This file is indexed.

/usr/include/openvdb/tools/RayTracer.h is in libopenvdb-dev 3.2.0-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// *     Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
///
/// @file RayTracer.h
///
/// @author Ken Museth
///
/// @brief Defines two simple but multithreaded renders, a level-set
/// ray tracer and a volume render. To support these renders we also define
/// perspective and orthographic cameras (both designed to mimic a Houdini camera),
/// a Film class and some rather naive shaders.
///
/// @note These classes are included mainly as reference implementations for
/// ray-tracing of OpenVDB volumes. In other words they are not intended for
/// production-quality rendering, but could be used for fast pre-visualization
/// or as a starting point for a more serious render.

#ifndef OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED

#include <openvdb/Types.h>
#include <openvdb/math/BBox.h>
#include <openvdb/math/Ray.h>
#include <openvdb/math/Math.h>
#include <openvdb/tools/RayIntersector.h>
#include <openvdb/tools/Interpolation.h>
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <fstream>
#include <vector>
#include <deque>

#ifdef OPENVDB_TOOLS_RAYTRACER_USE_EXR
#include <OpenEXR/ImfPixelType.h>
#include <OpenEXR/ImfChannelList.h>
#include <OpenEXR/ImfOutputFile.h>
#include <OpenEXR/ImfHeader.h>
#include <OpenEXR/ImfFrameBuffer.h>
#endif

namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {

// Forward declarations
class BaseCamera;
class BaseShader;

/// @brief Ray-trace a volume.
template<typename GridT>
inline void rayTrace(const GridT&,
                     const BaseShader&,
                     BaseCamera&,
                     size_t pixelSamples = 1,
                     unsigned int seed = 0,
                     bool threaded = true);

/// @brief Ray-trace a volume using a given ray intersector.
template<typename GridT, typename IntersectorT>
inline void rayTrace(const GridT&,
                     const IntersectorT&,
                     const BaseShader&,
                     BaseCamera&,
                     size_t pixelSamples = 1,
                     unsigned int seed = 0,
                     bool threaded = true);


///////////////////////////////LEVEL SET RAY TRACER ///////////////////////////////////////

/// @brief A (very) simple multithreaded ray tracer specifically for narrow-band level sets.
/// @details Included primarily as a reference implementation.
template<typename GridT, typename IntersectorT = tools::LevelSetRayIntersector<GridT> >
class LevelSetRayTracer
{
public:
    typedef GridT                           GridType;
    typedef typename IntersectorT::Vec3Type Vec3Type;
    typedef typename IntersectorT::RayType  RayType;

    /// @brief Constructor based on an instance of the grid to be rendered.
    LevelSetRayTracer(const GridT& grid,
                      const BaseShader& shader,
                      BaseCamera& camera,
                      size_t pixelSamples = 1,
                      unsigned int seed = 0);

    /// @brief Constructor based on an instance of the intersector
    /// performing the ray-intersections.
    LevelSetRayTracer(const IntersectorT& inter,
                      const BaseShader& shader,
                      BaseCamera& camera,
                      size_t pixelSamples = 1,
                      unsigned int seed = 0);

    /// @brief Copy constructor
    LevelSetRayTracer(const LevelSetRayTracer& other);

    /// @brief Destructor
    ~LevelSetRayTracer();

    /// @brief Set the level set grid to be ray-traced
    void setGrid(const GridT& grid);

    /// @brief Set the intersector that performs the actual
    /// intersection of the rays against the narrow-band level set.
    void setIntersector(const IntersectorT& inter);

    /// @brief Set the shader derived from the abstract BaseShader class.
    ///
    /// @note The shader is not assumed to be thread-safe so each
    /// thread will get its only deep copy. For instance it could
    /// contains a ValueAccessor into another grid with auxiliary
    /// shading information. Thus, make sure it is relatively
    /// light-weight and efficient to copy (which is the case for ValueAccesors).
    void setShader(const BaseShader& shader);

    /// @brief Set the camera derived from the abstract BaseCamera class.
    void setCamera(BaseCamera& camera);

    /// @brief Set the number of pixel samples and the seed for
    /// jittered sub-rays. A value larger than one implies
    /// anti-aliasing by jittered super-sampling.
    /// @throw ValueError if pixelSamples is equal to zero.
    void setPixelSamples(size_t pixelSamples, unsigned int seed = 0);

    /// @brief Perform the actual (potentially multithreaded) ray-tracing.
    void render(bool threaded = true) const;

    /// @brief Public method required by tbb::parallel_for.
    /// @warning Never call it directly.
    void operator()(const tbb::blocked_range<size_t>& range) const;

private:
    const bool                          mIsMaster;
    double*                             mRand;
    IntersectorT                        mInter;
    boost::scoped_ptr<const BaseShader> mShader;
    BaseCamera*                         mCamera;
    size_t                              mSubPixels;
};// LevelSetRayTracer


