/usr/include/openvdb/tools/RayIntersector.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file RayIntersector.h
///
/// @author Ken Museth
///
/// @brief Accelerated intersection of a ray with a narrow-band level
/// set or a generic (e.g. density) volume. This will of course be
/// useful for respectively surface and volume rendering.
///
/// @details This file defines two main classes,
/// LevelSetRayIntersector and VolumeRayIntersector, as well as the
/// three support classes LevelSetHDDA, VolumeHDDA and LinearSearchImpl.
/// The LevelSetRayIntersector is templated on the LinearSearchImpl class
/// and calls instances of the LevelSetHDDA class. The reason to split
/// level set ray intersection into three classes is twofold. First
/// LevelSetRayIntersector defines the public API for client code and
/// LinearSearchImpl defines the actual algorithm used for the
/// ray level-set intersection. In other words this design will allow
/// for the public API to be fixed while the intersection algorithm
/// can change without resolving to (slow) virtual methods. Second,
/// LevelSetHDDA, which implements a hierarchical Differential Digital
/// Analyzer, relies on partial template specialization, so it has to
/// be a standalone class (as opposed to a member class of
/// LevelSetRayIntersector). The VolumeRayIntersector is conceptually
/// much simpler than the LevelSetRayIntersector, and hence it only
/// depends on VolumeHDDA that implements the hierarchical
/// Differential Digital Analyzer.
#ifndef OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED
#include <openvdb/math/DDA.h>
#include <openvdb/math/Math.h>
#include <openvdb/math/Ray.h>
#include <openvdb/math/Stencils.h>
#include <openvdb/Grid.h>
#include <openvdb/Types.h>
#include "Morphology.h"
#include <boost/utility.hpp>
#include <boost/type_traits/is_floating_point.hpp>
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
// Helper class that implements the actual search of the zero-crossing
// of the level set along the direction of a ray. This particular
// implementation uses iterative linear search.
template<typename GridT, int Iterations = 0, typename RealT = double>
class LinearSearchImpl;
///////////////////////////////////// LevelSetRayIntersector /////////////////////////////////////
/// @brief This class provides the public API for intersecting a ray
/// with a narrow-band level set.
///
/// @details It wraps a SearchImplT with a simple public API and
/// performs the actual hierarchical tree node and voxel traversal.
///
/// @warning Use the (default) copy-constructor to make sure each
/// computational thread has their own instance of this class. This is
/// important since the SearchImplT contains a ValueAccessor that is
/// not thread-safe. However copying is very efficient.
///
/// @see tools/RayTracer.h for examples of intended usage.
///
/// @todo Add TrilinearSearchImpl, as an alternative to LinearSearchImpl,
/// that performs analytical 3D trilinear intersection tests, i.e., solves
/// cubic equations. This is slower but also more accurate than the 1D
/// linear interpolation in LinearSearchImpl.
template<typename GridT,
typename SearchImplT = LinearSearchImpl<GridT>,
int NodeLevel = GridT::TreeType::RootNodeType::ChildNodeType::LEVEL,
typename RayT = math::Ray<Real> >
class LevelSetRayIntersector
{
public:
typedef GridT GridType;
typedef RayT RayType;
typedef typename RayT::RealType RealType;
typedef typename RayT::Vec3T Vec3Type;
typedef typename GridT::ValueType ValueT;
typedef typename GridT::TreeType TreeT;
BOOST_STATIC_ASSERT( NodeLevel >= -1 && NodeLevel < int(TreeT::DEPTH)-1);
BOOST_STATIC_ASSERT(boost::is_floating_point<ValueT>::value);
/// @brief Constructor
/// @param grid level set grid to intersect rays against.
/// @param isoValue optional iso-value for the ray-intersection.
LevelSetRayIntersector(const GridT& grid, const ValueT& isoValue = zeroVal<ValueT>())
: mTester(grid, isoValue)
{
if (!grid.hasUniformVoxels() ) {
OPENVDB_THROW(RuntimeError,
"LevelSetRayIntersector only supports uniform voxels!");
}
if (grid.getGridClass() != GRID_LEVEL_SET) {
OPENVDB_THROW(RuntimeError,
"LevelSetRayIntersector only supports level sets!"
