/usr/include/openvdb/tools/ParticlesToLevelSet.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file ParticlesToLevelSet.h
///
/// @brief This tool converts particles (with position, radius and velocity)
/// into a signed distance field encoded as a narrow band level set.
/// Optionally, arbitrary attributes on the particles can be transferred
/// resulting in an additional attribute grid with the same topology
/// as the level set grid.
///
/// @note This fast particle to level set converter is always intended
/// to be combined with some kind of surface post processing,
/// i.e. tools::Filter. Without such post processing the generated
/// surface is typically too noisy and blobby. However it serves as a
/// great and fast starting point for subsequent level set surface
/// processing and convolution.
///
/// The @c ParticleListT template argument below refers to any class
/// with the following interface (see unittest/TestParticlesToLevelSet.cc
/// and SOP_DW_OpenVDBParticleVoxelizer for practical examples):
/// @code
///
/// class ParticleList {
/// ...
/// public:
/// typedef openvdb::Vec3R PosType;
///
/// // Return the total number of particles in list.
/// // Always required!
/// size_t size() const;
///
/// // Get the world space position of the nth particle.
/// // Required by ParticledToLevelSet::rasterizeSphere(*this,radius).
/// void getPos(size_t n, Vec3R& xyz) const;
///
/// // Get the world space position and radius of the nth particle.
/// // Required by ParticledToLevelSet::rasterizeSphere(*this).
/// void getPosRad(size_t n, Vec3R& xyz, Real& rad) const;
///
/// // Get the world space position, radius and velocity of the nth particle.
/// // Required by ParticledToLevelSet::rasterizeSphere(*this,radius).
/// void getPosRadVel(size_t n, Vec3R& xyz, Real& rad, Vec3R& vel) const;
///
/// // Get the attribute of the nth particle. AttributeType is user-defined!
/// // Only required if attribute transfer is enabled in ParticlesToLevelSet.
/// void getAtt(size_t n, AttributeType& att) const;
/// };
/// @endcode
///
/// @note See unittest/TestParticlesToLevelSet.cc for an example.
///
/// The @c InterruptT template argument below refers to any class
/// with the following interface:
/// @code
/// class Interrupter {
/// ...
/// public:
/// void start(const char* name = NULL)// called when computations begin
/// void end() // called when computations end
/// bool wasInterrupted(int percent=-1)// return true to break computation
/// };
/// @endcode
///
/// @note If no template argument is provided for this InterruptT
/// the util::NullInterrupter is used which implies that all
/// interrupter calls are no-ops (i.e. incurs no computational overhead).
#ifndef OPENVDB_TOOLS_PARTICLES_TO_LEVELSET_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_PARTICLES_TO_LEVELSET_HAS_BEEN_INCLUDED
#include <tbb/parallel_reduce.h>
#include <tbb/blocked_range.h>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <boost/type_traits/is_floating_point.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/mpl/if.hpp>
#include <openvdb/Types.h>
#include <openvdb/Grid.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/Transform.h>
#include <openvdb/util/NullInterrupter.h>
#include "Composite.h" // for csgUnion()
#include "PointPartitioner.h"
#include "Prune.h"
#include "SignedFloodFill.h"
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
namespace p2ls_internal {
// This is a simple type that combines a distance value and a particle
// attribute. It's required for attribute transfer which is performed
// in the ParticlesToLevelSet::Raster member class defined below.
template<typename VisibleT, typename BlindT> class BlindData;
}// namespace p2ls_internal
template<typename SdfGridT,
typename AttributeT = void,
typename InterrupterT = util::NullInterrupter>
class ParticlesToLevelSet
{
public:
typedef typename boost::is_void<AttributeT>::type DisableT;
typedef InterrupterT InterrupterType;
typedef SdfGridT SdfGridType;
typedef typename SdfGridT::ValueType SdfType;
typedef typename boost::mpl::if_<DisableT, size_t, AttributeT>::type AttType;
typedef typename SdfGridT::template ValueConverter<AttType>::Type AttGridType;
BOOST_STATIC_ASSERT(boost::is_floating_point<SdfType>::value);
/// @brief Constructor using an exiting signed distance,
/// i.e. narrow band level set, grid.