///////////////////////////////VOLUME RENDER ///////////////////////////////////////

/// @brief A (very) simple multithreaded volume render specifically for scalar density.
/// @details Included primarily as a reference implementation.
/// @note It will only compile if the IntersectorT is templated on a Grid with a
/// floating-point voxel type.
template <typename IntersectorT, typename SamplerT = tools::BoxSampler>
class VolumeRender
{
public:

    typedef typename IntersectorT::GridType  GridType;
    typedef typename IntersectorT::RayType   RayType;
    typedef typename GridType::ValueType     ValueType;
    typedef typename GridType::ConstAccessor AccessorType;
    typedef tools::GridSampler<AccessorType, SamplerT> SamplerType;
    BOOST_STATIC_ASSERT(boost::is_floating_point<ValueType>::value);

    /// @brief Constructor taking an intersector and a base camera.
    VolumeRender(const IntersectorT& inter, BaseCamera& camera);

    /// @brief Copy constructor which creates a thread-safe clone
    VolumeRender(const VolumeRender& other);

    /// @brief Perform the actual (potentially multithreaded) volume rendering.
    void render(bool threaded=true) const;

    /// @brief Set the camera derived from the abstract BaseCamera class.
    void setCamera(BaseCamera& camera) { mCamera = &camera; }

    /// @brief Set the intersector that performs the actual
    /// intersection of the rays against the volume.
    void setIntersector(const IntersectorT& inter);

    /// @brief Set the vector components of a directional light source
    /// @throw ArithmeticError if input is a null vector.
    void setLightDir(Real x, Real y, Real z) { mLightDir = Vec3R(x,y,z).unit(); }

    /// @brief Set the color of the directional light source.
    void setLightColor(Real r, Real g, Real b) { mLightColor = Vec3R(r,g,b); }

    /// @brief Set the integration step-size in voxel units for the primay ray.
    void setPrimaryStep(Real primaryStep) { mPrimaryStep = primaryStep; }

    /// @brief Set the integration step-size in voxel units for the primay ray.
    void setShadowStep(Real shadowStep) { mShadowStep  = shadowStep; }

    /// @brief Set Scattering coefficients.
    void setScattering(Real x, Real y, Real z) { mScattering = Vec3R(x,y,z); }

    /// @brief Set absorption coefficients.
    void setAbsorption(Real x, Real y, Real z) { mAbsorption = Vec3R(x,y,z); }

    /// @brief Set parameter that imitates multi-scattering. A value
    /// of zero implies no multi-scattering.
    void setLightGain(Real gain) { mLightGain = gain; }

    /// @brief Set the cut-off value for density and transmittance.
    void setCutOff(Real cutOff) { mCutOff = cutOff; }

    /// @brief Print parameters, statistics, memory usage and other information.
    /// @param os            a stream to which to write textual information
    /// @param verboseLevel  1: print parameters only; 2: include grid
    ///                      statistics; 3: include memory usage
    void print(std::ostream& os = std::cout, int verboseLevel = 1);

    /// @brief Public method required by tbb::parallel_for.
    /// @warning Never call it directly.
    void operator()(const tbb::blocked_range<size_t>& range) const;

private:

    AccessorType mAccessor;
    BaseCamera*  mCamera;
    boost::scoped_ptr<IntersectorT> mPrimary, mShadow;
    Real  mPrimaryStep, mShadowStep, mCutOff, mLightGain;
    Vec3R mLightDir, mLightColor, mAbsorption, mScattering;
};//VolumeRender

//////////////////////////////////////// FILM ////////////////////////////////////////

/// @brief A simple class that allows for concurrent writes to pixels in an image,
/// background initialization of the image, and PPM or EXR file output.
class Film
{
public:
    /// @brief Floating-point RGBA components in the range [0, 1].
    /// @details This is our preferred representation for color processing.
    struct RGBA
    {
        typedef float ValueT;

        RGBA() : r(0), g(0), b(0), a(1) {}
        explicit RGBA(ValueT intensity) : r(intensity), g(intensity), b(intensity), a(1) {}
        RGBA(ValueT _r, ValueT _g, ValueT _b, ValueT _a = static_cast<ValueT>(1.0)):
            r(_r), g(_g), b(_b), a(_a)
        {}

        RGBA  operator* (ValueT scale)  const { return RGBA(r*scale, g*scale, b*scale);}
        RGBA  operator+ (const RGBA& rhs) const { return RGBA(r+rhs.r, g+rhs.g, b+rhs.b);}
        RGBA  operator* (const RGBA& rhs) const { return RGBA(r*rhs.r, g*rhs.g, b*rhs.b);}
        RGBA& operator+=(const RGBA& rhs) { r+=rhs.r; g+=rhs.g; b+=rhs.b, a+=rhs.a; return *this;}

        void over(const RGBA& rhs)
        {
            const float s = rhs.a*(1.0f-a);
            r = a*r+s*rhs.r;
            g = a*g+s*rhs.g;
            b = a*b+s*rhs.b;
            a = a + s;
        }

        ValueT r, g, b, a;
    };


    Film(size_t width, size_t height)
        : mWidth(width), mHeight(height), mSize(width*height), mPixels(new RGBA[mSize])
    {
    }
    Film(size_t width, size_t height, const RGBA& bg)
        : mWidth(width), mHeight(height), mSize(width*height), mPixels(new RGBA[mSize])
    {
        this->fill(bg);
    }

    const RGBA& pixel(size_t w, size_t h) const
    {
        assert(w < mWidth);
        assert(h < mHeight);
        return mPixels[w + h*mWidth];
    }