"\nUse Grid::setGridClass(openvdb::GRID_LEVEL_SET)");
}
}
/// @brief Return the iso-value used for ray-intersections
const ValueT& getIsoValue() const { return mTester.getIsoValue(); }
/// @brief Return @c true if the index-space ray intersects the level set.
/// @param iRay ray represented in index space.
bool intersectsIS(const RayType& iRay) const
{
if (!mTester.setIndexRay(iRay)) return false;//missed bbox
return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
}
/// @brief Return @c true if the index-space ray intersects the level set
/// @param iRay ray represented in index space.
/// @param iTime if an intersection was found it is assigned the time of the
/// intersection along the index ray.
bool intersectsIS(const RayType& iRay, RealType &iTime) const
{
if (!mTester.setIndexRay(iRay)) return false;//missed bbox
iTime = mTester.getIndexTime();
return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
}
/// @brief Return @c true if the index-space ray intersects the level set.
/// @param iRay ray represented in index space.
/// @param xyz if an intersection was found it is assigned the
/// intersection point in index space, otherwise it is unchanged.
bool intersectsIS(const RayType& iRay, Vec3Type& xyz) const
{
if (!mTester.setIndexRay(iRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getIndexPos(xyz);
return true;
}
/// @brief Return @c true if the index-space ray intersects the level set.
/// @param iRay ray represented in index space.
/// @param xyz if an intersection was found it is assigned the
/// intersection point in index space, otherwise it is unchanged.
/// @param iTime if an intersection was found it is assigned the time of the
/// intersection along the index ray.
bool intersectsIS(const RayType& iRay, Vec3Type& xyz, RealType &iTime) const
{
if (!mTester.setIndexRay(iRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getIndexPos(xyz);
iTime = mTester.getIndexTime();
return true;
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
bool intersectsWS(const RayType& wRay) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
/// @param wTime if an intersection was found it is assigned the time of the
/// intersection along the world ray.
bool intersectsWS(const RayType& wRay, RealType &wTime) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
wTime = mTester.getWorldTime();
return math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester);
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
/// @param world if an intersection was found it is assigned the
/// intersection point in world space, otherwise it is unchanged
bool intersectsWS(const RayType& wRay, Vec3Type& world) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getWorldPos(world);
return true;
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
/// @param world if an intersection was found it is assigned the
/// intersection point in world space, otherwise it is unchanged.
/// @param wTime if an intersection was found it is assigned the time of the
/// intersection along the world ray.
bool intersectsWS(const RayType& wRay, Vec3Type& world, RealType &wTime) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getWorldPos(world);
wTime = mTester.getWorldTime();
return true;
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
/// @param world if an intersection was found it is assigned the
/// intersection point in world space, otherwise it is unchanged.
/// @param normal if an intersection was found it is assigned the normal
/// of the level set surface in world space, otherwise it is unchanged.
bool intersectsWS(const RayType& wRay, Vec3Type& world, Vec3Type& normal) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getWorldPosAndNml(world, normal);
return true;
}
/// @brief Return @c true if the world-space ray intersects the level set.
/// @param wRay ray represented in world space.
/// @param world if an intersection was found it is assigned the
/// intersection point in world space, otherwise it is unchanged.
/// @param normal if an intersection was found it is assigned the normal
/// of the level set surface in world space, otherwise it is unchanged.
/// @param wTime if an intersection was found it is assigned the time of the
/// intersection along the world ray.
bool intersectsWS(const RayType& wRay, Vec3Type& world, Vec3Type& normal, RealType &wTime) const
{
if (!mTester.setWorldRay(wRay)) return false;//missed bbox
if (!math::LevelSetHDDA<TreeT, NodeLevel>::test(mTester)) return false;//missed level set
mTester.getWorldPosAndNml(world, normal);
wTime = mTester.getWorldTime();
return true;
}
private:
mutable SearchImplT mTester;
};// LevelSetRayIntersector
////////////////////////////////////// VolumeRayIntersector //////////////////////////////////////
/// @brief This class provides the public API for intersecting a ray
/// with a generic (e.g. density) volume.
/// @details Internally it performs the actual hierarchical tree node traversal.
/// @warning Use the (default) copy-constructor to make sure each
/// computational thread has their own instance of this class. This is
/// important since it contains a ValueAccessor that is
/// not thread-safe and a CoordBBox of the active voxels that should
/// not be re-computed for each thread. However copying is very efficient.
/// @par Example:
/// @code
/// // Create an instance for the master thread
/// VolumeRayIntersector inter(grid);
/// // For each additional thread use the copy constructor. This
/// // amortizes the overhead of computing the bbox of the active voxels!
/// VolumeRayIntersector inter2(inter);
/// // Before each ray-traversal set the index ray.
/// iter.setIndexRay(ray);
/// // or world ray
/// iter.setWorldRay(ray);
/// // Now you can begin the ray-marching using consecutive calls to VolumeRayIntersector::march
/// double t0=0, t1=0;// note the entry and exit times are with respect to the INDEX ray
/// while ( inter.march(t0, t1) ) {
/// // perform line-integration between t0 and t1
/// }}
/// @endcode
template<typename GridT,
int NodeLevel = GridT::TreeType::RootNodeType::ChildNodeType::LEVEL,
typename RayT = math::Ray<Real> >
class VolumeRayIntersector
{
public:
typedef GridT GridType;
typedef RayT RayType;
typedef typename RayT::RealType RealType;
typedef typename GridT::TreeType::RootNodeType RootType;
typedef tree::Tree<typename RootType::template ValueConverter<bool>::Type> TreeT;
BOOST_STATIC_ASSERT( NodeLevel >= 0 && NodeLevel < int(TreeT::DEPTH)-1);
/// @brief Grid constructor
/// @param grid Generic grid to intersect rays against.
/// @param dilationCount The number of voxel dilations performed
/// on (a boolean copy of) the input grid. This allows the
/// intersector to account for the size of interpolation kernels
/// in client code.
/// @throw RuntimeError if the voxels of the grid are not uniform
/// or the grid is empty.
VolumeRayIntersector(const GridT& grid, int dilationCount = 0)
: mIsMaster(true)
, mTree(new TreeT(grid.tree(), false, TopologyCopy()))
, mGrid(&grid)
, mAccessor(*mTree)
{
if (!grid.hasUniformVoxels() ) {
OPENVDB_THROW(RuntimeError,
"VolumeRayIntersector only supports uniform voxels!");
}
if ( grid.empty() ) {
OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
}
// Dilate active voxels to better account for the size of interpolation kernels
tools::dilateVoxels(*mTree, dilationCount);
mTree->root().evalActiveBoundingBox(mBBox, /*visit individual voxels*/false);
mBBox.max().offset(1);//padding so the bbox of a node becomes (origin,origin + node_dim)
}
/// @brief Grid and BBox constructor
/// @param grid Generic grid to intersect rays against.
/// @param bbox The axis-aligned bounding-box in the index space of the grid.
/// @warning It is assumed that bbox = (min, min + dim) where min denotes
/// to the smallest grid coordinates and dim are the integer length of the bbox.
/// @throw RuntimeError if the voxels of the grid are not uniform
/// or the grid is empty.
VolumeRayIntersector(const GridT& grid, const math::CoordBBox& bbox)
: mIsMaster(true)
, mTree(new TreeT(grid.tree(), false, TopologyCopy()))
, mGrid(&grid)
, mAccessor(*mTree)
, mBBox(bbox)
{
if (!grid.hasUniformVoxels() ) {
OPENVDB_THROW(RuntimeError,
"VolumeRayIntersector only supports uniform voxels!");
}
if ( grid.empty() ) {
OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
}
}
/// @brief Shallow copy constructor
/// @warning This copy constructor creates shallow copies of data
/// members of the instance passed as the argument. For
/// performance reasons we are not using shared pointers (their
/// mutex-lock impairs multi-threading).
VolumeRayIntersector(const VolumeRayIntersector& other)
: mIsMaster(false)
, mTree(other.mTree)//shallow copy
, mGrid(other.mGrid)//shallow copy
, mAccessor(*mTree)//initialize new (vs deep copy)
, mRay(other.mRay)//deep copy
, mTmax(other.mTmax)//deep copy
, mBBox(other.mBBox)//deep copy
{
}
/// @brief Destructor
~VolumeRayIntersector() { if (mIsMaster) delete mTree; }
/// @brief Return @c false if the index ray misses the bbox of the grid.
/// @param iRay Ray represented in index space.
/// @warning Call this method (or setWorldRay) before the ray
/// traversal starts and use the return value to decide if further
/// marching is required.
inline bool setIndexRay(const RayT& iRay)
{
mRay = iRay;
const bool hit = mRay.clip(mBBox);
if (hit) mTmax = mRay.t1();
return hit;
}
/// @brief Return @c false if the world ray misses the bbox of the grid.
/// @param wRay Ray represented in world space.
/// @warning Call this method (or setIndexRay) before the ray
/// traversal starts and use the return value to decide if further
/// marching is required.
/// @details Since hit times are computed with respect to the ray
/// represented in index space of the current grid, it is
/// recommended that either the client code uses getIndexPos to
/// compute index position from hit times or alternatively keeps
/// an instance of the index ray and instead uses setIndexRay to
/// initialize the ray.
inline bool setWorldRay(const RayT& wRay)
{
return this->setIndexRay(wRay.worldToIndex(*mGrid));
}
inline typename RayT::TimeSpan march()
{
const typename RayT::TimeSpan t = mHDDA.march(mRay, mAccessor);
if (t.t1>0) mRay.setTimes(t.t1 + math::Delta<RealType>::value(), mTmax);
return t;
}
/// @brief Return @c true if the ray intersects active values,
/// i.e. either active voxels or tiles. Only when a hit is
/// detected are t0 and t1 updated with the corresponding entry
/// and exit times along the INDEX ray!
/// @note Note that t0 and t1 are only resolved at the node level
/// (e.g. a LeafNode with active voxels) as opposed to the individual
/// active voxels.
/// @param t0 If the return value > 0 this is the time of the
/// first hit of an active tile or leaf.
/// @param t1 If the return value > t0 this is the time of the
/// first hit (> t0) of an inactive tile or exit point of the
/// BBOX for the leaf nodes.
/// @warning t0 and t1 are computed with respect to the ray represented in
/// index space of the current grid, not world space!
inline bool march(RealType& t0, RealType& t1)
{
const typename RayT::TimeSpan t = this->march();
t.get(t0, t1);
return t.valid();
}
/// @brief Generates a list of hits along the ray.
///
/// @param list List of hits represented as time spans.
///
/// @note ListType is a list of RayType::TimeSpan and is required to
/// have the two methods: clear() and push_back(). Thus, it could
/// be std::vector<typename RayType::TimeSpan> or
/// std::deque<typename RayType::TimeSpan>.
template <typename ListType>
inline void hits(ListType& list)
{
mHDDA.hits(mRay, mAccessor, list);
}
/// @brief Return the floating-point index position along the
/// current index ray at the specified time.
inline Vec3R getIndexPos(RealType time) const { return mRay(time); }
/// @brief Return the floating-point world position along the
/// current index ray at the specified time.
inline Vec3R getWorldPos(RealType time) const { return mGrid->indexToWorld(mRay(time)); }
inline RealType getWorldTime(RealType time) const
{
return time*mGrid->transform().baseMap()->applyJacobian(mRay.dir()).length();
}
/// @brief Return a const reference to the input grid.
const GridT& grid() const { return *mGrid; }
/// @brief Return a const reference to the (potentially dilated)
/// bool tree used to accelerate the ray marching.
const TreeT& tree() const { return *mTree; }
/// @brief Return a const reference to the BBOX of the grid
const math::CoordBBox& bbox() const { return mBBox; }
/// @brief Print bbox, statistics, memory usage and other information.
/// @param os a stream to which to write textual information
/// @param verboseLevel 1: print bbox only; 2: include boolean tree
/// statistics; 3: include memory usage
void print(std::ostream& os = std::cout, int verboseLevel = 1)
{
if (verboseLevel>0) {
os << "BBox: " << mBBox << std::endl;
if (verboseLevel==2) {
mTree->print(os, 1);
} else if (verboseLevel>2) {
mTree->print(os, 2);
}
}
}
private:
typedef typename tree::ValueAccessor<const TreeT,/*IsSafe=*/false> AccessorT;
const bool mIsMaster;
TreeT* mTree;
const GridT* mGrid;
AccessorT mAccessor;
RayT mRay;
RealType mTmax;
math::CoordBBox mBBox;
math::VolumeHDDA<TreeT, RayType, NodeLevel> mHDDA;
};// VolumeRayIntersector
//////////////////////////////////////// LinearSearchImpl ////////////////////////////////////////
/// @brief Implements linear iterative search for an iso-value of
/// the level set along the direction of the ray.
///
/// @note Since this class is used internally in
/// LevelSetRayIntersector (define above) and LevelSetHDDA (defined below)
/// client code should never interact directly with its API. This also
/// explains why we are not concerned with the fact that several of
/// its methods are unsafe to call unless roots were already detected.
///
/// @details It is approximate due to the limited number of iterations
/// which can can be defined with a template parameter. However the default value
/// has proven surprisingly accurate and fast. In fact more iterations
/// are not guaranteed to give significantly better results.
///
/// @warning Since the root-searching algorithm is approximate
/// (first-order) it is possible to miss intersections if the
/// iso-value is too close to the inside or outside of the narrow
/// band (typically a distance less than a voxel unit).
///
/// @warning Since this class internally stores a ValueAccessor it is NOT thread-safe,
/// so make sure to give each thread its own instance. This of course also means that
/// the cost of allocating an instance should (if possible) be amortized over
/// as many ray intersections as possible.
template<typename GridT, int Iterations, typename RealT>
class LinearSearchImpl
{
public:
typedef math::Ray<RealT> RayT;
typedef math::Vec3<RealT> VecT;
typedef typename GridT::ValueType ValueT;
typedef typename GridT::ConstAccessor AccessorT;
typedef math::BoxStencil<GridT> StencilT;
/// @brief Constructor from a grid.
/// @throw RunTimeError if the grid is empty.
/// @throw ValueError if the isoValue is not inside the narrow-band.
LinearSearchImpl(const GridT& grid, const ValueT& isoValue = zeroVal<ValueT>())
: mStencil(grid),
mIsoValue(isoValue),
mMinValue(isoValue - ValueT(2 * grid.voxelSize()[0])),
mMaxValue(isoValue + ValueT(2 * grid.voxelSize()[0]))
{
if ( grid.empty() ) {
OPENVDB_THROW(RuntimeError, "LinearSearchImpl does not supports empty grids");
}
if (mIsoValue<= -grid.background() ||
mIsoValue>= grid.background() ){
OPENVDB_THROW(ValueError, "The iso-value must be inside the narrow-band!");
}
grid.tree().root().evalActiveBoundingBox(mBBox, /*visit individual voxels*/false);
}
/// @brief Return the iso-value used for ray-intersections
const ValueT& getIsoValue() const { return mIsoValue; }
/// @brief Return @c false if the ray misses the bbox of the grid.
/// @param iRay Ray represented in index space.
/// @warning Call this method before the ray traversal starts.
inline bool setIndexRay(const RayT& iRay)
{
mRay = iRay;
return mRay.clip(mBBox);//did it hit the bbox
}
/// @brief Return @c false if the ray misses the bbox of the grid.
/// @param wRay Ray represented in world space.
/// @warning Call this method before the ray traversal starts.
inline bool setWorldRay(const RayT& wRay)
{
mRay = wRay.worldToIndex(mStencil.grid());
return mRay.clip(mBBox);//did it hit the bbox
}
/// @brief Get the intersection point in index space.
/// @param xyz The position in index space of the intersection.
inline void getIndexPos(VecT& xyz) const { xyz = mRay(mTime); }
/// @brief Get the intersection point in world space.
/// @param xyz The position in world space of the intersection.
inline void getWorldPos(VecT& xyz) const { xyz = mStencil.grid().indexToWorld(mRay(mTime)); }
/// @brief Get the intersection point and normal in world space
/// @param xyz The position in world space of the intersection.
/// @param nml The surface normal in world space of the intersection.
inline void getWorldPosAndNml(VecT& xyz, VecT& nml)
{
this->getIndexPos(xyz);
mStencil.moveTo(xyz);
nml = mStencil.gradient(xyz);
nml.normalize();
xyz = mStencil.grid().indexToWorld(xyz);
}
/// @brief Return the time of intersection along the index ray.
inline RealT getIndexTime() const { return mTime; }
/// @brief Return the time of intersection along the world ray.
inline RealT getWorldTime() const
{
return mTime*mStencil.grid().transform().baseMap()->applyJacobian(mRay.dir()).length();
}
private:
/// @brief Initiate the local voxel intersection test.
/// @warning Make sure to call this method before the local voxel intersection test.
inline void init(RealT t0)
{
mT[0] = t0;
mV[0] = static_cast<ValueT>(this->interpValue(t0));
}
inline void setRange(RealT t0, RealT t1) { mRay.setTimes(t0, t1); }
/// @brief Return a const reference to the ray.
inline const RayT& ray() const { return mRay; }
/// @brief Return true if a node of the specified type exists at ijk.
template <typename NodeT>
inline bool hasNode(const Coord& ijk)
{
return mStencil.accessor().template probeConstNode<NodeT>(ijk) != NULL;
}
/// @brief Return @c true if an intersection is detected.
/// @param ijk Grid coordinate of the node origin or voxel being tested.
/// @param time Time along the index ray being tested.
/// @warning Only if an intersection is detected is it safe to
/// call getIndexPos, getWorldPos and getWorldPosAndNml!
inline bool operator()(const Coord& ijk, RealT time)
{
ValueT V;
if (mStencil.accessor().probeValue(ijk, V) &&//within narrow band
V>mMinValue && V<mMaxValue) {// and close to iso-value?
mT[1] = time;
mV[1] = static_cast<ValueT>(this->interpValue(time));
if (math::ZeroCrossing(mV[0], mV[1])) {
mTime = this->interpTime();
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
for (int n=0; Iterations>0 && n<Iterations; ++n) {//resolved at compile-time
V = static_cast<ValueT>(this->interpValue(mTime));
const int m = math::ZeroCrossing(mV[0], V) ? 1 : 0;
mV[m] = V;
mT[m] = mTime;
mTime = this->interpTime();
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
return true;
}
mT[0] = mT[1];
mV[0] = mV[1];
}
return false;
}
inline RealT interpTime()
{
assert( math::isApproxLarger(mT[1], mT[0], RealT(1e-6) ) );
return mT[0]+(mT[1]-mT[0])*mV[0]/(mV[0]-mV[1]);
}
inline RealT interpValue(RealT time)
{
const VecT pos = mRay(time);
mStencil.moveTo(pos);
return mStencil.interpolation(pos) - mIsoValue;
}
template<typename, int> friend struct math::LevelSetHDDA;
RayT mRay;
StencilT mStencil;
RealT mTime;//time of intersection
ValueT mV[2];
RealT mT[2];
const ValueT mIsoValue, mMinValue, mMaxValue;
math::CoordBBox mBBox;
};// LinearSearchImpl
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_RAYINTERSECTOR_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|