/usr/include/openvdb/tools/MultiResGrid.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////
///
/// @file MultiResGrid.h
///
/// @author Ken Museth
///
/// @warning This class is fairly new and as such has not seen a lot of
/// use in production. Please report any issues or request for new
/// features directly to ken.museth@dreamworks.com.
///
/// @brief Multi-resolution grid that contains LoD sequences of trees
/// with powers of two refinements.
///
/// @note While this class can arguably be used to implement a sparse
/// Multi-Grid solver it is currently intended as a means to
/// efficiently compute LoD levels for applications like rendering
///
/// @note Prolongation means interpolation from coarse -> fine
/// @note Restriction means interpolation (or remapping) from fine -> coarse
///
#ifndef OPENVDB_TOOLS_MULTIRESGRID_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_MULTIRESGRID_HAS_BEEN_INCLUDED
#include <openvdb/Grid.h>
#include <openvdb/math/FiniteDifference.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/Operators.h>
#include <openvdb/math/Stencils.h>
#include <openvdb/metadata/StringMetadata.h>
#include <openvdb/tools/Interpolation.h>
#include <openvdb/tools/Morphology.h>
#include <openvdb/tools/Prune.h>
#include <openvdb/tools/SignedFloodFill.h>
#include <openvdb/tools/ValueTransformer.h>
#include <openvdb/tree/LeafManager.h>
#include <openvdb/tree/NodeManager.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/task_scheduler_init.h>
#include <tbb/tbb_thread.h>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/utility/enable_if.hpp>
#include <iostream>
#include <sstream>
#include <string>
#include <vector>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
template<typename TreeType>
class MultiResGrid: public MetaMap
{
public:
typedef boost::shared_ptr<MultiResGrid> Ptr;
typedef boost::shared_ptr<const MultiResGrid> ConstPtr;
typedef typename TreeType::ValueType ValueType;
typedef typename TreeType::ValueOnCIter ValueOnCIter;
typedef typename TreeType::ValueOnIter ValueOnIter;
typedef typename TreeType::Ptr TreePtr;
typedef typename TreeType::ConstPtr ConstTreePtr;
typedef typename Grid<TreeType>::Ptr GridPtr;
typedef typename Grid<TreeType>::ConstPtr ConstGridPtr;
//////////////////////////////////////////////////////////////////////
/// @brief Constructor of empty grids
/// @param levels The number of trees in this MultiResGrid
/// @param background Background value
/// @param voxelSize Size of a (uniform voxel). Defaults to one.
/// @note The multiple grids are all empty.
MultiResGrid(size_t levels, ValueType background, double voxelSize = 1.0);
/// @brief Given an initial high-resolution grid this constructor
/// generates all the coarser grids by means of restriction.
/// @param levels The number of trees in this MultiResGrid
/// @param grid High-resolution input grid
/// @param useInjection Use restriction by injection, vs
/// full-weighting. It defaults to false and should rarely be used.
/// @note This constructor will perform a deep copy of the input
/// grid and use it as the highest level grid.
MultiResGrid(size_t levels, const Grid<TreeType> &grid, bool useInjection = false);
/// @brief Given an initial high-resolution grid this constructor
/// generates all the coarser grids by means of restriction.
/// @param levels The number of trees in this MultiResGrid
/// @param grid High-resolution input grid
/// @param useInjection Use restriction by injection, vs
/// full-weighting. It defaults to false and should rarely be used.
/// @note This constructor will steal the input input
/// grid and use it as the highest level grid. On output the grid
/// is empty.
MultiResGrid(size_t levels, GridPtr grid, bool useInjection = false);
//////////////////////////////////////////////////////////////////////
/// @brief Return the number of levels, i.e. trees, in this MultiResGrid
/// @note level 0 is the finest level and numLevels()-1 is the coarsest
/// level.
size_t numLevels() const { return mTrees.size(); }
/// @brief Return the level of the finest grid (always 0)
static size_t finestLevel() { return 0; }
/// @brief Return the level of the coarsest grid, i.e. numLevels()-1
size_t coarsestLevel() const { return mTrees.size()-1; }
//////////////////////////////////////////////////////////////////////
/// @brief Return a reference to the tree at the specified level
/// @param level The level of the tree to be returned
/// @note Level 0 is by definition the finest tree.
TreeType& tree(size_t level);
/// @brief Return a const reference to the tree at the specified level
/// @param level The level of the tree to be returned
/// @note Level 0 is by definition the finest tree.
const TreeType& constTree(size_t level) const;
/// @brief Return a shared pointer to the tree at the specified level
/// @param level The level of the tree to be returned
/// @note Level 0 is by definition the finest tree.
TreePtr treePtr(size_t level);
/// @brief Return a const shared pointer to the tree at the specified level
/// @param level The level of the tree to be returned
/// @note Level 0 is by definition the finest tree.