    RGBA& pixel(size_t w, size_t h)
    {
        assert(w < mWidth);
        assert(h < mHeight);
        return mPixels[w + h*mWidth];
    }

    void fill(const RGBA& rgb=RGBA(0)) { for (size_t i=0; i<mSize; ++i) mPixels[i] = rgb; }
    void checkerboard(const RGBA& c1=RGBA(0.3f), const RGBA& c2=RGBA(0.6f), size_t size=32)
    {
        RGBA *p = mPixels.get();
        for (size_t j = 0; j < mHeight; ++j) {
            for (size_t i = 0; i < mWidth; ++i, ++p) {
                *p = ((i & size) ^ (j & size)) ? c1 : c2;
            }
        }
    }

    void savePPM(const std::string& fileName)
    {
        std::string name(fileName);
        if (name.find_last_of(".") == std::string::npos) name.append(".ppm");

        boost::scoped_array<unsigned char> buffer(new unsigned char[3*mSize]);
        unsigned char *tmp = buffer.get(), *q = tmp;
        RGBA* p = mPixels.get();
        size_t n = mSize;
        while (n--) {
            *q++ = static_cast<unsigned char>(255.0f*(*p  ).r);
            *q++ = static_cast<unsigned char>(255.0f*(*p  ).g);
            *q++ = static_cast<unsigned char>(255.0f*(*p++).b);
        }

        std::ofstream os(name.c_str(), std::ios_base::binary);
        if (!os.is_open()) {
            std::cerr << "Error opening PPM file \"" << name << "\"" << std::endl;
            return;
        }

        os << "P6\n" << mWidth << " " << mHeight << "\n255\n";
        os.write((const char *)&(*tmp), 3*mSize*sizeof(unsigned char));
    }

#ifdef OPENVDB_TOOLS_RAYTRACER_USE_EXR
    void saveEXR(const std::string& fileName, size_t compression = 2, size_t threads = 8)
    {
        std::string name(fileName);
        if (name.find_last_of(".") == std::string::npos) name.append(".exr");

        if (threads>0) Imf::setGlobalThreadCount(threads);
        Imf::Header header(mWidth, mHeight);
        if (compression==0) header.compression() = Imf::NO_COMPRESSION;
        if (compression==1) header.compression() = Imf::RLE_COMPRESSION;
        if (compression>=2) header.compression() = Imf::ZIP_COMPRESSION;
        header.channels().insert("R", Imf::Channel(Imf::FLOAT));
        header.channels().insert("G", Imf::Channel(Imf::FLOAT));
        header.channels().insert("B", Imf::Channel(Imf::FLOAT));
        header.channels().insert("A", Imf::Channel(Imf::FLOAT));

        Imf::FrameBuffer framebuffer;
        framebuffer.insert("R", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].r),
                                            sizeof (RGBA), sizeof (RGBA) * mWidth));
        framebuffer.insert("G", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].g),
                                            sizeof (RGBA), sizeof (RGBA) * mWidth));
        framebuffer.insert("B", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].b),
                                            sizeof (RGBA), sizeof (RGBA) * mWidth));
        framebuffer.insert("A", Imf::Slice( Imf::FLOAT, (char *) &(mPixels[0].a),
                                            sizeof (RGBA), sizeof (RGBA) * mWidth));

        Imf::OutputFile file(name.c_str(), header);
        file.setFrameBuffer(framebuffer);
        file.writePixels(mHeight);
    }
#endif

    size_t width()       const { return mWidth; }
    size_t height()      const { return mHeight; }
    size_t numPixels()   const { return mSize; }
    const RGBA* pixels() const { return mPixels.get(); }

private:
    size_t mWidth, mHeight, mSize;
    boost::scoped_array<RGBA> mPixels;
};// Film


//////////////////////////////////////// CAMERAS ////////////////////////////////////////

/// Abstract base class for the perspective and orthographic cameras
class BaseCamera
{
public:
    BaseCamera(Film& film, const Vec3R& rotation, const Vec3R& translation,
               double frameWidth, double nearPlane, double farPlane)
        : mFilm(&film)
        , mScaleWidth(frameWidth)
        , mScaleHeight(frameWidth * double(film.height()) / double(film.width()))
    {
        assert(nearPlane > 0 && farPlane > nearPlane);
        mScreenToWorld.accumPostRotation(math::X_AXIS, rotation[0] * M_PI / 180.0);
        mScreenToWorld.accumPostRotation(math::Y_AXIS, rotation[1] * M_PI / 180.0);
        mScreenToWorld.accumPostRotation(math::Z_AXIS, rotation[2] * M_PI / 180.0);
        mScreenToWorld.accumPostTranslation(translation);
        this->initRay(nearPlane, farPlane);
    }

    virtual ~BaseCamera() {}

    Film::RGBA& pixel(size_t i, size_t j) { return mFilm->pixel(i, j); }

    size_t width()  const { return mFilm->width(); }
    size_t height() const { return mFilm->height(); }

    /// Rotate the camera so its negative z-axis points at xyz and its
    /// y axis is in the plane of the xyz and up vectors. In other
    /// words the camera will look at xyz and use up as the
    /// horizontal direction.
    void lookAt(const Vec3R& xyz, const Vec3R& up = Vec3R(0.0, 1.0, 0.0))
    {
        const Vec3R orig = mScreenToWorld.applyMap(Vec3R(0.0));
        const Vec3R dir  = orig - xyz;
        try {
            Mat4d xform = math::aim<Mat4d>(dir, up);
            xform.postTranslate(orig);
            mScreenToWorld = math::AffineMap(xform);
            this->initRay(mRay.t0(), mRay.t1());
        } catch (...) {}
    }

    Vec3R rasterToScreen(double i, double j, double z) const
    {
        return Vec3R( (2 * i / double(mFilm->width()) - 1)  * mScaleWidth,
                      (1 - 2 * j / double(mFilm->height())) * mScaleHeight, z );
    }

    /// @brief Return a Ray in world space given the pixel indices and
    /// optional offsets in the range [0, 1]. An offset of 0.5 corresponds
    /// to the center of the pixel.
    virtual math::Ray<double> getRay(
        size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const = 0;

protected:
    void initRay(double t0, double t1)
    {
        mRay.setTimes(t0, t1);
        mRay.setEye(mScreenToWorld.applyMap(Vec3R(0.0)));
        mRay.setDir(mScreenToWorld.applyJacobian(Vec3R(0.0, 0.0, -1.0)));
    }

    Film* mFilm;
    double mScaleWidth, mScaleHeight;
    math::Ray<double> mRay;
    math::AffineMap mScreenToWorld;
};// BaseCamera


class PerspectiveCamera: public BaseCamera
{
  public:
    /// @brief Constructor
    /// @param film         film (i.e. image) defining the pixel resolution
    /// @param rotation     rotation in degrees of the camera in world space
    ///                     (applied in x, y, z order)
    /// @param translation  translation of the camera in world-space units,
    ///                     applied after rotation
    /// @param focalLength  focal length of the camera in mm
    ///                     (the default of 50mm corresponds to Houdini's default camera)
    /// @param aperture     width in mm of the frame, i.e., the visible field
    ///                     (the default 41.2136 mm corresponds to Houdini's default camera)
    /// @param nearPlane    depth of the near clipping plane in world-space units
    /// @param farPlane     depth of the far clipping plane in world-space units
    ///
    /// @details If no rotation or translation is provided, the camera is placed
    /// at (0,0,0) in world space and points in the direction of the negative z axis.
    PerspectiveCamera(Film& film,
                      const Vec3R& rotation    = Vec3R(0.0),
                      const Vec3R& translation = Vec3R(0.0),
                      double focalLength = 50.0,
                      double aperture    = 41.2136,
                      double nearPlane   = 1e-3,
                      double farPlane    = std::numeric_limits<double>::max())
        : BaseCamera(film, rotation, translation, 0.5*aperture/focalLength, nearPlane, farPlane)
    {
    }

    virtual ~PerspectiveCamera() {}

    /// @brief Return a Ray in world space given the pixel indices and
    /// optional offsets in the range [0,1]. An offset of 0.5 corresponds
    /// to the center of the pixel.
    virtual math::Ray<double> getRay(
        size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const
    {
        math::Ray<double> ray(mRay);
        Vec3R dir = BaseCamera::rasterToScreen(Real(i) + iOffset, Real(j) + jOffset, -1.0);
        dir = BaseCamera::mScreenToWorld.applyJacobian(dir);
        dir.normalize();
        ray.scaleTimes(1.0/dir.dot(ray.dir()));
        ray.setDir(dir);
        return ray;
    }

    /// @brief Return the horizontal field of view in degrees given a
    /// focal lenth in mm and the specified aperture in mm.
    static double focalLengthToFieldOfView(double length, double aperture)
    {
        return 360.0 / M_PI * atan(aperture/(2.0*length));
    }
    /// @brief Return the focal length in mm given a horizontal field of
    /// view in degrees and the specified aperture in mm.
    static double fieldOfViewToFocalLength(double fov, double aperture)
    {
        return aperture/(2.0*(tan(fov * M_PI / 360.0)));
    }
};// PerspectiveCamera


class OrthographicCamera: public BaseCamera
{
public:
    /// @brief Constructor
    /// @param film         film (i.e. image) defining the pixel resolution
    /// @param rotation     rotation in degrees of the camera in world space
    ///                     (applied in x, y, z order)
    /// @param translation  translation of the camera in world-space units,
    ///                     applied after rotation
    /// @param frameWidth   width in of the frame in world-space units
    /// @param nearPlane    depth of the near clipping plane in world-space units
    /// @param farPlane     depth of the far clipping plane in world-space units
    ///
    /// @details If no rotation or translation is provided, the camera is placed
    /// at (0,0,0) in world space and points in the direction of the negative z axis.
    OrthographicCamera(Film& film,
                       const Vec3R& rotation    = Vec3R(0.0),
                       const Vec3R& translation = Vec3R(0.0),
                       double frameWidth = 1.0,
                       double nearPlane  = 1e-3,
                       double farPlane   = std::numeric_limits<double>::max())
        : BaseCamera(film, rotation, translation, 0.5*frameWidth, nearPlane, farPlane)
    {
    }
    virtual ~OrthographicCamera() {}

    virtual math::Ray<double> getRay(
        size_t i, size_t j, double iOffset = 0.5, double jOffset = 0.5) const
    {
        math::Ray<double> ray(mRay);
        Vec3R eye = BaseCamera::rasterToScreen(Real(i) + iOffset, Real(j) + jOffset, 0.0);
        ray.setEye(BaseCamera::mScreenToWorld.applyMap(eye));
        return ray;
    }
};// OrthographicCamera


//////////////////////////////////////// SHADERS ////////////////////////////////////////


/// Abstract base class for the shaders
class BaseShader
{
public:
    typedef math::Ray<Real> RayT;
    BaseShader() {}
    virtual ~BaseShader() {}
    /// @brief Defines the interface of the virtual function that returns a RGB color.
    /// @param xyz World position of the intersection point.
    /// @param nml Normal in world space at the intersection point.
    /// @param dir Direction of the ray in world space.
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R& nml, const Vec3R& dir) const = 0;
    virtual BaseShader* copy() const = 0;
};


/// @brief Shader that produces a simple matte.
///
/// @details The color can either be constant (if GridT =
/// Film::RGBA which is the default) or defined in a separate Vec3
/// color grid. Use SamplerType to define the order of interpolation
/// (default is zero order, i.e. closes-point).
template <typename GridT = Film::RGBA,
          typename SamplerType = tools::PointSampler>
class MatteShader: public BaseShader
{
public:
    MatteShader(const GridT& grid) : mAcc(grid.getAccessor()), mXform(&grid.transform()) {}
    virtual ~MatteShader() {}
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R&, const Vec3R&) const
    {
        typename GridT::ValueType v = zeroVal<typename GridT::ValueType>();
        SamplerType::sample(mAcc, mXform->worldToIndex(xyz), v);
        return Film::RGBA(
            static_cast<Film::RGBA::ValueT>(v[0]),
            static_cast<Film::RGBA::ValueT>(v[1]),
            static_cast<Film::RGBA::ValueT>(v[2]));
    }
    virtual BaseShader* copy() const { return new MatteShader<GridT, SamplerType>(*this); }

private:
    typename GridT::ConstAccessor mAcc;
    const math::Transform* mXform;
};
// Template specialization using a constant color of the material.
template <typename SamplerType>
class MatteShader<Film::RGBA, SamplerType>: public BaseShader
{
public:
    MatteShader(const Film::RGBA& c = Film::RGBA(1.0f)): mRGBA(c) {}
    virtual ~MatteShader() {}
    virtual Film::RGBA operator()(const Vec3R&, const Vec3R&, const Vec3R&) const
    {
        return mRGBA;
    }
    virtual BaseShader* copy() const { return new MatteShader<Film::RGBA, SamplerType>(*this); }

private:
    const Film::RGBA mRGBA;
};


/// @brief Color shader that treats the surface normal (x, y, z) as an
/// RGB color.
///
/// @details The color can either be constant (if GridT =
/// Film::RGBA which is the default) or defined in a separate Vec3
/// color grid. Use SamplerType to define the order of interpolation
/// (default is zero order, i.e. closes-point).
template <typename GridT = Film::RGBA,
          typename SamplerType = tools::PointSampler>
class NormalShader: public BaseShader
{
public:
    NormalShader(const GridT& grid) : mAcc(grid.getAccessor()), mXform(&grid.transform()) {}
    virtual ~NormalShader() {}
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R& normal, const Vec3R&) const
    {
        typename GridT::ValueType v = zeroVal<typename GridT::ValueType>();
        SamplerType::sample(mAcc, mXform->worldToIndex(xyz), v);
        return Film::RGBA(v[0]*(normal[0]+1.0f), v[1]*(normal[1]+1.0f), v[2]*(normal[2]+1.0f));
    }
    virtual BaseShader* copy() const { return new NormalShader<GridT, SamplerType>(*this); }

private:
    typename GridT::ConstAccessor mAcc;
    const math::Transform* mXform;
};
// Template specialization using a constant color of the material.
template <typename SamplerType>
class NormalShader<Film::RGBA, SamplerType>: public BaseShader
{
public:
    NormalShader(const Film::RGBA& c = Film::RGBA(1.0f)) : mRGBA(c*0.5f) {}
    virtual ~NormalShader() {}
    virtual Film::RGBA operator()(const Vec3R&, const Vec3R& normal, const Vec3R&) const
    {
        return mRGBA*Film::RGBA(normal[0]+1.0f, normal[1]+1.0f, normal[2]+1.0f);
    }
    virtual BaseShader* copy() const { return new NormalShader<Film::RGBA, SamplerType>(*this); }

private:
    const Film::RGBA mRGBA;
};


/// @brief Color shader that treats position (x, y, z) as an RGB color in a
/// cube defined from an axis-aligned bounding box in world space.
///
/// @details The color can either be constant (if GridT =
/// Film::RGBA which is the default) or defined in a separate Vec3
/// color grid. Use SamplerType to define the order of interpolation
/// (default is zero order, i.e. closes-point).
template <typename GridT = Film::RGBA,
          typename SamplerType = tools::PointSampler>
class PositionShader: public BaseShader
{
public:
    PositionShader(const math::BBox<Vec3R>& bbox, const GridT& grid)
        : mMin(bbox.min())
        , mInvDim(1.0/bbox.extents())
        , mAcc(grid.getAccessor())
        , mXform(&grid.transform())
    {
    }
    virtual ~PositionShader() {}
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R&, const Vec3R&) const
    {
        typename GridT::ValueType v = zeroVal<typename GridT::ValueType>();
        SamplerType::sample(mAcc, mXform->worldToIndex(xyz), v);
        const Vec3R rgb = (xyz - mMin)*mInvDim;
        return Film::RGBA(v[0],v[1],v[2]) * Film::RGBA(rgb[0], rgb[1], rgb[2]);
    }
    virtual BaseShader* copy() const { return new PositionShader<GridT, SamplerType>(*this); }

private:
    const Vec3R mMin, mInvDim;
    typename GridT::ConstAccessor mAcc;
    const math::Transform* mXform;
};
// Template specialization using a constant color of the material.
template <typename SamplerType>
class PositionShader<Film::RGBA, SamplerType>: public BaseShader
{
public:
    PositionShader(const math::BBox<Vec3R>& bbox, const Film::RGBA& c = Film::RGBA(1.0f))
        : mMin(bbox.min()), mInvDim(1.0/bbox.extents()), mRGBA(c) {}
    virtual ~PositionShader() {}
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R&, const Vec3R&) const
    {
        const Vec3R rgb = (xyz - mMin)*mInvDim;
        return mRGBA*Film::RGBA(rgb[0], rgb[1], rgb[2]);
    }
    virtual BaseShader* copy() const { return new PositionShader<Film::RGBA, SamplerType>(*this); }

private:
    const Vec3R mMin, mInvDim;
    const Film::RGBA mRGBA;
};

/// @brief Simple diffuse Lambertian surface shader.
///
/// @details The diffuse color can either be constant (if GridT =
/// Film::RGBA which is the default) or defined in a separate Vec3
/// color grid. Lambertian implies that the (radiant) intensity is
/// directly proportional to the cosine of the angle between the
/// surface normal and the direction of the light source. Use
/// SamplerType to define the order of interpolation (default is
/// zero order, i.e. closes-point).
template <typename GridT = Film::RGBA,
          typename SamplerType = tools::PointSampler>
class DiffuseShader: public BaseShader
{
public:
    DiffuseShader(const GridT& grid): mAcc(grid.getAccessor()), mXform(&grid.transform()) {}
    virtual ~DiffuseShader() {}
    virtual Film::RGBA operator()(const Vec3R& xyz, const Vec3R& normal, const Vec3R& rayDir) const
    {
        typename GridT::ValueType v = zeroVal<typename GridT::ValueType>();
        SamplerType::sample(mAcc, mXform->worldToIndex(xyz), v);
        // We take the abs of the dot product corresponding to having
        // light sources at +/- rayDir, i.e., two-sided shading.
        return Film::RGBA(v[0],v[1],v[2]) * math::Abs(normal.dot(rayDir));
    }
    virtual BaseShader* copy() const { return new DiffuseShader<GridT, SamplerType>(*this); }

private:
    typename GridT::ConstAccessor mAcc;
    const math::Transform* mXform;
};
// Template specialization using a constant color of the material.
template <typename SamplerType>
class DiffuseShader<Film::RGBA, SamplerType>: public BaseShader
{
public:
    DiffuseShader(const Film::RGBA& d = Film::RGBA(1.0f)): mRGBA(d) {}
    virtual ~DiffuseShader() {}
    virtual Film::RGBA operator()(const Vec3R&, const Vec3R& normal, const Vec3R& rayDir) const
    {
        // We assume a single directional light source at the camera,
        // so the cosine of the angle between the surface normal and the
        // direction of the light source becomes the dot product of the
        // surface normal and inverse direction of the ray.  We also ignore
        // negative dot products, corresponding to strict one-sided shading.
        //return mRGBA * math::Max(0.0, normal.dot(-rayDir));

        // We take the abs of the dot product corresponding to having
        // light sources at +/- rayDir, i.e., two-sided shading.
        return mRGBA * math::Abs(normal.dot(rayDir));
    }
    virtual BaseShader* copy() const { return new DiffuseShader<Film::RGBA, SamplerType>(*this); }

private:
    const Film::RGBA mRGBA;
};

//////////////////////////////////////// RAYTRACER ////////////////////////////////////////

template<typename GridT>
inline void rayTrace(const GridT& grid,
                     const BaseShader& shader,
                     BaseCamera& camera,
                     size_t pixelSamples,
                     unsigned int seed,
                     bool threaded)
{
    LevelSetRayTracer<GridT, tools::LevelSetRayIntersector<GridT> >
        tracer(grid, shader, camera, pixelSamples, seed);
    tracer.render(threaded);
}


template<typename GridT, typename IntersectorT>
inline void rayTrace(const GridT&,
                     const IntersectorT& inter,
                     const BaseShader& shader,
                     BaseCamera& camera,
                     size_t pixelSamples,
                     unsigned int seed,
                     bool threaded)
{
    LevelSetRayTracer<GridT, IntersectorT> tracer(inter, shader, camera, pixelSamples, seed);
    tracer.render(threaded);
}


//////////////////////////////////////// LevelSetRayTracer ////////////////////////////////////////


template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const GridT& grid,
                  const BaseShader& shader,
                  BaseCamera& camera,
                  size_t pixelSamples,
                  unsigned int seed)
    : mIsMaster(true),
      mRand(NULL),
      mInter(grid),
      mShader(shader.copy()),
      mCamera(&camera)
{
    this->setPixelSamples(pixelSamples, seed);
}

template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const IntersectorT& inter,
                  const BaseShader& shader,
                  BaseCamera& camera,
                  size_t pixelSamples,
                  unsigned int seed)
    : mIsMaster(true),
      mRand(NULL),
      mInter(inter),
      mShader(shader.copy()),
      mCamera(&camera)
{
    this->setPixelSamples(pixelSamples, seed);
}

template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
LevelSetRayTracer(const LevelSetRayTracer& other) :
    mIsMaster(false),
    mRand(other.mRand),
    mInter(other.mInter),
    mShader(other.mShader->copy()),
    mCamera(other.mCamera),
    mSubPixels(other.mSubPixels)
{
}

template<typename GridT, typename IntersectorT>
inline LevelSetRayTracer<GridT, IntersectorT>::
~LevelSetRayTracer()
{
    if (mIsMaster) delete [] mRand;
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setGrid(const GridT& grid)
{
    assert(mIsMaster);
    mInter = IntersectorT(grid);
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setIntersector(const IntersectorT& inter)
{
    assert(mIsMaster);
    mInter = inter;
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setShader(const BaseShader& shader)
{
    assert(mIsMaster);
    mShader.reset(shader.copy());
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setCamera(BaseCamera& camera)
{
    assert(mIsMaster);
    mCamera = &camera;
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
setPixelSamples(size_t pixelSamples, unsigned int seed)
{
    assert(mIsMaster);
    if (pixelSamples == 0) {
        OPENVDB_THROW(ValueError, "pixelSamples must be larger than zero!");
    }
    mSubPixels = pixelSamples - 1;
    delete [] mRand;
    if (mSubPixels > 0) {
        mRand = new double[16];
        math::Rand01<double> rand(seed);//offsets for anti-aliaing by jittered super-sampling
        for (size_t i=0; i<16; ++i) mRand[i] = rand();
    } else {
        mRand = NULL;
    }
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
render(bool threaded) const
{
    tbb::blocked_range<size_t> range(0, mCamera->height());
    threaded ? tbb::parallel_for(range, *this) : (*this)(range);
}

template<typename GridT, typename IntersectorT>
inline void LevelSetRayTracer<GridT, IntersectorT>::
operator()(const tbb::blocked_range<size_t>& range) const
{
    const BaseShader& shader = *mShader;
    Vec3Type xyz, nml;
    const float frac = 1.0f / (1.0f + mSubPixels);
    for (size_t j=range.begin(), n=0, je = range.end(); j<je; ++j) {
        for (size_t i=0, ie = mCamera->width(); i<ie; ++i) {
            Film::RGBA& bg = mCamera->pixel(i,j);
            RayType ray = mCamera->getRay(i, j);//primary ray
            Film::RGBA c = mInter.intersectsWS(ray, xyz, nml) ? shader(xyz, nml, ray.dir()) : bg;
            for (size_t k=0; k<mSubPixels; ++k, n +=2 ) {
                ray = mCamera->getRay(i, j, mRand[n & 15], mRand[(n+1) & 15]);
                c += mInter.intersectsWS(ray, xyz, nml) ? shader(xyz, nml, ray.dir()) : bg;
            }//loop over sub-pixels
            bg = c*frac;
        }//loop over image height
    }//loop over image width
}

//////////////////////////////////////// VolumeRender ////////////////////////////////////////

template<typename IntersectorT, typename SampleT>
inline VolumeRender<IntersectorT, SampleT>::
VolumeRender(const IntersectorT& inter, BaseCamera& camera)
    : mAccessor(inter.grid().getConstAccessor())
    , mCamera(&camera)
    , mPrimary(new IntersectorT(inter))
    , mShadow(new IntersectorT(inter))
    , mPrimaryStep(1.0)
    , mShadowStep(3.0)
    , mCutOff(0.005)
    , mLightGain(0.2)
    , mLightDir(Vec3R(0.3, 0.3, 0).unit())
    , mLightColor(0.7, 0.7, 0.7)
    , mAbsorption(0.1)
    , mScattering(1.5)
{
}

template<typename IntersectorT, typename SampleT>
inline VolumeRender<IntersectorT, SampleT>::
VolumeRender(const VolumeRender& other)
    : mAccessor(other.mAccessor)
    , mCamera(other.mCamera)
    , mPrimary(new IntersectorT(*(other.mPrimary)))
    , mShadow(new IntersectorT(*(other.mShadow)))
    , mPrimaryStep(other.mPrimaryStep)
    , mShadowStep(other.mShadowStep)
    , mCutOff(other.mCutOff)
    , mLightGain(other.mLightGain)
    , mLightDir(other.mLightDir)
    , mLightColor(other.mLightColor)
    , mAbsorption(other.mAbsorption)
    , mScattering(other.mScattering)
{
}

template<typename IntersectorT, typename SampleT>
inline void VolumeRender<IntersectorT, SampleT>::
print(std::ostream& os, int verboseLevel)
{
    if (verboseLevel>0) {
        os << "\nPrimary step: " <<  mPrimaryStep
           << "\nShadow step: " << mShadowStep
           << "\nCutoff: " << mCutOff
           << "\nLightGain: " << mLightGain
           << "\nLightDir: " << mLightDir
           << "\nLightColor: " << mLightColor
           << "\nAbsorption: " << mAbsorption
           << "\nScattering: " << mScattering << std::endl;
    }
    mPrimary->print(os, verboseLevel);
}

template<typename IntersectorT, typename SampleT>
inline void VolumeRender<IntersectorT, SampleT>::
setIntersector(const IntersectorT& inter)
{
    mPrimary.reset(new IntersectorT(inter));
    mShadow.reset( new IntersectorT(inter));
}

template<typename IntersectorT, typename SampleT>
inline void VolumeRender<IntersectorT, SampleT>::
render(bool threaded) const
{
    tbb::blocked_range<size_t> range(0, mCamera->height());
    threaded ? tbb::parallel_for(range, *this) : (*this)(range);
}

template<typename IntersectorT, typename SampleT>
inline void VolumeRender<IntersectorT, SampleT>::
operator()(const tbb::blocked_range<size_t>& range) const
{
    SamplerType sampler(mAccessor, mShadow->grid().transform());//light-weight wrapper

    // Any variable prefixed with p (or s) means it's associated with a primary (or shadow) ray
    const Vec3R extinction = -mScattering-mAbsorption, One(1.0);
    const Vec3R albedo = mLightColor*mScattering/(mScattering+mAbsorption);//single scattering
    const Real sGain = mLightGain;//in-scattering along shadow ray
    const Real pStep = mPrimaryStep;//Integration step along primary ray in voxel units
    const Real sStep = mShadowStep;//Integration step along shadow ray in voxel units
    const Real cutoff = mCutOff;//Cutoff for density and transmittance

    // For the sake of completeness we show how to use two different
    // methods (hits/march) in VolumeRayIntersector that produce
    // segments along the ray that intersects active values. Comment out
    // the line below to use VolumeRayIntersector::march instead of
    // VolumeRayIntersector::hits.
#define USE_HITS
#ifdef USE_HITS
    std::vector<typename RayType::TimeSpan> pTS, sTS;
    //std::deque<typename RayType::TimeSpan> pTS, sTS;
#endif

    RayType sRay(Vec3R(0), mLightDir);//Shadow ray
    for (size_t j=range.begin(), je = range.end(); j<je; ++j) {
        for (size_t i=0, ie = mCamera->width(); i<ie; ++i) {
            Film::RGBA& bg = mCamera->pixel(i, j);
            bg.a = bg.r = bg.g = bg.b = 0;
            RayType pRay = mCamera->getRay(i, j);// Primary ray
            if( !mPrimary->setWorldRay(pRay)) continue;
            Vec3R pTrans(1.0), pLumi(0.0);
#ifndef USE_HITS
            Real pT0, pT1;
            while (mPrimary->march(pT0, pT1)) {
                for (Real pT = pStep*ceil(pT0/pStep); pT <= pT1; pT += pStep) {
#else
            mPrimary->hits(pTS);
            for (size_t k=0; k<pTS.size(); ++k) {
                Real pT = pStep*ceil(pTS[k].t0/pStep), pT1=pTS[k].t1;
                for (; pT <= pT1; pT += pStep) {
#endif
                    Vec3R pPos = mPrimary->getWorldPos(pT);
                    const Real density = sampler.wsSample(pPos);
                    if (density < cutoff) continue;
                    const Vec3R dT = math::Exp(extinction * density * pStep);
                    Vec3R sTrans(1.0);
                    sRay.setEye(pPos);
                    if( !mShadow->setWorldRay(sRay)) continue;
#ifndef USE_HITS
                    Real sT0, sT1;
                    while (mShadow->march(sT0, sT1)) {
                        for (Real sT = sStep*ceil(sT0/sStep); sT <= sT1; sT+= sStep) {
#else
                    mShadow->hits(sTS);
                    for (size_t l=0; l<sTS.size(); ++l) {
                        Real sT = sStep*ceil(sTS[l].t0/sStep), sT1=sTS[l].t1;
                        for (; sT <= sT1; sT+= sStep) {
#endif
                            const Real d = sampler.wsSample(mShadow->getWorldPos(sT));
                            if (d < cutoff) continue;
                            sTrans *= math::Exp(extinction * d * sStep/(1.0+sT*sGain));
                            if (sTrans.lengthSqr()<cutoff) goto Luminance;//Terminate sRay
                        }//Integration over shadow segment
                    }// Shadow ray march
                Luminance:
                    pLumi += albedo * sTrans * pTrans * (One-dT);
                    pTrans *= dT;
                    if (pTrans.lengthSqr()<cutoff) goto Pixel;  // Terminate Ray
                }//Integration over primary segment
            }// Primary ray march
        Pixel:
            bg.r = static_cast<Film::RGBA::ValueT>(pLumi[0]);
            bg.g = static_cast<Film::RGBA::ValueT>(pLumi[1]);
            bg.b = static_cast<Film::RGBA::ValueT>(pLumi[2]);
            bg.a = static_cast<Film::RGBA::ValueT>(1.0f - pTrans.sum()/3.0f);
     }//Horizontal pixel scan
   }//Vertical pixel scan
}

} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb

#endif // OPENVDB_TOOLS_RAYTRACER_HAS_BEEN_INCLUDED

// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )