/usr/include/openvdb/tools/VolumeAdvect.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
//
///////////////////////////////////////////////////////////////////////////
//
/// @author Ken Museth
///
/// @file VolumeAdvect.h
///
/// @brief Sparse hyperbolic advection of volumes, e.g. a density or
/// velocity (vs a level set interface).
#ifndef OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED
#define OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED
#include <tbb/parallel_for.h>
#include <boost/bind.hpp>
#include <boost/function.hpp>
#include <openvdb/Types.h>
#include <openvdb/math/Math.h>
#include <openvdb/util/NullInterrupter.h>
#include "Interpolation.h"// for Sampler
#include "VelocityFields.h" // for VelocityIntegrator
#include "Morphology.h"//for dilateActiveValues and dilateVoxels
#include "Prune.h"// for prune
#include "Statistics.h" // for extrema
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tools {
namespace Scheme {
/// @brief Numerical advections schemes.
enum SemiLagrangian { SEMI, MID, RK3, RK4, MAC, BFECC };
/// @brief Flux-limiters employed to stabalize the second-order
/// advection schemes MacCormack and BFECC.
enum Limiter { NO_LIMITER, CLAMP, REVERT };
}
/// @brief Performs advections of an arbitrary type of volume in a
/// static velocity field. The advections are performed by means
/// of various derivatives of Semi-Lagrangian integration, i.e.
/// backwards tracking along the hyperbolic characteristics
/// followed by interpolation.
///
/// @note Optionally a limiter can be combined with the higher-order
/// integration schemes MacCormack and BFECC. There are two
/// types of limiters (CLAMP and REVERT) that supress
/// non-physical oscillations by means of either claminging or
/// reverting to a first-order schemes when the function is not
/// bounded by the cell values used for tri-linear interpolation.
///
/// @verbatim The supported integrations schemes:
///
/// ================================================================
/// | Lable | Accuracy | Integration Scheme | Interpolations |
/// | |Time/Space| | velocity/volume |
/// ================================================================
/// | SEMI | 1/1 | Semi-Lagrangian | 1/1 |
/// | MID | 2/1 | Mid-Point | 2/1 |
/// | RK3 | 3/1 | 3rd Order Runge-Kutta | 3/1 |
/// | RK4 | 4/1 | 4th Order Runge-Kutta | 4/1 |
/// | MAC | 2/2 | MacCormack | 2/2 |
/// | BFECC | 2/2 | BFECC | 3/2 |
/// ================================================================
/// @endverbatim
template<typename VelocityGridT = Vec3fGrid,
bool StaggeredVelocity = false,
typename InterrupterType = util::NullInterrupter>
class VolumeAdvection
{
public:
/// @brief Constructor
///
/// @param velGrid Velocity grid responsible for the (passive) advection.
/// @param interrupter Optional interrupter used to prematurely end computations.
///
/// @note The velocity field is assumed to be constant for the duration of the
/// advection.
VolumeAdvection(const VelocityGridT& velGrid, InterrupterType* interrupter = NULL)
: mVelGrid(velGrid)
, mInterrupter(interrupter)
, mIntegrator( Scheme::SEMI )
, mLimiter( Scheme::CLAMP )
, mGrainSize( 128 )
, mSubSteps( 1 )
{
math::Extrema e = extrema(velGrid.cbeginValueAll(), /*threading*/true);
e.add(velGrid.background().length());
mMaxVelocity = e.max();
}
virtual ~VolumeAdvection()
{
}
/// @brief Return the spatial order of accuracy of the advection scheme
///
/// @note This is the optimal order in smooth regions. In
/// non-smooth regions the flux-limiter will drop the order of
/// accuracy to add numerical dissipation.
int spatialOrder() const { return (mIntegrator == Scheme::MAC ||
mIntegrator == Scheme::BFECC) ? 2 : 1; }
/// @brief Return the temporal order of accuracy of the advection scheme
///
/// @note This is the optimal order in smooth regions. In
/// non-smooth regions the flux-limiter will drop the order of
/// accuracy to add numerical dissipation.
int temporalOrder() const {
switch (mIntegrator) {
case Scheme::SEMI: return 1;
case Scheme::MID: return 2;
case Scheme::RK3: return 3;
case Scheme::RK4: return 4;
case Scheme::BFECC:return 2;
case Scheme::MAC: return 2;
}
return 0;//should never reach this point
}
/// @brief Set the integrator (see details in the table above)
void setIntegrator(Scheme::SemiLagrangian integrator) { mIntegrator = integrator; }
/// @brief Return the integrator (see details in the table above)
Scheme::SemiLagrangian getIntegrator() const { return mIntegrator; }
/// @brief Set the limiter (see details above)
void setLimiter(Scheme::Limiter limiter) { mLimiter = limiter; }
/// @brief Retrun the limiter (see details above)
Scheme::Limiter getLimiter() const { return mLimiter; }
/// @brief Return @c true if a limiter will be applied based on
/// the current settings.
bool isLimiterOn() const { return this->spatialOrder()>1 &&
mLimiter != Scheme::NO_LIMITER; }
/// @return the grain-size used for multi-threading
/// @note A grainsize of 0 implies serial execution
size_t getGrainSize() const { return mGrainSize; }
/// @brief Set the grain-size used for multi-threading
/// @note A grainsize of 0 disables multi-threading
/// @warning A small grainsize can degrade performance,
/// both in terms of time and memory footprint!
void setGrainSize(size_t grainsize) { mGrainSize = grainsize; }
/// @return the number of sub-steps per integration (always larger
/// than or equal to 1).
int getSubSteps() const { return mSubSteps; }
/// @brief Set the number of sub-steps per integration.
/// @note The only reason to increase the sub-step above its
/// default value of one is to reduce the memory footprint
/// due to significant dilation. Values smaller than 1 will
/// be clamped to 1!
void setSubSteps(int substeps) { mSubSteps = math::Max(1, substeps); }
/// @brief Return the maximum magnitude of the velocity in the
/// advection velocity field defined during construction.
double getMaxVelocity() const { return mMaxVelocity; }
/// @return Returns the maximum distance in voxel units of @a inGrid
/// that a particle can travel in the time-step @a dt when advected
/// in the velocity field defined during construction.
///
/// @details This method is useful when dilating sparse volume
/// grids to pad boundary regions. Excessive dilation can be
/// computationally expensive so use this method to prevent
/// or warn against run-away computation.
///
/// @throw RuntimeError if @a inGrid does not have uniform voxels.
template<typename VolumeGridT>
int getMaxDistance(const VolumeGridT& inGrid, double dt) const
{
if (!inGrid.hasUniformVoxels()) {
OPENVDB_THROW(RuntimeError, "Volume grid does not have uniform voxels!");
}
const double d = mMaxVelocity*math::Abs(dt)/inGrid.voxelSize()[0];
return static_cast<int>( math::RoundUp(d) );
}
/// @return Returns a new grid that is the result of passive advection
/// of all the active values the input grid by @a timeStep.
///
/// @param inGrid The input grid to be advected (unmodified)
/// @param timeStep Time-step of the Runge-Kutta integrator.
///
/// @details This method will advect all of the active values in
/// the input @a inGrid. To achieve this a
/// deep-copy is dilated to account for the material
/// transport. This dilation step can be slow for large
/// time steps @a dt or a velocity field with large magnitudes.
///
/// @warning If the VolumeSamplerT is of higher order than one
/// (i.e. tri-linear interpolation) instabilities are
/// known to occure. To suppress those monotonicity
/// constrains or flux-limiters need to be applies.
///
/// @throw RuntimeError if @a inGrid does not have uniform voxels.
template<typename VolumeGridT,
typename VolumeSamplerT>//only C++11 allows for a default argument
typename VolumeGridT::Ptr advect(const VolumeGridT& inGrid, double timeStep)
{
typename VolumeGridT::Ptr outGrid = inGrid.deepCopy();
const double dt = timeStep/mSubSteps;
const int n = this->getMaxDistance(inGrid, dt);
dilateActiveValues( outGrid->tree(), n, NN_FACE, EXPAND_TILES);
this->template cook<VolumeGridT, VolumeSamplerT>(*outGrid, inGrid, dt);
for (int step = 1; step < mSubSteps; ++step) {
typename VolumeGridT::Ptr tmpGrid = outGrid->deepCopy();
dilateActiveValues( tmpGrid->tree(), n, NN_FACE, EXPAND_TILES);
this->template cook<VolumeGridT, VolumeSamplerT>(*tmpGrid, *outGrid, dt);
outGrid.swap( tmpGrid );
}
return outGrid;
}
/// @return Returns a new grid that is the result of
/// passive advection of the active values in @a inGrid
/// that intersect the active values in @c mask. The time
/// of the output grid is incremented by @a timeStep.
///
/// @param inGrid The input grid to be advected (unmodified).
/// @param mask The mask of active values defining the active voxels
/// in @c inGrid on which to perform advection. Only
/// if a value is active in both grids will it be modified.
/// @param timeStep Time-step for a single Runge-Kutta integration step.
///
///
/// @details This method will advect all of the active values in
/// the input @a inGrid that intersects with the
/// active values in @a mask. To achieve this a
/// deep-copy is dilated to account for the material
/// transport and finally cropped to the intersection
/// with @a mask. The dilation step can be slow for large
/// time steps @a dt or fast moving velocity fields.
///
/// @warning If the VolumeSamplerT is of higher order the one
/// (i.e. tri-linear interpolation) instabilities are
/// known to occure. To suppress those monotonicity
/// constrains or flux-limiters need to be applies.
///
/// @throw RuntimeError if @a inGrid is not aligned with @a mask
/// or if its voxels are not uniform.
template<typename VolumeGridT,
typename MaskGridT,
typename VolumeSamplerT>//only C++11 allows for a default argument
typename VolumeGridT::Ptr advect(const VolumeGridT& inGrid, const MaskGridT& mask, double timeStep)
{
if (inGrid.transform() != mask.transform()) {
OPENVDB_THROW(RuntimeError, "Volume grid and mask grid are misaligned! Consider "
"resampling either of the two grids into the index space of the other.");
}
typename VolumeGridT::Ptr outGrid = inGrid.deepCopy();
const double dt = timeStep/mSubSteps;
const int n = this->getMaxDistance(inGrid, dt);
dilateActiveValues( outGrid->tree(), n, NN_FACE, EXPAND_TILES);
outGrid->topologyIntersection( mask );
pruneInactive( outGrid->tree(), mGrainSize>0, mGrainSize );
this->template cook<VolumeGridT, VolumeSamplerT>(*outGrid, inGrid, dt);
outGrid->topologyUnion( inGrid );
for (int step = 1; step < mSubSteps; ++step) {
typename VolumeGridT::Ptr tmpGrid = outGrid->deepCopy();
dilateActiveValues( tmpGrid->tree(), n, NN_FACE, EXPAND_TILES);
tmpGrid->topologyIntersection( mask );
pruneInactive( tmpGrid->tree(), mGrainSize>0, mGrainSize );
this->template cook<VolumeGridT, VolumeSamplerT>(*tmpGrid, *outGrid, dt);
tmpGrid->topologyUnion( inGrid );
outGrid.swap( tmpGrid );
}
return outGrid;
}
private:
// disallow copy construction and copy by assignment!
VolumeAdvection(const VolumeAdvection&);// not implemented
VolumeAdvection& operator=(const VolumeAdvection&);// not implemented
void start(const char* str) const
{
if (mInterrupter) mInterrupter->start(str);
}
void stop() const
{
if (mInterrupter) mInterrupter->end();
}
bool interrupt() const
{
if (mInterrupter && util::wasInterrupted(mInterrupter)) {
tbb::task::self().cancel_group_execution();
return true;
}
return false;
}
template<typename VolumeGridT, typename VolumeSamplerT>
void cook(VolumeGridT& outGrid, const VolumeGridT& inGrid, double dt)
{
switch (mIntegrator) {
case Scheme::SEMI: {
Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
case Scheme::MID: {
Advect<VolumeGridT, 2, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
case Scheme::RK3: {
Advect<VolumeGridT, 3, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
case Scheme::RK4: {
Advect<VolumeGridT, 4, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
case Scheme::BFECC: {
Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
case Scheme::MAC: {
Advect<VolumeGridT, 1, VolumeSamplerT> adv(inGrid, *this);
adv.cook(outGrid, dt);
break;
}
default:
OPENVDB_THROW(ValueError, "Spatial difference scheme not supported!");
}
pruneInactive(outGrid.tree(), mGrainSize>0, mGrainSize);
}
// Private class that implements the multi-threaded advection
template<typename VolumeGridT, size_t OrderRK, typename SamplerT> struct Advect;
// Private member data of VolumeAdvection
const VelocityGridT& mVelGrid;
double mMaxVelocity;
InterrupterType* mInterrupter;
Scheme::SemiLagrangian mIntegrator;
Scheme::Limiter mLimiter;
size_t mGrainSize;
int mSubSteps;
};//end of VolumeAdvection class
// Private class that implements the multi-threaded advection
template<typename VelocityGridT, bool StaggeredVelocity, typename InterrupterType>
template<typename VolumeGridT, size_t OrderRK, typename SamplerT>
struct VolumeAdvection<VelocityGridT, StaggeredVelocity, InterrupterType>::Advect
{
typedef typename VolumeGridT::TreeType TreeT;
typedef typename VolumeGridT::ConstAccessor AccT;
typedef typename TreeT::ValueType ValueT;
typedef typename tree::LeafManager<TreeT> LeafManagerT;
typedef typename LeafManagerT::LeafNodeType LeafNodeT;
typedef typename LeafManagerT::LeafRange LeafRangeT;
typedef VelocityIntegrator<VelocityGridT, StaggeredVelocity> VelocityIntegratorT;
typedef typename VelocityIntegratorT::ElementType RealT;
typedef typename TreeT::LeafNodeType::ValueOnIter VoxelIterT;
Advect(const VolumeGridT& inGrid, const VolumeAdvection& parent)
: mTask(0)
, mInGrid(&inGrid)
, mVelocityInt(parent.mVelGrid)
, mParent(&parent)
{
}
inline void cook(const LeafRangeT& range)
{
if (mParent->mGrainSize > 0) {
tbb::parallel_for(range, *this);
} else {
(*this)(range);
}
}
void operator()(const LeafRangeT& range) const
{
assert(mTask);
mTask(const_cast<Advect*>(this), range);
}
void cook(VolumeGridT& outGrid, double time_step)
{
mParent->start("Advecting volume");
LeafManagerT manager(outGrid.tree(), mParent->spatialOrder()==2 ? 1 : 0);
const LeafRangeT range = manager.leafRange(mParent->mGrainSize);
const RealT dt = static_cast<RealT>(-time_step);//method of characteristics backtracks
if (mParent->mIntegrator == Scheme::MAC) {
mTask = boost::bind(&Advect::rk, _1, _2, dt, 0, mInGrid);//out[0]=forward
this->cook(range);
mTask = boost::bind(&Advect::rk, _1, _2,-dt, 1, &outGrid);//out[1]=backward
this->cook(range);
mTask = boost::bind(&Advect::mac, _1, _2);//out[0] = out[0] + (in[0] - out[1])/2
this->cook(range);
} else if (mParent->mIntegrator == Scheme::BFECC) {
mTask = boost::bind(&Advect::rk, _1, _2, dt, 0, mInGrid);//out[0]=forward
this->cook(range);
mTask = boost::bind(&Advect::rk, _1, _2,-dt, 1, &outGrid);//out[1]=backward
this->cook(range);
mTask = boost::bind(&Advect::bfecc, _1, _2);//out[0] = (3*in[0] - out[1])/2
this->cook(range);
mTask = boost::bind(&Advect::rk, _1, _2, dt, 1, &outGrid);//out[1]=forward
this->cook(range);
manager.swapLeafBuffer(1);// out[0] = out[1]
} else {// SEMI, MID, RK3 and RK4
mTask = boost::bind(&Advect::rk, _1, _2, dt, 0, mInGrid);//forward
this->cook(range);
}
if (mParent->spatialOrder()==2) manager.removeAuxBuffers();
mTask = boost::bind(&Advect::limiter, _1, _2, dt);// out[0] = limiter( out[0] )
this->cook(range);
mParent->stop();
}
// Last step of the MacCormack scheme: out[0] = out[0] + (in[0] - out[1])/2
void mac(const LeafRangeT& range) const
{
if (mParent->interrupt()) return;
assert( mParent->mIntegrator == Scheme::MAC );
AccT acc = mInGrid->getAccessor();
for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
ValueT* out0 = leafIter.buffer( 0 ).data();// forward
const ValueT* out1 = leafIter.buffer( 1 ).data();// backward
const LeafNodeT* leaf = acc.probeConstLeaf( leafIter->origin() );
if (leaf !=NULL) {
const ValueT* in0 = leaf->buffer().data();
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
const Index i = voxelIter.pos();
out0[i] += RealT(0.5) * ( in0[i] - out1[i] );
}
} else {
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
const Index i = voxelIter.pos();
out0[i] += RealT(0.5) * ( acc.getValue(voxelIter.getCoord()) - out1[i] );
}//loop over active voxels
}
}//loop over leaf nodes
}
// Intermediate step in the BFECC scheme: out[0] = (3*in[0] - out[1])/2
void bfecc(const LeafRangeT& range) const
{
if (mParent->interrupt()) return;
assert( mParent->mIntegrator == Scheme::BFECC );
AccT acc = mInGrid->getAccessor();
for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
ValueT* out0 = leafIter.buffer( 0 ).data();// forward
const ValueT* out1 = leafIter.buffer( 1 ).data();// backward
const LeafNodeT* leaf = acc.probeConstLeaf(leafIter->origin());
if (leaf !=NULL) {
const ValueT* in0 = leaf->buffer().data();
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
const Index i = voxelIter.pos();
out0[i] = RealT(0.5)*( RealT(3)*in0[i] - out1[i] );
}//loop over active voxels
} else {
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
const Index i = voxelIter.pos();
out0[i] = RealT(0.5)*( RealT(3)*acc.getValue(voxelIter.getCoord()) - out1[i] );
}//loop over active voxels
}
}//loop over leaf nodes
}
// Semi-Lagrangian integration with Runge-Kutta of various orders (1->4)
void rk(const LeafRangeT& range, RealT dt, size_t n, const VolumeGridT* grid) const
{
if (mParent->interrupt()) return;
const math::Transform& xform = mInGrid->transform();
AccT acc = grid->getAccessor();
for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
ValueT* phi = leafIter.buffer( n ).data();
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
ValueT& value = phi[voxelIter.pos()];
Vec3d wPos = xform.indexToWorld(voxelIter.getCoord());
mVelocityInt.template rungeKutta<OrderRK, Vec3d>(dt, wPos);
value = SamplerT::sample(acc, xform.worldToIndex(wPos));
}//loop over active voxels
}//loop over leaf nodes
}
void limiter(const LeafRangeT& range, RealT dt) const
{
if (mParent->interrupt()) return;
const bool doLimiter = mParent->isLimiterOn();
const bool doClamp = mParent->mLimiter == Scheme::CLAMP;
ValueT data[2][2][2], vMin, vMax;
const math::Transform& xform = mInGrid->transform();
AccT acc = mInGrid->getAccessor();
const ValueT backg = mInGrid->background();
for (typename LeafRangeT::Iterator leafIter = range.begin(); leafIter; ++leafIter) {
ValueT* phi = leafIter.buffer( 0 ).data();
for (VoxelIterT voxelIter = leafIter->beginValueOn(); voxelIter; ++voxelIter) {
ValueT& value = phi[voxelIter.pos()];
if ( doLimiter ) {
assert(OrderRK == 1);
Vec3d wPos = xform.indexToWorld(voxelIter.getCoord());
mVelocityInt.template rungeKutta<1, Vec3d>(dt, wPos);// Explicit Euler
Vec3d iPos = xform.worldToIndex(wPos);
Coord ijk = Coord::floor( iPos );
BoxSampler::getValues(data, acc, ijk);
BoxSampler::extrema(data, vMin, vMax);
if ( doClamp ) {
value = math::Clamp( value, vMin, vMax);
} else if (value < vMin || value > vMax ) {
iPos -= Vec3R(ijk[0], ijk[1], ijk[2]);//unit coordinates
value = BoxSampler::trilinearInterpolation( data, iPos );
}
}
if (math::isApproxEqual(value, backg, math::Delta<ValueT>::value())) {
value = backg;
leafIter->setValueOff( voxelIter.pos() );
}
}//loop over active voxels
}//loop over leaf nodes
}
// Public member data of the private Advect class
typename boost::function<void (Advect*, const LeafRangeT&)> mTask;
const VolumeGridT* mInGrid;
const VelocityIntegratorT mVelocityInt;// lightweight!
const VolumeAdvection* mParent;
};// end of private member class Advect
} // namespace tools
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
#endif // OPENVDB_TOOLS_VOLUME_ADVECT_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|