ConstTreePtr constTreePtr(size_t level) const;
/// @brief Return a reference to the tree at the finest level
TreeType& finestTree() { return *mTrees.front(); }
/// @brief Return a const reference to the tree at the finest level
const TreeType& finestConstTree() const { return *mTrees.front(); }
/// @brief Return a shared pointer to the tree at the finest level
TreePtr finestTreePtr() { return mTrees.front(); }
/// @brief Return a const shared pointer to the tree at the finest level
ConstTreePtr finestConstTreePtr() const { return mTrees.front(); }
/// @brief Return a reference to the tree at the coarsest level
TreeType& coarsestTree() { return *mTrees.back(); }
/// @brief Return a const reference to the tree at the coarsest level
const TreeType& coarsestConstTree() const { return *mTrees.back(); }
/// @brief Return a shared pointer to the tree at the coarsest level
TreePtr coarsestTreePtr() { return mTrees.back(); }
/// @brief Return a const shared pointer to the tree at the coarsest level
ConstTreePtr coarsestConstTreePtr() const { return mTrees.back(); }
//////////////////////////////////////////////////////////////////////
/// @brief Return a shared pointer to the grid at the specified integer level
/// @param level Integer level of the grid to be returned
/// @note Level 0 is by definition the finest grid.
GridPtr grid(size_t level);
/// @brief Return a const shared pointer to the grid at the specified level
/// @param level The level of the grid to be returned
/// @note Level 0 is by definition the finest grid.
ConstGridPtr grid(size_t level) const;
/// @brief Return a shared pointer to a new grid at the specified
/// floating-point level.
/// @param level Floating-point level of the grid to be returned
/// @param grainSize Grain size for the multi-threading
/// @details Interpolation of the specified order is performed
/// between the bracketing integer levels.
/// @note Level 0 is by definition the finest grid.
template<Index Order>
GridPtr createGrid(float level, size_t grainSize = 1) const;
/// @brief Return a shared pointer to a vector of all the base
/// grids in this instance of the MultiResGrid.
/// @brief This method is useful for I/O
GridPtrVecPtr grids();
/// @brief Return a const shared pointer to a vector of all the base
/// grids in this instance of the MultiResGrid.
/// @brief This method is useful for I/O
GridCPtrVecPtr grids() const;
//////////////////////////////////////////////////////////////////////
//@{
/// @brief Return a reference to the finest grid's transform, which might be
/// shared with other grids.
/// @note Calling setTransform() on this grid invalidates all references
/// previously returned by this method.
/// @warning The transform is relative to the finest level (=0) grid!
math::Transform& transform() { return *mTransform; }
const math::Transform& transform() const { return *mTransform; }
const math::Transform& constTransform() const { return *mTransform; }
//@}
//////////////////////////////////////////////////////////////////////
//@{
/// @brief Return the floating-point index coordinate at out_level given
/// the index coordinate in_xyz at in_level.
static Vec3R xyz(const Coord& in_ijk, size_t in_level, size_t out_level);
static Vec3R xyz(const Vec3R& in_xyz, size_t in_level, size_t out_level);
static Vec3R xyz(const Vec3R& in_xyz, double in_level, double out_level);
//@}
//////////////////////////////////////////////////////////////////////
//@{
/// @brief Return the value at the specified coordinate position using
/// interpolation of the specified order into the tree at the out_level.
///
/// @details First in_ijk is mapped from index space at in_level to
/// out_level, and then a value is interpolated from the tree at out_level.
///
/// @param in_ijk Index coordinate position relative to tree at in_level
/// @param in_level Integer level of the input coordinate in_ijk
/// @param out_level Integer level of the interpolated value
template<Index Order>
ValueType sampleValue(const Coord& in_ijk, size_t in_level, size_t out_level) const;
template<Index Order>
ValueType sampleValue(const Vec3R& in_ijk, size_t in_level, size_t out_level) const;
//@}
/// @brief Return the value at the specified integer coordinate position
/// and level using interpolation of the specified order.
/// @param ijk Integer coordinate position relative to the highest level (=0) grid
/// @param level Floating-point level from which to interpolate the value.
/// @brief Non-integer values of the level will use linear-interpolation
/// between the neighboring integer levels.
template<Index Order>
ValueType sampleValue(const Coord& ijk, double level) const;
/// @brief Return the value at the specified floating-point coordinate position
/// and level using interpolation of the specified order.
/// @param xyz Floating-point coordinate position relative to the highest level grid
/// @param level Floating-point level from which to interpolate
/// the value.
/// @brief Non-integer values of the level will use linear-interpolation
/// between the neighboring integer levels.
template<Index Order>
ValueType sampleValue(const Vec3R& xyz, double level) const;
//////////////////////////////////////////////////////////////////////
/// @brief Return the value at coordinate location in @a level tree
/// from the coarser tree at @a level+1 using trilinear interpolation
/// @param coords input coords relative to the fine tree at level
/// @param level The fine level to receive values from the coarser
/// level-1
/// @note Prolongation means to interpolation from coarse -> fine
ValueType prolongateVoxel(const Coord& coords, const size_t level) const;
/// (coarse->fine) Populates all the active voxel values in a fine (@a level) tree
/// from the coarse (@a level+1) tree using linear interpolation
/// This transforms multiple values of the tree in parallel
void prolongateActiveVoxels(size_t destlevel, size_t grainSize = 1);
//////////////////////////////////////////////////////////////////////
/// Populate a coordinate location in @a level (coarse) tree
/// from the @a level-1 (fine) tree using trilinear interpolation
/// input coords are relative to the mTree[level] (coarse)
/// @note Restriction means remapping from fine -> coarse
ValueType restrictVoxel(Coord ijk, const size_t level, bool useInjection = false) const;
/// (fine->coarse) Populates all the active voxel values in the coarse (@a level) tree
/// from the fine (@a level-1) tree using trilinear interpolation.
/// For cell-centered data, this is equivalent to an average
/// For vertex-centered data this is equivalent to transferring the data
/// from the fine vertex directly above the coarse vertex.
/// This transforms multiple values of the tree in parallel
void restrictActiveVoxels(size_t destlevel, size_t grainSize = 1);
/// Output a human-readable description of this MultiResGrid
void print(std::ostream& = std::cout, int verboseLevel = 1) const;
/// @brief Return a string with the name of this MultiResGrid
std::string getName() const
{
if (Metadata::ConstPtr meta = (*this)[GridBase::META_GRID_NAME]) return meta->str();
return "";
}
/// @brief Set the name of this MultiResGrid
void setName(const std::string& name)
{
this->removeMeta(GridBase::META_GRID_NAME);
this->insertMeta(GridBase::META_GRID_NAME, StringMetadata(name));
}
/// Return the class of volumetric data (level set, fog volume, etc.) stored in this grid.
GridClass getGridClass() const
{
typename StringMetadata::ConstPtr s =
this->getMetadata<StringMetadata>(GridBase::META_GRID_CLASS);
return s ? GridBase::stringToGridClass(s->value()) : GRID_UNKNOWN;
}
/// Specify the class of volumetric data (level set, fog volume, etc.) stored in this grid.
void setGridClass(GridClass cls)
{
this->insertMeta(GridBase::META_GRID_CLASS, StringMetadata(GridBase::gridClassToString(cls)));
}
/// Remove the setting specifying the class of this grid's volumetric data.
void clearGridClass() { this->removeMeta(GridBase::META_GRID_CLASS); }
private:
MultiResGrid(const MultiResGrid& other);//disallow copy construction
MultiResGrid& operator=(const MultiResGrid& other);//disallow copy assignment
// For optimal performance we disable registration of the ValueAccessor
typedef tree::ValueAccessor<TreeType, false> Accessor;
typedef tree::ValueAccessor<const TreeType, false> ConstAccessor;
void topDownRestrict(bool useInjection);
inline void initMeta();
// Private struct that concurrently creates a mask of active voxel
// in a coarse tree from the active voxels in a fine tree
struct MaskOp;
/// Private struct that performs multi-threaded restriction
struct RestrictOp;
/// Private struct that performs multi-threaded prolongation
struct ProlongateOp;
// Private struct that performs multi-threaded computation of grids a fraction levels
template<Index Order>
struct FractionOp;
/// Private template struct that performs the actual multi-threading
template<typename OpType> struct CookOp;
// Array of shared pointer to trees, level 0 has the highest resolution.
std::vector<TreePtr> mTrees;
// Shared point to a transform associated with the finest level grid
typename math::Transform::Ptr mTransform;
};// MultiResGrid
template<typename TreeType>
MultiResGrid<TreeType>::
MultiResGrid(size_t levels, ValueType background, double voxelSize)
: mTrees(levels)
, mTransform(math::Transform::createLinearTransform( voxelSize ))
{
this->initMeta();
for (size_t i=0; i<levels; ++i) mTrees[i] = TreePtr(new TreeType(background));
}
template<typename TreeType>
MultiResGrid<TreeType>::
MultiResGrid(size_t levels, const Grid<TreeType> &grid, bool useInjection)
: MetaMap(grid)
, mTrees(levels)
, mTransform( grid.transform().copy() )
{
this->initMeta();
mTrees[0].reset( new TreeType( grid.tree() ) );// deep copy input tree
mTrees[0]->voxelizeActiveTiles();
this->topDownRestrict(useInjection);
}
template<typename TreeType>
MultiResGrid<TreeType>::
MultiResGrid(size_t levels, GridPtr grid, bool useInjection)
: MetaMap(*grid)
, mTrees(levels)
, mTransform( grid->transform().copy() )
{
this->initMeta();
mTrees[0] = grid->treePtr();// steal tree from input grid
mTrees[0]->voxelizeActiveTiles();
grid->newTree();
this->topDownRestrict(useInjection);
}
template<typename TreeType>
inline TreeType& MultiResGrid<TreeType>::
tree(size_t level)
{
assert( level < mTrees.size() );
return *mTrees[level];
}
template<typename TreeType>
inline const TreeType& MultiResGrid<TreeType>::
constTree(size_t level) const
{
assert( level < mTrees.size() );
return *mTrees[level];
}
template<typename TreeType>
inline typename TreeType::Ptr MultiResGrid<TreeType>::
treePtr(size_t level)
{
assert( level < mTrees.size() );
return mTrees[level];
}
template<typename TreeType>
inline typename TreeType::ConstPtr MultiResGrid<TreeType>::
constTreePtr(size_t level) const
{
assert( level < mTrees.size() );
return mTrees[level];
}
template<typename TreeType>
typename Grid<TreeType>::Ptr MultiResGrid<TreeType>::
grid(size_t level)
{
typename Grid<TreeType>::Ptr grid = Grid<TreeType>::create(this->treePtr(level));
math::Transform::Ptr xform = mTransform->copy();
if (level>0) xform->preScale( Real(1 << level) );
grid->setTransform( xform );
grid->insertMeta( *this->copyMeta() );
grid->insertMeta( "MultiResGrid_Level", Int64Metadata(level));
std::stringstream ss;
ss << this->getName() << "_level_" << level;
grid->setName( ss.str() );
return grid;
}
template<typename TreeType>
inline typename Grid<TreeType>::ConstPtr MultiResGrid<TreeType>::
grid(size_t level) const
{
return const_cast<MultiResGrid*>(this)->grid(level);
}
template<typename TreeType>
template<Index Order>
typename Grid<TreeType>::Ptr MultiResGrid<TreeType>::
createGrid(float level, size_t grainSize) const
{
assert( level >= 0.0f && level <= float(mTrees.size()-1) );
typename Grid<TreeType>::Ptr grid(new Grid<TreeType>(this->constTree(0).background()));
math::Transform::Ptr xform = mTransform->copy();
xform->preScale( math::Pow(2.0f, level) );
grid->setTransform( xform );
grid->insertMeta( *(this->copyMeta()) );
grid->insertMeta( "MultiResGrid_Level", FloatMetadata(level) );
std::stringstream ss;
ss << this->getName() << "_level_" << level;
grid->setName( ss.str() );
if ( size_t(floorf(level)) == size_t(ceilf(level)) ) {
grid->setTree( this->constTree( size_t(floorf(level))).copy() );
} else {
FractionOp<Order> tmp(*this, grid->tree(), level, grainSize);
if ( grid->getGridClass() == GRID_LEVEL_SET ) {
signedFloodFill( grid->tree() );
pruneLevelSet( grid->tree() );//only creates inactive tiles
}
}
return grid;
}
template<typename TreeType>
GridPtrVecPtr MultiResGrid<TreeType>::
grids()
{
GridPtrVecPtr grids( new GridPtrVec );
for (size_t level=0; level<mTrees.size(); ++level) grids->push_back(this->grid(level));
return grids;
}
template<typename TreeType>
GridCPtrVecPtr MultiResGrid<TreeType>::
grids() const
{
GridCPtrVecPtr grids( new GridCPtrVec );
for (size_t level=0; level<mTrees.size(); ++level) grids->push_back(this->grid(level));
return grids;
}
template<typename TreeType>
Vec3R MultiResGrid<TreeType>::
xyz(const Coord& in_ijk, size_t in_level, size_t out_level)
{
return Vec3R( in_ijk.data() ) * Real(1 << in_level) / Real(1 << out_level);
}
template<typename TreeType>
Vec3R MultiResGrid<TreeType>::
xyz(const Vec3R& in_xyz, size_t in_level, size_t out_level)
{
return in_xyz * Real(1 << in_level) / Real(1 << out_level);
}
template<typename TreeType>
Vec3R MultiResGrid<TreeType>::
xyz(const Vec3R& in_xyz, double in_level, double out_level)
{
return in_xyz * math::Pow(2.0, in_level - out_level);
}
template<typename TreeType>
template<Index Order>
typename TreeType::ValueType MultiResGrid<TreeType>::
sampleValue(const Coord& in_ijk, size_t in_level, size_t out_level) const
{
assert( in_level >= 0 && in_level < mTrees.size() );
assert( out_level >= 0 && out_level < mTrees.size() );
const ConstAccessor acc(*mTrees[out_level]);// has disabled registration!
return tools::Sampler<Order>::sample( acc, this->xyz(in_ijk, in_level, out_level) );
}
template<typename TreeType>
template<Index Order>
typename TreeType::ValueType MultiResGrid<TreeType>::
sampleValue(const Vec3R& in_xyz, size_t in_level, size_t out_level) const
{
assert( in_level >= 0 && in_level < mTrees.size() );
assert( out_level >= 0 && out_level < mTrees.size() );
const ConstAccessor acc(*mTrees[out_level]);// has disabled registration!
return tools::Sampler<Order>::sample( acc, this->xyz(in_xyz, in_level, out_level) );
}
template<typename TreeType>
template<Index Order>
typename TreeType::ValueType MultiResGrid<TreeType>::
sampleValue(const Coord& ijk, double level) const
{
assert( level >= 0.0 && level <= double(mTrees.size()-1) );
const size_t level0 = size_t(floor(level)), level1 = size_t(ceil(level));
const ValueType v0 = this->template sampleValue<Order>( ijk, 0, level0 );
if ( level0 == level1 ) return v0;
assert( level1 - level0 == 1 );
const ValueType v1 = this->template sampleValue<Order>( ijk, 0, level1 );
const ValueType a = ValueType(level1 - level);
return a * v0 + (ValueType(1) - a) * v1;
}
template<typename TreeType>
template<Index Order>
typename TreeType::ValueType MultiResGrid<TreeType>::
sampleValue(const Vec3R& xyz, double level) const
{
assert( level >= 0.0 && level <= double(mTrees.size()-1) );
const size_t level0 = size_t(floor(level)), level1 = size_t(ceil(level));
const ValueType v0 = this->template sampleValue<Order>( xyz, 0, level0 );
if ( level0 == level1 ) return v0;
assert( level1 - level0 == 1 );
const ValueType v1 = this->template sampleValue<Order>( xyz, 0, level1 );
const ValueType a = ValueType(level1 - level);
return a * v0 + (ValueType(1) - a) * v1;
}
template<typename TreeType>
typename TreeType::ValueType MultiResGrid<TreeType>::
prolongateVoxel(const Coord& ijk, const size_t level) const
{
assert( level+1 < mTrees.size() );
const ConstAccessor acc(*mTrees[level + 1]);// has disabled registration!
return ProlongateOp::run(ijk, acc);
}
template<typename TreeType>
void MultiResGrid<TreeType>::
prolongateActiveVoxels(size_t destlevel, size_t grainSize)
{
assert( destlevel < mTrees.size()-1 );
TreeType &fineTree = *mTrees[ destlevel ];
const TreeType &coarseTree = *mTrees[ destlevel+1 ];
CookOp<ProlongateOp> tmp( coarseTree, fineTree, grainSize );
}
template<typename TreeType>
typename TreeType::ValueType MultiResGrid<TreeType>::
restrictVoxel(Coord ijk, const size_t destlevel, bool useInjection) const
{
assert( destlevel > 0 && destlevel < mTrees.size() );
const TreeType &fineTree = *mTrees[ destlevel-1 ];
if ( useInjection ) return fineTree.getValue(ijk<<1);
const ConstAccessor acc( fineTree );// has disabled registration!
return RestrictOp::run( ijk, acc);
}
template<typename TreeType>
void MultiResGrid<TreeType>::
restrictActiveVoxels(size_t destlevel, size_t grainSize)
{
assert( destlevel > 0 && destlevel < mTrees.size() );
const TreeType &fineTree = *mTrees[ destlevel-1 ];
TreeType &coarseTree = *mTrees[ destlevel ];
CookOp<RestrictOp> tmp( fineTree, coarseTree, grainSize );
}
template<typename TreeType>
void MultiResGrid<TreeType>::
print(std::ostream& os, int verboseLevel) const
{
os << "MultiResGrid with " << mTrees.size() << " levels\n";
for (size_t i=0; i<mTrees.size(); ++i) {
os << "Level " << i << ": ";
mTrees[i]->print(os, verboseLevel);
}
if ( MetaMap::metaCount() > 0) {
os << "Additional metadata:" << std::endl;
for (ConstMetaIterator it = beginMeta(), end = endMeta(); it != end; ++it) {
os << " " << it->first;
if (it->second) {
const std::string value = it->second->str();
if (!value.empty()) os << ": " << value;
}
os << "\n";
}
}
os << "Transform:" << std::endl;
transform().print(os, /*indent=*/" ");
os << std::endl;
}
template<typename TreeType>
void MultiResGrid<TreeType>::
initMeta()
{
const size_t levels = this->numLevels();
if (levels < 2) {
OPENVDB_THROW(ValueError, "MultiResGrid: at least two levels are required");
}
this->insertMeta("MultiResGrid_Levels", Int64Metadata( levels ) );
}
template<typename TreeType>
void MultiResGrid<TreeType>::
topDownRestrict(bool useInjection)
{
const bool isLevelSet = this->getGridClass() == GRID_LEVEL_SET;
for (size_t n=1; n<mTrees.size(); ++n) {
const TreeType &fineTree = *mTrees[n-1];
mTrees[n] = TreePtr(new TreeType( fineTree.background() ) );// empty tree
TreeType &coarseTree = *mTrees[n];
if (useInjection) {// Restriction by injection
for (ValueOnCIter it = fineTree.cbeginValueOn(); it; ++it) {
const Coord ijk = it.getCoord();
if ( (ijk[0] & 1) || (ijk[1] & 1) || (ijk[2] & 1) ) continue;
coarseTree.setValue( ijk >> 1, *it );
}
} else {// Restriction by full-weighting
MaskOp tmp(fineTree, coarseTree, 128);
this->restrictActiveVoxels(n, 64);
}
if ( isLevelSet ) {
tools::signedFloodFill( coarseTree );
tools::pruneLevelSet( coarseTree );//only creates inactive tiles
}
}// loop over grid levels
}
template<typename TreeType>
struct MultiResGrid<TreeType>::MaskOp
{
typedef typename TreeType::template ValueConverter<ValueMask>::Type MaskT;
typedef tbb::enumerable_thread_specific<TreeType> PoolType;
typedef tree::LeafManager<const MaskT> ManagerT;
typedef typename ManagerT::LeafRange RangeT;
typedef typename ManagerT::LeafNodeType::ValueOnCIter VoxelIterT;
MaskOp(const TreeType& fineTree, TreeType& coarseTree, size_t grainSize = 1)
: mPool(new PoolType( coarseTree ) )// empty coarse tree acts as examplar
{
assert( coarseTree.empty() );
// Create Mask of restruction performed on fineTree
MaskT mask(fineTree, false, true, TopologyCopy() );
// Muli-threaded dilation which also linearizes the tree to leaf nodes
tools::dilateActiveValues(mask, 1, NN_FACE_EDGE_VERTEX, EXPAND_TILES);
// Restriction by injection using thread-local storage of coarse tree masks
ManagerT leafs( mask );
tbb::parallel_for(leafs.leafRange( grainSize ), *this);
// multithreaded union of thread-local coarse tree masks with the coarse tree
typedef typename PoolType::const_iterator IterT;
for (IterT it=mPool->begin(); it!=mPool->end(); ++it) coarseTree.topologyUnion( *it );
delete mPool;
}
void operator()(const RangeT& range) const
{
Accessor coarseAcc( mPool->local() );// disabled registration
for (typename RangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
for (VoxelIterT voxelIter = leafIter->cbeginValueOn(); voxelIter; ++voxelIter) {
Coord ijk = voxelIter.getCoord();
if ( (ijk[2] & 1) || (ijk[1] & 1) || (ijk[0] & 1) ) continue;//no overlap
coarseAcc.setValueOn( ijk >> 1 );//injection from fine to coarse level
}//loop over active voxels in the fine tree
}// loop over leaf nodes in the fine tree
}
PoolType* mPool;
};// MaskOp
template<typename TreeType>
template<Index Order>
struct MultiResGrid<TreeType>::FractionOp
{
typedef typename TreeType::template ValueConverter<ValueMask>::Type MaskT;
typedef tbb::enumerable_thread_specific<MaskT> PoolType;
typedef typename PoolType::iterator PoolIterT;
typedef tree::LeafManager<const TreeType> Manager1;
typedef tree::LeafManager<TreeType> Manager2;
typedef typename Manager1::LeafRange Range1;
typedef typename Manager2::LeafRange Range2;
FractionOp(const MultiResGrid& parent,
TreeType& midTree,
float level,
size_t grainSize = 1)
: mLevel( level )
, mPool( NULL )
, mTree0( &*(parent.mTrees[size_t(floorf(level))]) )//high-resolution
, mTree1( &*(parent.mTrees[size_t(ceilf(level))]) ) //low-resolution
{
assert( midTree.empty() );
assert( mTree0 != mTree1 );
// Create a pool of thread-local masks
MaskT examplar( false );
mPool = new PoolType( examplar );
{// create mask from re-mapping coarse tree to mid-level tree
tree::LeafManager<const TreeType> manager( *mTree1 );
tbb::parallel_for( manager.leafRange(grainSize), *this );
}
// Multi-threaded dilation of mask
tbb::parallel_for(tbb::blocked_range<PoolIterT>(mPool->begin(),mPool->end(),1), *this);
// Union thread-local coarse tree masks into the coarse tree
for (PoolIterT it=mPool->begin(); it!=mPool->end(); ++it) midTree.topologyUnion( *it );
delete mPool;
{// Interpolate values into the static mid level tree
Manager2 manager( midTree );
tbb::parallel_for(manager.leafRange(grainSize), *this);
}
}
void operator()(const Range1& range) const
{
typedef typename Manager1::LeafNodeType::ValueOnCIter VoxelIter;
// Let mLevel = level + frac, where
// level is integer part of mLevel and frac is the fractional part
// low-res voxel size in world units = dx1 = 2^(level + 1)
// mid-res voxel size in world units = dx = 2^(mLevel) = 2^(level + frac)
// low-res index -> world: ijk * dx1
// world -> mid-res index: world / dx
// low-res index -> mid-res index: (ijk * dx1) / dx = ijk * scale where
// scale = dx1/dx = 2^(level+1)/2^(level+frac) = 2^(1-frac)
const float scale = math::Pow(2.0f, 1.0f - math::FractionalPart(mLevel));
tree::ValueAccessor<MaskT, false> acc( mPool->local() );// disabled registration
for (typename Range1::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
for (VoxelIter voxelIter = leafIter->cbeginValueOn(); voxelIter; ++voxelIter) {
Coord ijk = voxelIter.getCoord();
ijk[0] = int(math::Round(ijk[0] * scale));
ijk[1] = int(math::Round(ijk[1] * scale));
ijk[2] = int(math::Round(ijk[2] * scale));
acc.setValueOn( ijk );
}//loop over active voxels in the fine tree
}// loop over leaf nodes in the fine tree
}
void operator()(const tbb::blocked_range<PoolIterT>& range) const
{
for (PoolIterT it=range.begin(); it!=range.end(); ++it) {
tools::dilateVoxels( *it, 1, NN_FACE_EDGE_VERTEX);
}
}
void operator()(const Range2 &r) const
{
typedef typename TreeType::LeafNodeType::ValueOnIter VoxelIter;
// Let mLevel = level + frac, where
// level is integer part of mLevel and frac is the fractional part
// high-res voxel size in world units = dx0 = 2^(level)
// low-res voxel size in world units = dx1 = 2^(level+1)
// mid-res voxel size in world units = dx = 2^(mLevel) = 2^(level + frac)
// mid-res index -> world: ijk * dx
// world -> high-res index: world / dx0
// world -> low-res index: world / dx1
// mid-res index -> high-res index: (ijk * dx) / dx0 = ijk * scale0 where
// scale0 = dx/dx0 = 2^(level+frac)/2^(level) = 2^(frac)
// mid-res index -> low-res index: (ijk * dx) / dx1 = ijk * scale1 where
// scale1 = dx/dx1 = 2^(level+frac)/2^(level+1) = 2^(frac-1)
const float b = math::FractionalPart(mLevel), a = 1.0f - b;
const float scale0 = math::Pow( 2.0f, b );
const float scale1 = math::Pow( 2.0f,-a );
ConstAccessor acc0( *mTree0 ), acc1( *mTree1 );
for (typename Range2::Iterator leafIter = r.begin(); leafIter; ++leafIter) {
for (VoxelIter voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
const Vec3R xyz = Vec3R( voxelIter.getCoord().data() );// mid level coord
const ValueType v0 = tools::Sampler<Order>::sample( acc0, xyz * scale0 );
const ValueType v1 = tools::Sampler<Order>::sample( acc1, xyz * scale1 );
voxelIter.setValue( ValueType(a*v0 + b*v1) );
}
}
}
const float mLevel;
PoolType* mPool;
const TreeType *mTree0, *mTree1;
};// FractionOp
template<typename TreeType>
template<typename OperatorType>
struct MultiResGrid<TreeType>::CookOp
{
typedef tree::LeafManager<TreeType> ManagerT;
typedef typename ManagerT::LeafRange RangeT;
CookOp(const TreeType& srcTree, TreeType& dstTree, size_t grainSize) : acc( srcTree )
{
ManagerT leafs( dstTree );
tbb::parallel_for( leafs.leafRange( grainSize ), *this );
}
CookOp(const CookOp &other) : acc( other.acc.tree() ) {}
void operator()(const RangeT& range) const
{
typedef typename RangeT::Iterator LeafIterT;
typedef typename ManagerT::LeafNodeType::ValueOnIter VoxelIterT;
for (LeafIterT leaf = range.begin(); leaf; ++leaf) {
ValueType* phi = leaf.buffer(0).data();// avoids small overhead of out-of-core
for (VoxelIterT voxel = leaf->beginValueOn(); voxel; ++voxel) {
phi[ voxel.pos() ] = OperatorType::run(voxel.getCoord(), acc);
}
}
}
const ConstAccessor acc;
};// CookOp
template<typename TreeType>
struct MultiResGrid<TreeType>::RestrictOp
{
/// @brief Static method that performs restriction by full weighting
/// @param ijk Coordinate location on the coarse tree
/// @param acc ValueAccessor to the fine tree
static ValueType run(Coord ijk, const ConstAccessor &acc)
{
ijk <<= 1;
// Overlapping grid point
ValueType v = 8*acc.getValue(ijk);
// neighbors in one axial direction
v += 4*(acc.getValue(ijk.offsetBy(-1, 0, 0)) + acc.getValue(ijk.offsetBy( 1, 0, 0)) +// x
acc.getValue(ijk.offsetBy( 0,-1, 0)) + acc.getValue(ijk.offsetBy( 0, 1, 0)) +// y
acc.getValue(ijk.offsetBy( 0, 0,-1)) + acc.getValue(ijk.offsetBy( 0, 0, 1)));// z
// neighbors in two axial directions
v += 2*(acc.getValue(ijk.offsetBy(-1,-1, 0)) + acc.getValue(ijk.offsetBy(-1, 1, 0)) +// xy
acc.getValue(ijk.offsetBy( 1,-1, 0)) + acc.getValue(ijk.offsetBy( 1, 1, 0)) +// xy
acc.getValue(ijk.offsetBy(-1, 0,-1)) + acc.getValue(ijk.offsetBy(-1, 0, 1)) +// xz
acc.getValue(ijk.offsetBy( 1, 0,-1)) + acc.getValue(ijk.offsetBy( 1, 0, 1)) +// xz
acc.getValue(ijk.offsetBy( 0,-1,-1)) + acc.getValue(ijk.offsetBy( 0,-1, 1)) +// yz
acc.getValue(ijk.offsetBy( 0, 1,-1)) + acc.getValue(ijk.offsetBy( 0, 1, 1)));// yz
// neighbors in three axial directions
for (int i=-1; i<=1; i+=2) {
for (int j=-1; j<=1; j+=2) {
for (int k=-1; k<=1; k+=2) v += acc.getValue(ijk.offsetBy(i,j,k));// xyz
}
}
v *= ValueType(1.0f/64.0f);
return v;
}
};// RestrictOp
template<typename TreeType>
struct MultiResGrid<TreeType>::ProlongateOp
{
/// @brief Interpolate values from a coarse grid (acc) into the index space (ijk) of a fine grid
/// @param ijk Coordinate location on the fine tree
/// @param acc ValueAccessor to the coarse tree
static ValueType run(const Coord& ijk, const ConstAccessor &acc)
{
switch ( (ijk[0] & 1) | ((ijk[1] & 1) << 1) | ((ijk[2] & 1) << 2) ) {
case 0:// all even
return acc.getValue(ijk>>1);
case 1:// x is odd
return ValueType(0.5)*(acc.getValue(ijk.offsetBy(-1,0,0)>>1) +
acc.getValue(ijk.offsetBy( 1,0,0)>>1));
case 2:// y is odd
return ValueType(0.5)*(acc.getValue(ijk.offsetBy(0,-1,0)>>1) +
acc.getValue(ijk.offsetBy(0, 1,0)>>1));
case 3:// x&y are odd
return ValueType(0.25)*(acc.getValue(ijk.offsetBy(-1,-1,0)>>1) +
acc.getValue(ijk.offsetBy(-1, 1,0)>>1) +
acc.getValue(ijk.offsetBy( 1,-1,0)>>1) +
acc.getValue(ijk.offsetBy( 1, 1,0)>>1));
case 4:// z is odd
return ValueType(0.5)*(acc.getValue(ijk.offsetBy(0,0,-1)>>1) +
acc.getValue(ijk.offsetBy(0,0, 1)>>1));
case 5:// x&z are odd
return ValueType(0.25)*(acc.getValue(ijk.offsetBy(-1,0,-1)>>1) +
acc.getValue(ijk.offsetBy(-1,0, 1)>>1) +
acc.getValue(ijk.offsetBy( 1,0,-1)>>1) +
acc.getValue(ijk.offsetBy( 1,0, 1)>>1));
case 6:// y&z are odd
return ValueType(0.25)*(acc.getValue(ijk.offsetBy(0,-1,-1)>>1) +
acc.getValue(ijk.offsetBy(0,-1, 1)>>1) +
acc.getValue(ijk.offsetBy(0, 1,-1)>>1) +
acc.getValue(ijk.offsetBy(0, 1, 1)>>1));
}
// all are odd
ValueType v = zeroVal<ValueType>();
for (int i=-1; i<=1; i+=2) {
for (int j=-1; j<=1; j+=2) {
for (int k=-1; k<=1; k+=2) v += acc.getValue(ijk.offsetBy(i,j,k)>>1);// xyz
}
}
return ValueType(0.125) * v;
}
};// ProlongateOp
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_MULTIRESGRID_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|