///
/// @param grid Level set grid in which particles are rasterized
/// @param interrupt Callback to interrupt a long-running process
///
/// @note The input grid is assumed to be a valid level set and if
/// it already contains voxels (with SDF values) particles are unioned
/// onto the existing level set surface. However, if attribute transfer
/// is enabled, i.e. AttributeT != void, attributes are only
/// generated for voxels that overlap with particles, not the existing
/// voxels in the input grid (for which no attributes exist!).
///
/// @details The width in voxel units of the generated narrow band level set is
/// given by 2*background/dx, where background is the background value
/// stored in the grid, and dx is the voxel size derived from the
/// transform also stored in the grid. Also note that -background
/// corresponds to the constant value inside the generated narrow
/// band level sets. Finally the default NullInterrupter should
/// compile out interruption checks during optimization, thus
/// incurring no run-time overhead.
explicit ParticlesToLevelSet(SdfGridT& grid, InterrupterT* interrupt = NULL);
/// Destructor
~ParticlesToLevelSet() { delete mBlindGrid; }
/// @brief This methods syncs up the level set and attribute grids
/// and therefore needs to be called before any of these grids are
/// used and after the last call to any of the rasterizer methods.
///
/// @note Avoid calling this method more than once and only after
/// all the particles have been rasterized. It has no effect or
/// overhead if attribute transfer is disabled, i.e. AttributeT =
/// void and prune is false.
void finalize(bool prune = false);
/// @brief Return a shared pointer to the grid containing the
/// (optional) attribute.
///
/// @warning If attribute transfer was disabled, i.e. AttributeT =
/// void, or finalize() was not called the pointer is NULL!
typename AttGridType::Ptr attributeGrid() { return mAttGrid; }
/// @brief Return the size of a voxel in world units
Real getVoxelSize() const { return mDx; }
/// @brief Return the half-width of the narrow band in voxel units
Real getHalfWidth() const { return mHalfWidth; }
/// @brief Return the smallest radius allowed in voxel units
Real getRmin() const { return mRmin; }
/// @brief Return the largest radius allowed in voxel units
Real getRmax() const { return mRmax; }
/// @brief Return true if any particles were ignored due to their size
bool ignoredParticles() const { return mMinCount>0 || mMaxCount>0; }
/// @brief Return number of small particles that were ignore due to Rmin
size_t getMinCount() const { return mMinCount; }
/// @brief Return number of large particles that were ignore due to Rmax
size_t getMaxCount() const { return mMaxCount; }
/// @brief set the smallest radius allowed in voxel units
void setRmin(Real Rmin) { mRmin = math::Max(Real(0),Rmin); }
/// @brief set the largest radius allowed in voxel units
void setRmax(Real Rmax) { mRmax = math::Max(mRmin,Rmax); }
/// @brief Returns the grain-size used for multi-threading
int getGrainSize() const { return mGrainSize; }
/// @brief Set the grain-size used for multi-threading.
/// @note A grainsize of 0 or less disables multi-threading!
void setGrainSize(int grainSize) { mGrainSize = grainSize; }
/// @brief Rasterize a sphere per particle derived from their
/// position and radius. All spheres are CSG unioned.
///
/// @param pa Particles with position and radius.
template <typename ParticleListT>
void rasterizeSpheres(const ParticleListT& pa);
/// @brief Rasterize a sphere per particle derived from their
/// position and constant radius. All spheres are CSG unioned.
///
/// @param pa Particles with position.
/// @param radius Constant particle radius in world units.
template <typename ParticleListT>
void rasterizeSpheres(const ParticleListT& pa, Real radius);
/// @brief Rasterize a trail per particle derived from their
/// position, radius and velocity. Each trail is generated
/// as CSG unions of sphere instances with decreasing radius.
///
/// @param pa particles with position, radius and velocity.
/// @param delta controls distance between sphere instances
/// (default=1). Be careful not to use too small values since this
/// can lead to excessive computation per trail (which the
/// interrupter can't stop).
///
/// @note The direction of a trail is inverse to the direction of
/// the velocity vector, and the length is given by |V|. The radius
/// at the head of the trail is given by the radius of the particle
/// and the radius at the tail of the trail is Rmin voxel units which
/// has a default value of 1.5 corresponding to the Nyquist
/// frequency!
template <typename ParticleListT>
void rasterizeTrails(const ParticleListT& pa, Real delta=1.0);
private:
typedef p2ls_internal::BlindData<SdfType, AttType> BlindType;
typedef typename SdfGridT::template ValueConverter<BlindType>::Type BlindGridType;
/// Class with multi-threaded implementation of particle rasterization
template<typename ParticleListT, typename GridT> struct Raster;
SdfGridType* mSdfGrid;
typename AttGridType::Ptr mAttGrid;
BlindGridType* mBlindGrid;
InterrupterT* mInterrupter;
Real mDx, mHalfWidth;
Real mRmin, mRmax;//ignore particles outside this range of radii in voxel
size_t mMinCount, mMaxCount;//counters for ignored particles!
int mGrainSize;
};//end of ParticlesToLevelSet class
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
inline ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::
ParticlesToLevelSet(SdfGridT& grid, InterrupterT* interrupter) :
mSdfGrid(&grid),
mBlindGrid(NULL),
mInterrupter(interrupter),
mDx(grid.voxelSize()[0]),
mHalfWidth(grid.background()/mDx),
mRmin(1.5),// corresponds to the Nyquist grid sampling frequency
mRmax(100.0),// corresponds to a huge particle (probably too large!)
mMinCount(0),
mMaxCount(0),
mGrainSize(1)
{
if (!mSdfGrid->hasUniformVoxels() ) {
OPENVDB_THROW(RuntimeError,
"ParticlesToLevelSet only supports uniform voxels!");
}
if (mSdfGrid->getGridClass() != GRID_LEVEL_SET) {
OPENVDB_THROW(RuntimeError,
"ParticlesToLevelSet only supports level sets!"
"\nUse Grid::setGridClass(openvdb::GRID_LEVEL_SET)");
}
if (!DisableT::value) {
mBlindGrid = new BlindGridType(BlindType(grid.background()));
mBlindGrid->setTransform(mSdfGrid->transform().copy());
}
}
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
template <typename ParticleListT>
inline void ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::
rasterizeSpheres(const ParticleListT& pa)
{
if (DisableT::value) {
Raster<ParticleListT, SdfGridT> r(*this, mSdfGrid, pa);
r.rasterizeSpheres();
} else {
Raster<ParticleListT, BlindGridType> r(*this, mBlindGrid, pa);
r.rasterizeSpheres();
}
}
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
template <typename ParticleListT>
inline void ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::
rasterizeSpheres(const ParticleListT& pa, Real radius)
{
if (DisableT::value) {
Raster<ParticleListT, SdfGridT> r(*this, mSdfGrid, pa);
r.rasterizeSpheres(radius/mDx);
} else {
Raster<ParticleListT, BlindGridType> r(*this, mBlindGrid, pa);
r.rasterizeSpheres(radius/mDx);
}
}
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
template <typename ParticleListT>
inline void ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::
rasterizeTrails(const ParticleListT& pa, Real delta)
{
if (DisableT::value) {
Raster<ParticleListT, SdfGridT> r(*this, mSdfGrid, pa);
r.rasterizeTrails(delta);
} else {
Raster<ParticleListT, BlindGridType> r(*this, mBlindGrid, pa);
r.rasterizeTrails(delta);
}
}
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
inline void
ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::finalize(bool prune)
{
if (mBlindGrid==NULL) {
if (prune) tools::pruneLevelSet(mSdfGrid->tree());
return;
} else {
if (prune) tools::prune(mBlindGrid->tree());
}
typedef typename SdfGridType::TreeType SdfTreeT;
typedef typename AttGridType::TreeType AttTreeT;
typedef typename BlindGridType::TreeType BlindTreeT;
// Use topology copy constructors since output grids have the same topology as mBlindDataGrid
const BlindTreeT& tree = mBlindGrid->tree();
// New level set tree
typename SdfTreeT::Ptr sdfTree(new SdfTreeT(
tree, tree.background().visible(), openvdb::TopologyCopy()));
// Note this overwrites any existing attribute grids!
typename AttTreeT::Ptr attTree(new AttTreeT(
tree, tree.background().blind(), openvdb::TopologyCopy()));
mAttGrid = typename AttGridType::Ptr(new AttGridType(attTree));
mAttGrid->setTransform(mBlindGrid->transform().copy());
// Extract the level set and IDs from mBlindDataGrid. We will
// explore the fact that by design active values always live
// at the leaf node level, i.e. level sets have no active tiles!
typedef typename BlindTreeT::LeafCIter LeafIterT;
typedef typename BlindTreeT::LeafNodeType LeafT;
typedef typename SdfTreeT::LeafNodeType SdfLeafT;
typedef typename AttTreeT::LeafNodeType AttLeafT;
for (LeafIterT n = tree.cbeginLeaf(); n; ++n) {
const LeafT& leaf = *n;
const openvdb::Coord xyz = leaf.origin();
// Get leafnodes that were allocated during topology construction!
SdfLeafT* sdfLeaf = sdfTree->probeLeaf(xyz);
AttLeafT* attLeaf = attTree->probeLeaf(xyz);
// Use linear offset (vs coordinate) access for better performance!
typename LeafT::ValueOnCIter m=leaf.cbeginValueOn();
if (!m) {//no active values in leaf node so copy everything
for (openvdb::Index k = 0; k!=LeafT::SIZE; ++k) {
const BlindType& v = leaf.getValue(k);
sdfLeaf->setValueOnly(k, v.visible());
attLeaf->setValueOnly(k, v.blind());
}
} else {//only copy active values (using flood fill for the inactive values)
for(; m; ++m) {
const openvdb::Index k = m.pos();
const BlindType& v = *m;
sdfLeaf->setValueOnly(k, v.visible());
attLeaf->setValueOnly(k, v.blind());
}
}
}
tools::signedFloodFill(*sdfTree);//required since we only transferred active voxels!
if (mSdfGrid->empty()) {
mSdfGrid->setTree(sdfTree);
} else {
tools::csgUnion(mSdfGrid->tree(), *sdfTree, /*prune=*/true);
}
}
///////////////////////////////////////////////////////////
template<typename SdfGridT, typename AttributeT, typename InterrupterT>
template<typename ParticleListT, typename GridT>
struct ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT>::Raster
{
typedef typename boost::is_void<AttributeT>::type DisableT;
typedef ParticlesToLevelSet<SdfGridT, AttributeT, InterrupterT> ParticlesToLevelSetT;
typedef typename ParticlesToLevelSetT::SdfType SdfT;//type of signed distance values
typedef typename ParticlesToLevelSetT::AttType AttT;//type of particle attribute
typedef typename GridT::ValueType ValueT;
typedef typename GridT::Accessor AccessorT;
typedef typename GridT::TreeType TreeT;
typedef typename TreeT::LeafNodeType LeafNodeT;
typedef PointPartitioner<Index32, LeafNodeT::LOG2DIM> PointPartitionerT;
/// @brief Main constructor
Raster(ParticlesToLevelSetT& parent, GridT* grid, const ParticleListT& particles)
: mParent(parent)
, mParticles(particles)
, mGrid(grid)
, mMap(*(mGrid->transform().baseMap()))
, mMinCount(0)
, mMaxCount(0)
, mIsCopy(false)
{
mPointPartitioner = new PointPartitionerT();
mPointPartitioner->construct(particles, mGrid->transform());
}
/// @brief Copy constructor called by tbb threads
Raster(Raster& other, tbb::split)
: mParent(other.mParent)
, mParticles(other.mParticles)
, mGrid(new GridT(*other.mGrid, openvdb::ShallowCopy()))
, mMap(other.mMap)
, mMinCount(0)
, mMaxCount(0)
, mTask(other.mTask)
, mIsCopy(true)
, mPointPartitioner(other.mPointPartitioner)
{
mGrid->newTree();
}
virtual ~Raster() {
// Copies construct temporary grids that have to be deleted
// but the original has ownership of the bucket array
if (mIsCopy) {
delete mGrid;
} else {
delete mPointPartitioner;
}
}
/// @brief Rasterize a sphere per particle derived from their
/// position and radius. All spheres are CSG unioned.
void rasterizeSpheres()
{
mMinCount = mMaxCount = 0;
if (mParent.mInterrupter) {
mParent.mInterrupter->start("Rasterizing particles to level set using spheres");
}
mTask = boost::bind(&Raster::rasterSpheres, _1, _2);
this->cook();
if (mParent.mInterrupter) mParent.mInterrupter->end();
}
/// @brief Rasterize a sphere per particle derived from their
/// position and constant radius. All spheres are CSG unioned.
/// @param radius constant radius of all particles in voxel units.
void rasterizeSpheres(Real radius)
{
mMinCount = radius < mParent.mRmin ? mParticles.size() : 0;
mMaxCount = radius > mParent.mRmax ? mParticles.size() : 0;
if (mMinCount>0 || mMaxCount>0) {//skipping all particles!
mParent.mMinCount = mMinCount;
mParent.mMaxCount = mMaxCount;
} else {
if (mParent.mInterrupter) {
mParent.mInterrupter->start(
"Rasterizing particles to level set using const spheres");
}
mTask = boost::bind(&Raster::rasterFixedSpheres, _1, _2, SdfT(radius));
this->cook();
if (mParent.mInterrupter) mParent.mInterrupter->end();
}
}
/// @brief Rasterize a trail per particle derived from their
/// position, radius and velocity. Each trail is generated
/// as CSG unions of sphere instances with decreasing radius.
///
/// @param delta controls distance between sphere instances
/// (default=1). Be careful not to use too small values since this
/// can lead to excessive computation per trail (which the
/// interrupter can't stop).
///
/// @note The direction of a trail is inverse to the direction of
/// the velocity vector, and the length is given by |V|. The radius
/// at the head of the trail is given by the radius of the particle
/// and the radius at the tail of the trail is Rmin voxel units which
/// has a default value of 1.5 corresponding to the Nyquist frequency!
void rasterizeTrails(Real delta=1.0)
{
mMinCount = mMaxCount = 0;
if (mParent.mInterrupter) {
mParent.mInterrupter->start("Rasterizing particles to level set using trails");
}
mTask = boost::bind(&Raster::rasterTrails, _1, _2, SdfT(delta));
this->cook();
if (mParent.mInterrupter) mParent.mInterrupter->end();
}
/// @brief Kicks off the optionally multithreaded computation
void operator()(const tbb::blocked_range<size_t>& r)
{
assert(mTask);
mTask(this, r);
mParent.mMinCount = mMinCount;
mParent.mMaxCount = mMaxCount;
}
/// @brief Reguired by tbb::parallel_reduce
void join(Raster& other)
{
tools::csgUnion(*mGrid, *other.mGrid, /*prune=*/true);
mMinCount += other.mMinCount;
mMaxCount += other.mMaxCount;
}
private:
/// Disallow assignment since some of the members are references
Raster& operator=(const Raster&) { return *this; }
/// @return true if the particle is too small or too large
bool ignoreParticle(SdfT R)
{
if (R < mParent.mRmin) {// below the cutoff radius
++mMinCount;
return true;
}
if (R > mParent.mRmax) {// above the cutoff radius
++mMaxCount;
return true;
}
return false;
}
/// @brief Reguired by tbb::parallel_reduce to multithreaded
/// rasterization of particles as spheres with variable radius
///
/// @param r tbb's default range referring to the list of particles
void rasterSpheres(const tbb::blocked_range<size_t>& r)
{
AccessorT acc = mGrid->getAccessor(); // local accessor
bool run = true;
const SdfT invDx = SdfT(1/mParent.mDx);
AttT att;
Vec3R pos;
Real rad;
// Loop over buckets
for (size_t n = r.begin(), N = r.end(); n < N; ++n) {
// Loop over particles in bucket n.
typename PointPartitionerT::IndexIterator iter = mPointPartitioner->indices(n);
for ( ; run && iter; ++iter) {
const Index32& id = *iter;
mParticles.getPosRad(id, pos, rad);
const SdfT R = SdfT(invDx * rad);// in voxel units
if (this->ignoreParticle(R)) continue;
const Vec3R P = mMap.applyInverseMap(pos);
this->getAtt<DisableT>(id, att);
run = this->makeSphere(P, R, att, acc);
}//end loop over particles
}//end loop over buckets
}
/// @brief Reguired by tbb::parallel_reduce to multithreaded
/// rasterization of particles as spheres with a fixed radius
///
/// @param r tbb's default range referring to the list of particles
void rasterFixedSpheres(const tbb::blocked_range<size_t>& r, SdfT R)
{
const SdfT
dx = static_cast<SdfT>(mParent.mDx),
w = static_cast<SdfT>(mParent.mHalfWidth); // in voxel units
AccessorT acc = mGrid->getAccessor(); // local accessor
const ValueT inside = -mGrid->background();
const SdfT max = R + w;// maximum distance in voxel units
const SdfT max2 = math::Pow2(max);//square of maximum distance in voxel units
const SdfT min2 = math::Pow2(math::Max(SdfT(0), R - w));//square of minimum distance
ValueT v;
size_t count = 0;
AttT att;
Vec3R pos;
// Loop over buckets
for (size_t n = r.begin(), N = r.end(); n < N; ++n) {
// Loop over particles in bucket n.
typename PointPartitionerT::IndexIterator iter = mPointPartitioner->indices(n);
for ( ; iter; ++iter) {
const Index32& id = *iter;
this->getAtt<DisableT>(id, att);
mParticles.getPos(id, pos);
const Vec3R P = mMap.applyInverseMap(pos);
const Coord a(math::Floor(P[0]-max),math::Floor(P[1]-max),math::Floor(P[2]-max));
const Coord b(math::Ceil( P[0]+max),math::Ceil( P[1]+max),math::Ceil( P[2]+max));
for (Coord c = a; c.x() <= b.x(); ++c.x()) {
//only check interrupter every 32'th scan in x
if (!(count++ & ((1<<5)-1)) && util::wasInterrupted(mParent.mInterrupter)) {
tbb::task::self().cancel_group_execution();
return;
}
SdfT x2 = static_cast<SdfT>(math::Pow2(c.x() - P[0]));
for (c.y() = a.y(); c.y() <= b.y(); ++c.y()) {
SdfT x2y2 = static_cast<SdfT>(x2 + math::Pow2(c.y() - P[1]));
for (c.z() = a.z(); c.z() <= b.z(); ++c.z()) {
SdfT x2y2z2 = static_cast<SdfT>(
x2y2 + math::Pow2(c.z()- P[2])); // square distance from c to P
if (x2y2z2 >= max2 || (!acc.probeValue(c,v) && v<ValueT(0)))
continue;//outside narrow band of particle or inside existing level set
if (x2y2z2 <= min2) {//inside narrow band of the particle.
acc.setValueOff(c, inside);
continue;
}
// convert signed distance from voxel units to world units
const ValueT d=Merge(dx*(math::Sqrt(x2y2z2) - R), att);
if (d < v) acc.setValue(c, d);//CSG union
}//end loop over z
}//end loop over y
}//end loop over x
}//end loop over particles
}// end loop over buckts
}
/// @brief Reguired by tbb::parallel_reduce to multithreaded
/// rasterization of particles as spheres with velocity blurring
///
/// @param r tbb's default range referring to the list of particles
void rasterTrails(const tbb::blocked_range<size_t>& r, SdfT delta)
{
AccessorT acc = mGrid->getAccessor(); // local accessor
bool run = true;
AttT att;
Vec3R pos, vel;
Real rad;
const Vec3R origin = mMap.applyInverseMap(Vec3R(0,0,0));
const SdfT Rmin = SdfT(mParent.mRmin), invDx = SdfT(1/mParent.mDx);
// Loop over buckets
for (size_t n = r.begin(), N = r.end(); n < N; ++n) {
// Loop over particles in bucket n.
typename PointPartitionerT::IndexIterator iter = mPointPartitioner->indices(n);
for ( ; run && iter; ++iter) {
const Index32& id = *iter;
mParticles.getPosRadVel(id, pos, rad, vel);
const SdfT R0 = SdfT(invDx*rad);
if (this->ignoreParticle(R0)) continue;
this->getAtt<DisableT>(id, att);
const Vec3R P0 = mMap.applyInverseMap(pos);
const Vec3R V = mMap.applyInverseMap(vel) - origin;//exclude translation
const SdfT speed = SdfT(V.length()), inv_speed = SdfT(1.0/speed);
const Vec3R Nrml = -V*inv_speed;// inverse normalized direction
Vec3R P = P0;// local position of instance
SdfT R = R0, d=0;// local radius and length of trail
for (size_t m=0; run && d <= speed ; ++m) {
run = this->makeSphere(P, R, att, acc);
P += 0.5*delta*R*Nrml;// adaptive offset along inverse velocity direction
d = SdfT((P-P0).length());// current length of trail
R = R0-(R0-Rmin)*d*inv_speed;// R = R0 -> mRmin(e.g. 1.5)
}//end loop over sphere instances
}//end loop over particles
}//end loop over buckets
}
void cook()
{
// parallelize over the point buckets
const Index32 bucketCount = Index32(mPointPartitioner->size());
if (mParent.mGrainSize>0) {
tbb::parallel_reduce(
tbb::blocked_range<size_t>(0, bucketCount, mParent.mGrainSize), *this);
} else {
(*this)(tbb::blocked_range<size_t>(0, bucketCount));
}
}
/// @brief Rasterize sphere at position P and radius R into a
/// narrow-band level set with half-width, mHalfWidth.
/// @return false if it was interrupted
///
/// @param P coordinates of the particle position in voxel units
/// @param R radius of particle in voxel units
/// @param id
/// @param accessor grid accessor with a private copy of the grid
///
/// @note For best performance all computations are performed in
/// voxel-space with the important exception of the final level set
/// value that is converted to world units (e.g. the grid stores
/// the closest Euclidean signed distances measured in world
/// units). Also note we use the convention of positive distances
/// outside the surface and negative distances inside the surface.
bool makeSphere(const Vec3R &P, SdfT R, const AttT& att, AccessorT& acc)
{
const ValueT inside = -mGrid->background();
const SdfT dx = SdfT(mParent.mDx), w = SdfT(mParent.mHalfWidth);
const SdfT max = R + w;// maximum distance in voxel units
const Coord a(math::Floor(P[0]-max),math::Floor(P[1]-max),math::Floor(P[2]-max));
const Coord b(math::Ceil( P[0]+max),math::Ceil( P[1]+max),math::Ceil( P[2]+max));
const SdfT max2 = math::Pow2(max);//square of maximum distance in voxel units
const SdfT min2 = math::Pow2(math::Max(SdfT(0), R - w));//square of minimum distance
ValueT v;
size_t count = 0;
for ( Coord c = a; c.x() <= b.x(); ++c.x() ) {
//only check interrupter every 32'th scan in x
if (!(count++ & ((1<<5)-1)) && util::wasInterrupted(mParent.mInterrupter)) {
tbb::task::self().cancel_group_execution();
return false;
}
SdfT x2 = SdfT(math::Pow2(c.x() - P[0]));
for (c.y() = a.y(); c.y() <= b.y(); ++c.y()) {
SdfT x2y2 = SdfT(x2 + math::Pow2(c.y() - P[1]));
for (c.z() = a.z(); c.z() <= b.z(); ++c.z()) {
SdfT x2y2z2 = SdfT(x2y2 + math::Pow2(c.z()-P[2]));//square distance from c to P
if (x2y2z2 >= max2 || (!acc.probeValue(c,v) && v<ValueT(0)))
continue;//outside narrow band of the particle or inside existing level set
if (x2y2z2 <= min2) {//inside narrow band of the particle.
acc.setValueOff(c, inside);
continue;
}
// convert signed distance from voxel units to world units
//const ValueT d=dx*(math::Sqrt(x2y2z2) - R);
const ValueT d=Merge(dx*(math::Sqrt(x2y2z2) - R), att);
if (d < v) acc.setValue(c, d);//CSG union
}//end loop over z
}//end loop over y
}//end loop over x
return true;
}
typedef typename boost::function<void (Raster*, const tbb::blocked_range<size_t>&)> FuncType;
template <typename DisableType>
typename boost::enable_if<DisableType>::type
getAtt(size_t, AttT&) const {;}
template <typename DisableType>
typename boost::disable_if<DisableType>::type
getAtt(size_t n, AttT& a) const { mParticles.getAtt(n, a); }
template <typename T>
typename boost::enable_if<boost::is_same<T,ValueT>, ValueT>::type
Merge(T s, const AttT&) const { return s; }
template <typename T>
typename boost::disable_if<boost::is_same<T,ValueT>, ValueT>::type
Merge(T s, const AttT& a) const { return ValueT(s,a); }
ParticlesToLevelSetT& mParent;
const ParticleListT& mParticles;//list of particles
GridT* mGrid;
const math::MapBase& mMap;
size_t mMinCount, mMaxCount;//counters for ignored particles!
FuncType mTask;
const bool mIsCopy;
PointPartitionerT* mPointPartitioner;
};//end of Raster struct
///////////////////// YOU CAN SAFELY IGNORE THIS SECTION /////////////////////
namespace p2ls_internal {
// This is a simple type that combines a distance value and a particle
// attribute. It's required for attribute transfer which is defined in the
// Raster class above.
template<typename VisibleT, typename BlindT>
class BlindData
{
public:
typedef VisibleT type;
typedef VisibleT VisibleType;
typedef BlindT BlindType;
BlindData() {}
explicit BlindData(VisibleT v) : mVisible(v), mBlind(zeroVal<BlindType>()) {}
BlindData(VisibleT v, BlindT b) : mVisible(v), mBlind(b) {}
BlindData& operator=(const BlindData& rhs)
{
mVisible = rhs.mVisible;
mBlind = rhs.mBlind;
return *this;
}
const VisibleT& visible() const { return mVisible; }
const BlindT& blind() const { return mBlind; }
OPENVDB_NO_FP_EQUALITY_WARNING_BEGIN
bool operator==(const BlindData& rhs) const { return mVisible == rhs.mVisible; }
OPENVDB_NO_FP_EQUALITY_WARNING_END
bool operator< (const BlindData& rhs) const { return mVisible < rhs.mVisible; }
bool operator> (const BlindData& rhs) const { return mVisible > rhs.mVisible; }
BlindData operator+(const BlindData& rhs) const { return BlindData(mVisible + rhs.mVisible); }
BlindData operator+(const VisibleT& rhs) const { return BlindData(mVisible + rhs); }
BlindData operator-(const BlindData& rhs) const { return BlindData(mVisible - rhs.mVisible); }
BlindData operator-() const { return BlindData(-mVisible, mBlind); }
protected:
VisibleT mVisible;
BlindT mBlind;
};
// Required by several of the tree nodes
template<typename VisibleT, typename BlindT>
inline std::ostream& operator<<(std::ostream& ostr, const BlindData<VisibleT, BlindT>& rhs)
{
ostr << rhs.visible();
return ostr;
}
// Required by math::Abs
template<typename VisibleT, typename BlindT>
inline BlindData<VisibleT, BlindT> Abs(const BlindData<VisibleT, BlindT>& x)
{
return BlindData<VisibleT, BlindT>(math::Abs(x.visible()), x.blind());
}
} // namespace p2ls_internal
//////////////////////////////////////////////////////////////////////////////
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_PARTICLES_TO_LEVELSET_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|