes if they provide access to the raw data array.
/// @note This implementation allows for the 3D memory layout to be
/// defined by the MemoryLayout template parameter (see above for definition).
/// The default memory layout is ZYX since that's the layout used by OpenVDB grids.
template<typename ValueT, MemoryLayout Layout = LayoutZYX>
class Dense : public DenseBase<ValueT, Layout>
{
public:
    typedef ValueT ValueType;
    typedef DenseBase<ValueT, Layout> BaseT;
    typedef boost::shared_ptr<Dense> Ptr;
    typedef boost::shared_ptr<const Dense> ConstPtr;

    /// @brief Construct a dense grid with a given range of coordinates.
    ///
    /// @param bbox  the bounding box of the (signed) coordinate range of this grid
    /// @throw ValueError if the bounding box is empty.
    /// @note The min and max coordinates of the bounding box are inclusive.
    Dense(const CoordBBox& bbox) : BaseT(bbox) { this->init(); }

    /// @brief Construct a dense grid with a given range of coordinates and initial value
    ///
    /// @param bbox  the bounding box of the (signed) coordinate range of this grid
    /// @param value the initial value of the grid.
    /// @throw ValueError if the bounding box is empty.
    /// @note The min and max coordinates of the bounding box are inclusive.
    Dense(const CoordBBox& bbox, const ValueT& value) : BaseT(bbox)
    {
        this->init();
        this->fill(value);
    }

    /// @brief Construct a dense grid that wraps an external array.
    ///
    /// @param bbox  the bounding box of the (signed) coordinate range of this grid
    /// @param data  a raw C-style array whose size is commensurate with
    ///     the coordinate domain of @a bbox
    ///
    /// @note The data array is assumed to have a stride of one in the @e z direction.
    /// @throw ValueError if the bounding box is empty.
    /// @note The min and max coordinates of the bounding box are inclusive.
    Dense(const CoordBBox& bbox, ValueT* data) : BaseT(bbox), mData(data)
    {
        if (BaseT::mBBox.empty()) {
            OPENVDB_THROW(ValueError, "can't construct a dense grid with an empty bounding box");
        }
    }

    /// @brief Construct a dense grid with a given origin and dimensions.
    ///
    /// @param dim  the desired dimensions of the grid
    /// @param min  the signed coordinates of the first voxel in the dense grid
    /// @throw ValueError if any of the dimensions are zero.
    /// @note The @a min coordinate is inclusive, and the max coordinate will be
    /// @a min + @a dim - 1.
    Dense(const Coord& dim, const Coord& min = Coord(0))
        : BaseT(CoordBBox(min, min+dim.offsetBy(-1)))
    {
        this->init();
    }

    /// @brief Return the memory layout for this grid (see above for definitions).
    static MemoryLayout memoryLayout() { return Layout; }

    /// @brief Return a raw pointer to this grid's value array.
    /// @note This method is required by CopyToDense.
    inline ValueT* data() { return mData; }

    /// @brief Return a raw pointer to this grid's value array.
    /// @note This method is required by CopyFromDense.
    inline const ValueT* data() const { return mData; }

    /// @brief Return the bounding box of the signed index domain of this grid.
    /// @note This method is required by both CopyToDense and CopyFromDense.
    inline const CoordBBox& bbox() const { return BaseT::mBBox; }

     /// Return the grid's origin in index coordinates.
    inline const Coord& origin() const { return BaseT::mBBox.min(); }

    /// @brief Return the number of voxels contained in this grid.
    inline Index64 valueCount() const { return BaseT::mBBox.volume(); }

    /// @brief Set the value of the voxel at the given array offset.
    inline void setValue(size_t offset, const ValueT& value) { mData[offset] = value; }

    /// @brief Return a const reference to the value of the voxel at the given array offset.
    const ValueT& getValue(size_t offset) const { return mData[offset]; }

    /// @brief Return a non-const reference to the value of the voxel at the given array offset.
    ValueT& getValue(size_t offset) { return mData[offset]; }

    /// @brief Set the value of the voxel at unsigned index coordinates (i, j, k).
    /// @note This is somewhat slower than using an array offset.
    inline void setValue(size_t i, size_t j, size_t k, const ValueT& value)
    {
        mData[BaseT::coordToOffset(i,j,k)] = value;
    }

    /// @brief Return a const reference to the value of the voxel at unsigned index coordinates (i, j, k).
    /// @note This is somewhat slower than using an array offset.
    inline const ValueT& getValue(size_t i, size_t j, size_t k) const
    {
        return mData[BaseT::coordToOffset(i,j,k)];
    }

    /// @brief Return a non-const reference to the value of the voxel at unsigned index coordinates (i, j, k).
    /// @note This is somewhat slower than using an array offset.
    inline ValueT& getValue(size_t i, size_t j, size_t k)
    {
        return mData[BaseT::coordToOffset(i,j,k)];
    }

    /// @brief Set the value of the voxel at the given signed coordinates.
    /// @note This is slower than using either an array offset or unsigned index coordinates.
    inline void setValue(const Coord& xyz, const ValueT& value)
    {
        mData[this->coordToOffset(xyz)] = value;
    }

    /// @brief Return a const reference to the value of the voxel at the given signed coordinates.
    /// @note This is slower than using either an array offset or unsigned index coordinates.
    inline const ValueT& getValue(const Coord& xyz) const
    {
        return mData[this->coordToOffset(xyz)];
    }

    /// @brief Return a non-const reference to the value of the voxel at the given signed coordinates.
    /// @note This is slower than using either an array offset or unsigned index coordinates.
    inline ValueT& getValue(const Coord& xyz)
    {
        return mData[this->coordToOffset(xyz)];
    }

    /// @brief Fill this grid with a constant value.
    inline void fill(const ValueT& value)
    {
        size_t size = this->valueCount();
        ValueT* a = mData;
        while(size--) *a++ = value;
    }

    /// @brief Return the linear offset into this grid's value array given by
    /// the specified signed coordinates, i.e., coordinates in the space of
    /// this grid's bounding box.
    ///
    /// @note This method reflects the fact that we assume the same
    /// layout of values as an OpenVDB grid, i.e., the fastest coordinate is @e z.
    inline size_t coordToOffset(const Coord& xyz) const
    {
        assert(BaseT::mBBox.isInside(xyz));
        return BaseT::coordToOffset(size_t(xyz[0]-BaseT::mBBox.min()[0]),
                                    size_t(xyz[1]-BaseT::mBBox.min()[1]),
                                    size_t(xyz[2]-BaseT::mBBox.min()[2]));
    }

    /// @brief Return the global coordinate corresponding to the specified linear offset.
    inline Coord offsetToCoord(size_t n) const
    {
      return this->offsetToLocalCoord(n) + BaseT::mBBox.min();
    }

    /// @brief Return the memory footprint of this Dense grid in bytes.
    inline Index64 memUsage() const
    {
        return sizeof(*this) + BaseT::mBBox.volume() * sizeof(ValueType);
    }

    /// @brief Output a human-readable description of this grid to the
    /// specified stream.
    void print(const std::string& name = "", std::ostream& os = std::cout) const
    {
        const Coord dim = BaseT::mBBox.dim();
        os << "Dense Grid";
        if (!name.empty()) os << " \"" << name << "\"";
        util::printBytes(os, this->memUsage(), ":\n  Memory footprint:     ");
        os << "  Dimensions of grid  :   " << dim[0] << " x " << dim[1] << " x " << dim[2] << "\n";
        os << "  Number of voxels:       " << util::formattedInt(this->valueCount()) << "\n";
        os << "  Bounding box of voxels: " << BaseT::mBBox << "\n";
        os << "  Memory layout:          " << (Layout == LayoutZYX ? "ZYX (" : "XYZ (dis")
           << "similar to VDB)\n";        
    }
    
private:

    /// @brief Private method to initialize the dense value array.
    void init()
    {
        if (BaseT::mBBox.empty()) {
            OPENVDB_THROW(ValueError, "can't construct a dense grid with an empty bounding box");
        }
        mArray.reset(new ValueT[BaseT::mBBox.volume()]);
        mData = mArray.get();
    }

    boost::scoped_array<ValueT> mArray;
    ValueT* mData;//raw c-style pointer to values
};// end of Dense

////////////////////////////////////////


/// @brief Copy an OpenVDB tree into an existing dense grid.
///
/// @note Only voxels that intersect the dense grid's bounding box are copied
/// from the OpenVDB tree.  But both active and inactive voxels are copied,
/// so all existing values in the dense grid are overwritten, regardless of
/// the OpenVDB tree's topology.
template<typename _TreeT, typename _DenseT = Dense<typename _TreeT::ValueType> >
class CopyToDense
{
public:
    typedef _DenseT                      DenseT;
    typedef _TreeT                       TreeT;
    typedef typename TreeT::ValueType    ValueT;

    CopyToDense(const TreeT& tree, DenseT& dense)
        : mRoot(&(tree.root())), mDense(&dense) {}

    void copy(bool serial = false) const
    {
        if (serial) {
            mRoot->copyToDense(mDense->bbox(), *mDense);
        } else {
            tbb::parallel_for(mDense->bbox(), *this);
        }
    }

    /// @brief Public method called by tbb::parallel_for
    void operator()(const CoordBBox& bbox) const
    {
        mRoot->copyToDense(bbox, *mDense);
    }

private:
    const typename TreeT::RootNodeType* mRoot;
    DenseT* mDense;
};// CopyToDense


// Convenient wrapper function for the CopyToDense class
template<typename DenseT, typename GridOrTreeT>
void
copyToDense(const GridOrTreeT& sparse, DenseT& dense, bool serial)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;

    CopyToDense<TreeT, DenseT> op(Adapter::constTree(sparse), dense);
    op.copy(serial);
}


////////////////////////////////////////


/// @brief Copy the values from a dense grid into an OpenVDB tree.
///
/// @details Values in the dense grid that are within a tolerance of
/// the background value are truncated to inactive background voxels or tiles.
/// This allows the tree to form a sparse representation of the dense grid.
///
/// @note Since this class allocates leaf nodes concurrently it is recommended
/// to use a scalable implementation of @c new like the one provided by TBB,
/// rather than the mutex-protected standard library @c new.
template<typename _TreeT, typename _DenseT = Dense<typename _TreeT::ValueType> >
class CopyFromDense
{
public:
    typedef _DenseT                      DenseT;
    typedef _TreeT                       TreeT;
    typedef typename TreeT::ValueType    ValueT;
    typedef typename TreeT::LeafNodeType LeafT;
    typedef tree::ValueAccessor<TreeT>   AccessorT;

    CopyFromDense(const DenseT& dense, TreeT& tree, const ValueT& tolerance)
        : mDense(&dense),
          mTree(&tree),
          mBlocks(NULL),
          mTolerance(tolerance),
          mAccessor(tree.empty() ? NULL : new AccessorT(tree))
    {
    }
    CopyFromDense(const CopyFromDense& other)
        : mDense(other.mDense),
          mTree(other.mTree),
          mBlocks(other.mBlocks),
          mTolerance(other.mTolerance),
          mAccessor(other.mAccessor.get() == NULL ? NULL : new AccessorT(*mTree))
    {
    }

    /// @brief Copy values from the dense grid to the sparse tree.
    void copy(bool serial = false)
    {
        mBlocks = new std::vector<Block>();
        const CoordBBox& bbox = mDense->bbox();
        // Pre-process: Construct a list of blocks aligned with (potential) leaf nodes
        for (CoordBBox sub=bbox; sub.min()[0] <= bbox.max()[0]; sub.min()[0] = sub.max()[0] + 1) {
            for (sub.min()[1] = bbox.min()[1]; sub.min()[1] <= bbox.max()[1];
                 sub.min()[1] = sub.max()[1] + 1)
            {
                for (sub.min()[2] = bbox.min()[2]; sub.min()[2] <= bbox.max()[2];
                     sub.min()[2] = sub.max()[2] + 1)
                {
                    sub.max() = Coord::minComponent(bbox.max(),
                        (sub.min()&(~(LeafT::DIM-1u))).offsetBy(LeafT::DIM-1u));
                    mBlocks->push_back(Block(sub));
                }
            }
        }

        // Multi-threaded process: Convert dense grid into leaf nodes and tiles
        if (serial) {
            (*this)(tbb::blocked_range<size_t>(0, mBlocks->size()));
        } else {
            tbb::parallel_for(tbb::blocked_range<size_t>(0, mBlocks->size()), *this);
        }

        // Post-process: Insert leaf nodes and tiles into the tree, and prune the tiles only!
        tree::ValueAccessor<TreeT> acc(*mTree);
        for (size_t m=0, size = mBlocks->size(); m<size; ++m) {
            Block& block = (*mBlocks)[m];
            if (block.leaf) {
                acc.addLeaf(block.leaf);
            } else if (block.tile.second) {//only background tiles are inactive
                acc.addTile(1, block.bbox.min(), block.tile.first, true);//leaf tile
            }
        }
        delete mBlocks;
        mBlocks = NULL;

        tools::pruneTiles(*mTree, mTolerance);//multi-threaded
    }

    /// @brief Public method called by tbb::parallel_for
    /// @warning Never call this method directly!
    void operator()(const tbb::blocked_range<size_t> &r) const
    {
        assert(mBlocks);
        LeafT* leaf = new LeafT();

        for (size_t m=r.begin(), n=0, end = r.end(); m != end; ++m, ++n) {

            Block& block = (*mBlocks)[m];
            const CoordBBox &bbox = block.bbox;

            if (mAccessor.get() == NULL) {//i.e. empty target tree
                leaf->fill(mTree->background(), false);
            } else {//account for existing leaf nodes in the target tree
                if (const LeafT* target = mAccessor->probeConstLeaf(bbox.min())) {
                    (*leaf) = (*target);
                } else {
                    ValueT value = zeroVal<ValueT>();
                    bool state = mAccessor->probeValue(bbox.min(), value);
                    leaf->fill(value, state);
                }
            }

            leaf->copyFromDense(bbox, *mDense, mTree->background(), mTolerance);

            if (!leaf->isConstant(block.tile.first, block.tile.second, mTolerance)) {
                leaf->setOrigin(bbox.min() & (~(LeafT::DIM - 1)));
                block.leaf = leaf;
                leaf = new LeafT();
            }
        }// loop over blocks

        delete leaf;
    }

private:
    struct Block {
        CoordBBox               bbox;
        LeafT*                  leaf;
        std::pair<ValueT, bool> tile;
        Block(const CoordBBox& b) : bbox(b), leaf(NULL) {}
    };

    const DenseT*                mDense;
    TreeT*                       mTree;
    std::vector<Block>*          mBlocks;
    ValueT                       mTolerance;
    boost::scoped_ptr<AccessorT> mAccessor;
};// CopyFromDense


// Convenient wrapper function for the CopyFromDense class
template<typename DenseT, typename GridOrTreeT>
void
copyFromDense(const DenseT& dense, GridOrTreeT& sparse,
    const typename GridOrTreeT::ValueType& tolerance, bool serial)
{
    typedef TreeAdapter<GridOrTreeT> Adapter;
    typedef typename Adapter::TreeType TreeT;

    CopyFromDense<TreeT, DenseT> op(dense, Adapter::tree(sparse), tolerance);
    op.copy(serial);
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_DENSE_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )