/usr/include/openvdb/tree/LeafNode.h is in libopenvdb-dev 3.2.0-2.1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 | ///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2016 DreamWorks Animation LLC
//
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
//
// Redistributions of source code must retain the above copyright
// and license notice and the following restrictions and disclaimer.
//
// * Neither the name of DreamWorks Animation nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// IN NO EVENT SHALL THE COPYRIGHT HOLDERS' AND CONTRIBUTORS' AGGREGATE
// LIABILITY FOR ALL CLAIMS REGARDLESS OF THEIR BASIS EXCEED US$250.00.
//
///////////////////////////////////////////////////////////////////////////
#ifndef OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED
#define OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED
#include <iostream>
#include <algorithm> // for std::swap
#include <cstring> // for std::memcpy()
#include <boost/shared_ptr.hpp>
#include <boost/static_assert.hpp>
#include <boost/bind.hpp>
#include <tbb/blocked_range.h>
#include <tbb/spin_mutex.h>
#include <tbb/parallel_for.h>
#include <openvdb/Types.h>
#include <openvdb/util/NodeMasks.h>
#include <openvdb/io/Compression.h> // for io::readData(), etc.
#include "Iterator.h"
class TestLeaf;
template<typename> class TestLeafIO;
namespace openvdb {
OPENVDB_USE_VERSION_NAMESPACE
namespace OPENVDB_VERSION_NAME {
namespace tree {
template<Index, typename> struct SameLeafConfig; // forward declaration
/// @brief Templated block class to hold specific data types and a fixed
/// number of values determined by Log2Dim. The actual coordinate
/// dimension of the block is 2^Log2Dim, i.e. Log2Dim=3 corresponds to
/// a LeafNode that spans a 8^3 block.
template<typename T, Index Log2Dim>
class LeafNode
{
public:
typedef T BuildType;
typedef T ValueType;
typedef LeafNode<ValueType, Log2Dim> LeafNodeType;
typedef boost::shared_ptr<LeafNode> Ptr;
typedef util::NodeMask<Log2Dim> NodeMaskType;
static const Index
LOG2DIM = Log2Dim, // needed by parent nodes
TOTAL = Log2Dim, // needed by parent nodes
DIM = 1 << TOTAL, // dimension along one coordinate direction
NUM_VALUES = 1 << 3 * Log2Dim,
NUM_VOXELS = NUM_VALUES, // total number of voxels represented by this node
SIZE = NUM_VALUES,
LEVEL = 0; // level 0 = leaf
/// @brief ValueConverter<T>::Type is the type of a LeafNode having the same
/// dimensions as this node but a different value type, T.
template<typename OtherValueType>
struct ValueConverter {
typedef LeafNode<OtherValueType, Log2Dim> Type;
};
/// @brief SameConfiguration<OtherNodeType>::value is @c true if and only if
/// OtherNodeType is the type of a LeafNode with the same dimensions as this node.
template<typename OtherNodeType>
struct SameConfiguration {
static const bool value = SameLeafConfig<LOG2DIM, OtherNodeType>::value;
};
#ifndef OPENVDB_2_ABI_COMPATIBLE
struct FileInfo
{
FileInfo(): bufpos(0) , maskpos(0) {}
std::streamoff bufpos;
std::streamoff maskpos;
io::MappedFile::Ptr mapping;
boost::shared_ptr<io::StreamMetadata> meta;
};
#endif
/// @brief Array of fixed size @f$2^{3 \times {\rm Log2Dim}}@f$ that stores
/// the voxel values of a LeafNode
class Buffer
{
public:
#ifdef OPENVDB_2_ABI_COMPATIBLE
/// Default constructor
Buffer(): mData(new ValueType[SIZE]) {}
/// Construct a buffer populated with the specified value.
explicit Buffer(const ValueType& val): mData(new ValueType[SIZE]) { this->fill(val); }
/// Copy constructor
Buffer(const Buffer& other): mData(new ValueType[SIZE]) { *this = other; }
/// Destructor
~Buffer() { delete[] mData; }
/// Return @c true if this buffer's values have not yet been read from disk.
bool isOutOfCore() const { return false; }
/// Return @c true if memory for this buffer has not yet been allocated.
bool empty() const { return (mData == NULL); }
#else
typedef ValueType WordType;
static const Index WORD_COUNT = SIZE;
/// Default constructor
Buffer(): mData(new ValueType[SIZE]), mOutOfCore(0) {}
/// Construct a buffer populated with the specified value.
explicit Buffer(const ValueType& val): mData(new ValueType[SIZE]), mOutOfCore(0)
{
this->fill(val);
}
/// Copy constructor
Buffer(const Buffer& other): mData(NULL), mOutOfCore(other.mOutOfCore)
{
if (other.isOutOfCore()) {
mFileInfo = new FileInfo(*other.mFileInfo);
} else {
this->allocate();
ValueType* target = mData;
const ValueType* source = other.mData;
Index n = SIZE;
while (n--) *target++ = *source++;
}
}
/// Construct a buffer but don't allocate memory for the full array of values.
Buffer(PartialCreate, const ValueType&): mData(NULL), mOutOfCore(0) {}
/// Destructor
~Buffer()
{
if (this->isOutOfCore()) {
this->detachFromFile();
} else {
this->deallocate();
}
}
/// Return @c true if this buffer's values have not yet been read from disk.
bool isOutOfCore() const { return bool(mOutOfCore); }
/// Return @c true if memory for this buffer has not yet been allocated.
bool empty() const { return !mData || this->isOutOfCore(); }
#endif
/// Allocate memory for this buffer if it has not already been allocated.
bool allocate() { if (mData == NULL) mData = new ValueType[SIZE]; return true; }
/// Populate this buffer with a constant value.
void fill(const ValueType& val)
{
this->detachFromFile();
if (mData != NULL) {
ValueType* target = mData;
Index n = SIZE;
while (n--) *target++ = val;
}
}
/// Return a const reference to the i'th element of this buffer.
const ValueType& getValue(Index i) const { return this->at(i); }
/// Return a const reference to the i'th element of this buffer.
const ValueType& operator[](Index i) const { return this->at(i); }
/// Set the i'th value of this buffer to the specified value.
void setValue(Index i, const ValueType& val)
{
assert(i < SIZE);
#ifdef OPENVDB_2_ABI_COMPATIBLE
mData[i] = val;
#else
this->loadValues();
if (mData) mData[i] = val;
#endif
}
/// Copy the other buffer's values into this buffer.
Buffer& operator=(const Buffer& other)
{
if (&other != this) {
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (this->isOutOfCore()) {
this->detachFromFile();
} else {
if (other.isOutOfCore()) this->deallocate();
}
if (other.isOutOfCore()) {
mOutOfCore = other.mOutOfCore;
mFileInfo = new FileInfo(*other.mFileInfo);
} else {
#endif
this->allocate();
ValueType* target = mData;
const ValueType* source = other.mData;
Index n = SIZE;
while (n--) *target++ = *source++;
#ifndef OPENVDB_2_ABI_COMPATIBLE
}
#endif
}
return *this;
}
/// @brief Return @c true if the contents of the other buffer
/// exactly equal the contents of this buffer.
bool operator==(const Buffer& other) const
{
this->loadValues();
other.loadValues();
const ValueType *target = mData, *source = other.mData;
if (!target && !source) return true;
if (!target || !source) return false;
Index n = SIZE;
while (n && math::isExactlyEqual(*target++, *source++)) --n;
return n == 0;
}
/// @brief Return @c true if the contents of the other buffer
/// are not exactly equal to the contents of this buffer.
bool operator!=(const Buffer& other) const { return !(other == *this); }
/// Exchange this buffer's values with the other buffer's values.
void swap(Buffer& other)
{
std::swap(mData, other.mData);
#ifndef OPENVDB_2_ABI_COMPATIBLE
std::swap(mOutOfCore, other.mOutOfCore);
#endif
}
/// Return the memory footprint of this buffer in bytes.
Index memUsage() const
{
size_t n = sizeof(*this);
#ifdef OPENVDB_2_ABI_COMPATIBLE
if (mData) n += SIZE * sizeof(ValueType);
#else
if (this->isOutOfCore()) n += sizeof(FileInfo);
else if (mData) n += SIZE * sizeof(ValueType);
#endif
return static_cast<Index>(n);
}
/// Return the number of values contained in this buffer.
static Index size() { return SIZE; }
/// @brief Return a const pointer to the array of voxel values.
/// @details This method guarantees that the buffer is allocated and loaded.
/// @warning This method should only be used by experts seeking low-level optimizations.
const ValueType* data() const
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
this->loadValues();
if (mData == NULL) {
Buffer* self = const_cast<Buffer*>(this);
// This lock will be contended at most once.
tbb::spin_mutex::scoped_lock lock(self->mMutex);
if (mData == NULL) self->mData = new ValueType[SIZE];
}
#endif
return mData;
}
/// @brief Return a pointer to the array of voxel values.
/// @details This method guarantees that the buffer is allocated and loaded.
/// @warning This method should only be used by experts seeking low-level optimizations.
ValueType* data()
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
this->loadValues();
if (mData == NULL) {
// This lock will be contended at most once.
tbb::spin_mutex::scoped_lock lock(mMutex);
if (mData == NULL) mData = new ValueType[SIZE];
}
#endif
return mData;
}
private:
/// If this buffer is empty, return zero, otherwise return the value at index @ i.
const ValueType& at(Index i) const
{
assert(i < SIZE);
#ifdef OPENVDB_2_ABI_COMPATIBLE
return mData[i];
#else
this->loadValues();
// We can't use the ternary operator here, otherwise Visual C++ returns
// a reference to a temporary.
if (mData) return mData[i]; else return sZero;
#endif
}
/// @brief Return a non-const reference to the value at index @a i.
/// @details This method is private since it makes assumptions about the
/// buffer's memory layout. Buffers associated with custom leaf node types
/// (e.g., a bool buffer implemented as a bitmask) might not be able to
/// return non-const references to their values.
ValueType& operator[](Index i) { return const_cast<ValueType&>(this->at(i)); }
bool deallocate()
{
if (mData != NULL && !this->isOutOfCore()) {
delete[] mData;
mData = NULL;
return true;
}
return false;
}
#ifdef OPENVDB_2_ABI_COMPATIBLE
void setOutOfCore(bool) {}
void loadValues() const {}
void doLoad() const {}
bool detachFromFile() { return false; }
#else
inline void setOutOfCore(bool b) { mOutOfCore = b; }
// To facilitate inlining in the common case in which the buffer is in-core,
// the loading logic is split into a separate function, doLoad().
inline void loadValues() const { if (this->isOutOfCore()) this->doLoad(); }
inline void doLoad() const;
inline bool detachFromFile()
{
if (this->isOutOfCore()) {
delete mFileInfo;
mFileInfo = NULL;
this->setOutOfCore(false);
return true;
}
return false;
}
#endif
friend class ::TestLeaf;
// Allow the parent LeafNode to access this buffer's data pointer.
friend class LeafNode;
#ifdef OPENVDB_2_ABI_COMPATIBLE
ValueType* mData;
#else
union {
ValueType* mData;
FileInfo* mFileInfo;
};
Index32 mOutOfCore; // currently interpreted as bool; extra bits reserved for future use
tbb::spin_mutex mMutex; // 1 byte
//int8_t mReserved[3]; // padding for alignment
static const ValueType sZero;
#endif
}; // class Buffer
/// Default constructor
LeafNode();
/// @brief Constructor
/// @param coords the grid index coordinates of a voxel
/// @param value a value with which to fill the buffer
/// @param active the active state to which to initialize all voxels
explicit LeafNode(const Coord& coords,
const ValueType& value = zeroVal<ValueType>(),
bool active = false);
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// @brief "Partial creation" constructor used during file input
/// @param coords the grid index coordinates of a voxel
/// @param value a value with which to fill the buffer
/// @param active the active state to which to initialize all voxels
/// @details This constructor does not allocate memory for voxel values.
LeafNode(PartialCreate,
const Coord& coords,
const ValueType& value = zeroVal<ValueType>(),
bool active = false);
#endif
/// Deep copy constructor
LeafNode(const LeafNode&);
/// Value conversion copy constructor
template<typename OtherValueType>
explicit LeafNode(const LeafNode<OtherValueType, Log2Dim>& other);
/// Topology copy constructor
template<typename OtherValueType>
LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
const ValueType& offValue, const ValueType& onValue, TopologyCopy);
/// Topology copy constructor
template<typename OtherValueType>
LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
const ValueType& background, TopologyCopy);
/// Destructor.
~LeafNode();
//
// Statistics
//
/// Return log2 of the dimension of this LeafNode, e.g. 3 if dimensions are 8^3
static Index log2dim() { return Log2Dim; }
/// Return the number of voxels in each coordinate dimension.
static Index dim() { return DIM; }
/// Return the total number of voxels represented by this LeafNode
static Index size() { return SIZE; }
/// Return the total number of voxels represented by this LeafNode
static Index numValues() { return SIZE; }
/// Return the level of this node, which by definition is zero for LeafNodes
static Index getLevel() { return LEVEL; }
/// Append the Log2Dim of this LeafNode to the specified vector
static void getNodeLog2Dims(std::vector<Index>& dims) { dims.push_back(Log2Dim); }
/// Return the dimension of child nodes of this LeafNode, which is one for voxels.
static Index getChildDim() { return 1; }
/// Return the leaf count for this node, which is one.
static Index32 leafCount() { return 1; }
/// Return the non-leaf count for this node, which is zero.
static Index32 nonLeafCount() { return 0; }
/// Return the number of voxels marked On.
Index64 onVoxelCount() const { return mValueMask.countOn(); }
/// Return the number of voxels marked Off.
Index64 offVoxelCount() const { return mValueMask.countOff(); }
Index64 onLeafVoxelCount() const { return onVoxelCount(); }
Index64 offLeafVoxelCount() const { return offVoxelCount(); }
static Index64 onTileCount() { return 0; }
static Index64 offTileCount() { return 0; }
/// Return @c true if this node has no active voxels.
bool isEmpty() const { return mValueMask.isOff(); }
/// Return @c true if this node contains only active voxels.
bool isDense() const { return mValueMask.isOn(); }
#ifndef OPENVDB_2_ABI_COMPATIBLE
/// Return @c true if memory for this node's buffer has been allocated.
bool isAllocated() const { return !mBuffer.isOutOfCore() && !mBuffer.empty(); }
/// Allocate memory for this node's buffer if it has not already been allocated.
bool allocate() { return mBuffer.allocate(); }
#endif
/// Return the memory in bytes occupied by this node.
Index64 memUsage() const;
/// Expand the given bounding box so that it includes this leaf node's active voxels.
/// If visitVoxels is false this LeafNode will be approximated as dense, i.e. with all
/// voxels active. Else the individual active voxels are visited to produce a tight bbox.
void evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels = true) const;
/// @brief Return the bounding box of this node, i.e., the full index space
/// spanned by this leaf node.
CoordBBox getNodeBoundingBox() const { return CoordBBox::createCube(mOrigin, DIM); }
/// Set the grid index coordinates of this node's local origin.
void setOrigin(const Coord& origin) { mOrigin = origin; }
//@{
/// Return the grid index coordinates of this node's local origin.
const Coord& origin() const { return mOrigin; }
void getOrigin(Coord& origin) const { origin = mOrigin; }
void getOrigin(Int32& x, Int32& y, Int32& z) const { mOrigin.asXYZ(x, y, z); }
//@}
/// Return the linear table offset of the given global or local coordinates.
static Index coordToOffset(const Coord& xyz);
/// @brief Return the local coordinates for a linear table offset,
/// where offset 0 has coordinates (0, 0, 0).
static Coord offsetToLocalCoord(Index n);
/// Return the global coordinates for a linear table offset.
Coord offsetToGlobalCoord(Index n) const;
/// Return a string representation of this node.
std::string str() const;
/// @brief Return @c true if the given node (which may have a different @c ValueType
/// than this node) has the same active value topology as this node.
template<typename OtherType, Index OtherLog2Dim>
bool hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const;
/// Check for buffer, state and origin equivalence.
bool operator==(const LeafNode& other) const;
bool operator!=(const LeafNode& other) const { return !(other == *this); }
protected:
typedef typename NodeMaskType::OnIterator MaskOnIterator;
typedef typename NodeMaskType::OffIterator MaskOffIterator;
typedef typename NodeMaskType::DenseIterator MaskDenseIterator;
// Type tags to disambiguate template instantiations
struct ValueOn {}; struct ValueOff {}; struct ValueAll {};
struct ChildOn {}; struct ChildOff {}; struct ChildAll {};
template<typename MaskIterT, typename NodeT, typename ValueT, typename TagT>
struct ValueIter:
// Derives from SparseIteratorBase, but can also be used as a dense iterator,
// if MaskIterT is a dense mask iterator type.
public SparseIteratorBase<
MaskIterT, ValueIter<MaskIterT, NodeT, ValueT, TagT>, NodeT, ValueT>
{
typedef SparseIteratorBase<MaskIterT, ValueIter, NodeT, ValueT> BaseT;
ValueIter() {}
ValueIter(const MaskIterT& iter, NodeT* parent): BaseT(iter, parent) {}
ValueT& getItem(Index pos) const { return this->parent().getValue(pos); }
ValueT& getValue() const { return this->parent().getValue(this->pos()); }
// Note: setItem() can't be called on const iterators.
void setItem(Index pos, const ValueT& value) const
{
this->parent().setValueOnly(pos, value);
}
// Note: setValue() can't be called on const iterators.
void setValue(const ValueT& value) const
{
this->parent().setValueOnly(this->pos(), value);
}
// Note: modifyItem() can't be called on const iterators.
template<typename ModifyOp>
void modifyItem(Index n, const ModifyOp& op) const { this->parent().modifyValue(n, op); }
// Note: modifyValue() can't be called on const iterators.
template<typename ModifyOp>
void modifyValue(const ModifyOp& op) const { this->parent().modifyValue(this->pos(), op); }
};
/// Leaf nodes have no children, so their child iterators have no get/set accessors.
template<typename MaskIterT, typename NodeT, typename TagT>
struct ChildIter:
public SparseIteratorBase<MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>
{
ChildIter() {}
ChildIter(const MaskIterT& iter, NodeT* parent): SparseIteratorBase<
MaskIterT, ChildIter<MaskIterT, NodeT, TagT>, NodeT, ValueType>(iter, parent) {}
};
template<typename NodeT, typename ValueT, typename TagT>
struct DenseIter: public DenseIteratorBase<
MaskDenseIterator, DenseIter<NodeT, ValueT, TagT>, NodeT, /*ChildT=*/void, ValueT>
{
typedef DenseIteratorBase<MaskDenseIterator, DenseIter, NodeT, void, ValueT> BaseT;
typedef typename BaseT::NonConstValueType NonConstValueT;
DenseIter() {}
DenseIter(const MaskDenseIterator& iter, NodeT* parent): BaseT(iter, parent) {}
bool getItem(Index pos, void*& child, NonConstValueT& value) const
{
value = this->parent().getValue(pos);
child = NULL;
return false; // no child
}
// Note: setItem() can't be called on const iterators.
//void setItem(Index pos, void* child) const {}
// Note: unsetItem() can't be called on const iterators.
void unsetItem(Index pos, const ValueT& value) const
{
this->parent().setValueOnly(pos, value);
}
};
public:
typedef ValueIter<MaskOnIterator, LeafNode, const ValueType, ValueOn> ValueOnIter;
typedef ValueIter<MaskOnIterator, const LeafNode, const ValueType, ValueOn> ValueOnCIter;
typedef ValueIter<MaskOffIterator, LeafNode, const ValueType, ValueOff> ValueOffIter;
typedef ValueIter<MaskOffIterator,const LeafNode,const ValueType,ValueOff> ValueOffCIter;
typedef ValueIter<MaskDenseIterator, LeafNode, const ValueType, ValueAll> ValueAllIter;
typedef ValueIter<MaskDenseIterator,const LeafNode,const ValueType,ValueAll> ValueAllCIter;
typedef ChildIter<MaskOnIterator, LeafNode, ChildOn> ChildOnIter;
typedef ChildIter<MaskOnIterator, const LeafNode, ChildOn> ChildOnCIter;
typedef ChildIter<MaskOffIterator, LeafNode, ChildOff> ChildOffIter;
typedef ChildIter<MaskOffIterator, const LeafNode, ChildOff> ChildOffCIter;
typedef DenseIter<LeafNode, ValueType, ChildAll> ChildAllIter;
typedef DenseIter<const LeafNode, const ValueType, ChildAll> ChildAllCIter;
ValueOnCIter cbeginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
ValueOnCIter beginValueOn() const { return ValueOnCIter(mValueMask.beginOn(), this); }
ValueOnIter beginValueOn() { return ValueOnIter(mValueMask.beginOn(), this); }
ValueOffCIter cbeginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
ValueOffCIter beginValueOff() const { return ValueOffCIter(mValueMask.beginOff(), this); }
ValueOffIter beginValueOff() { return ValueOffIter(mValueMask.beginOff(), this); }
ValueAllCIter cbeginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
ValueAllCIter beginValueAll() const { return ValueAllCIter(mValueMask.beginDense(), this); }
ValueAllIter beginValueAll() { return ValueAllIter(mValueMask.beginDense(), this); }
ValueOnCIter cendValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
ValueOnCIter endValueOn() const { return ValueOnCIter(mValueMask.endOn(), this); }
ValueOnIter endValueOn() { return ValueOnIter(mValueMask.endOn(), this); }
ValueOffCIter cendValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
ValueOffCIter endValueOff() const { return ValueOffCIter(mValueMask.endOff(), this); }
ValueOffIter endValueOff() { return ValueOffIter(mValueMask.endOff(), this); }
ValueAllCIter cendValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
ValueAllCIter endValueAll() const { return ValueAllCIter(mValueMask.endDense(), this); }
ValueAllIter endValueAll() { return ValueAllIter(mValueMask.endDense(), this); }
// Note that [c]beginChildOn() and [c]beginChildOff() actually return end iterators,
// because leaf nodes have no children.
ChildOnCIter cbeginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
ChildOnCIter beginChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
ChildOnIter beginChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
ChildOffCIter cbeginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
ChildOffCIter beginChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
ChildOffIter beginChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
ChildAllCIter cbeginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
ChildAllCIter beginChildAll() const { return ChildAllCIter(mValueMask.beginDense(), this); }
ChildAllIter beginChildAll() { return ChildAllIter(mValueMask.beginDense(), this); }
ChildOnCIter cendChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
ChildOnCIter endChildOn() const { return ChildOnCIter(mValueMask.endOn(), this); }
ChildOnIter endChildOn() { return ChildOnIter(mValueMask.endOn(), this); }
ChildOffCIter cendChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
ChildOffCIter endChildOff() const { return ChildOffCIter(mValueMask.endOff(), this); }
ChildOffIter endChildOff() { return ChildOffIter(mValueMask.endOff(), this); }
ChildAllCIter cendChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
ChildAllCIter endChildAll() const { return ChildAllCIter(mValueMask.endDense(), this); }
ChildAllIter endChildAll() { return ChildAllIter(mValueMask.endDense(), this); }
//
// Buffer management
//
/// @brief Exchange this node's data buffer with the given data buffer
/// without changing the active states of the values.
void swap(Buffer& other) { mBuffer.swap(other); }
const Buffer& buffer() const { return mBuffer; }
Buffer& buffer() { return mBuffer; }
//
// I/O methods
//
/// @brief Read in just the topology.
/// @param is the stream from which to read
/// @param fromHalf if true, floating-point input values are assumed to be 16-bit
void readTopology(std::istream& is, bool fromHalf = false);
/// @brief Write out just the topology.
/// @param os the stream to which to write
/// @param toHalf if true, output floating-point values as 16-bit half floats
void writeTopology(std::ostream& os, bool toHalf = false) const;
/// @brief Read buffers from a stream.
/// @param is the stream from which to read
/// @param fromHalf if true, floating-point input values are assumed to be 16-bit
void readBuffers(std::istream& is, bool fromHalf = false);
/// @brief Read buffers that intersect the given bounding box.
/// @param is the stream from which to read
/// @param bbox an index-space bounding box
/// @param fromHalf if true, floating-point input values are assumed to be 16-bit
void readBuffers(std::istream& is, const CoordBBox& bbox, bool fromHalf = false);
/// @brief Write buffers to a stream.
/// @param os the stream to which to write
/// @param toHalf if true, output floating-point values as 16-bit half floats
void writeBuffers(std::ostream& os, bool toHalf = false) const;
size_t streamingSize(bool toHalf = false) const;
//
// Accessor methods
//
/// Return the value of the voxel at the given coordinates.
const ValueType& getValue(const Coord& xyz) const;
/// Return the value of the voxel at the given linear offset.
const ValueType& getValue(Index offset) const;
/// @brief Return @c true if the voxel at the given coordinates is active.
/// @param xyz the coordinates of the voxel to be probed
/// @param[out] val the value of the voxel at the given coordinates
bool probeValue(const Coord& xyz, ValueType& val) const;
/// @brief Return @c true if the voxel at the given offset is active.
/// @param offset the linear offset of the voxel to be probed
/// @param[out] val the value of the voxel at the given coordinates
bool probeValue(Index offset, ValueType& val) const;
/// Return the level (i.e., 0) at which leaf node values reside.
static Index getValueLevel(const Coord&) { return LEVEL; }
/// Set the active state of the voxel at the given coordinates but don't change its value.
void setActiveState(const Coord& xyz, bool on);
/// Set the active state of the voxel at the given offset but don't change its value.
void setActiveState(Index offset, bool on) { assert(offset<SIZE); mValueMask.set(offset, on); }
/// Set the value of the voxel at the given coordinates but don't change its active state.
void setValueOnly(const Coord& xyz, const ValueType& val);
/// Set the value of the voxel at the given offset but don't change its active state.
void setValueOnly(Index offset, const ValueType& val);
/// Mark the voxel at the given coordinates as inactive but don't change its value.
void setValueOff(const Coord& xyz) { mValueMask.setOff(LeafNode::coordToOffset(xyz)); }
/// Mark the voxel at the given offset as inactive but don't change its value.
void setValueOff(Index offset) { assert(offset < SIZE); mValueMask.setOff(offset); }
/// Set the value of the voxel at the given coordinates and mark the voxel as inactive.
void setValueOff(const Coord& xyz, const ValueType& val);
/// Set the value of the voxel at the given offset and mark the voxel as inactive.
void setValueOff(Index offset, const ValueType& val);
/// Mark the voxel at the given coordinates as active but don't change its value.
void setValueOn(const Coord& xyz) { mValueMask.setOn(LeafNode::coordToOffset(xyz)); }
/// Mark the voxel at the given offset as active but don't change its value.
void setValueOn(Index offset) { assert(offset < SIZE); mValueMask.setOn(offset); }
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValueOn(const Coord& xyz, const ValueType& val) {
this->setValueOn(LeafNode::coordToOffset(xyz), val);
}
/// Set the value of the voxel at the given coordinates and mark the voxel as active.
void setValue(const Coord& xyz, const ValueType& val) { this->setValueOn(xyz, val); }
/// Set the value of the voxel at the given offset and mark the voxel as active.
void setValueOn(Index offset, const ValueType& val) {
mBuffer.setValue(offset, val);
mValueMask.setOn(offset);
}
/// @brief Apply a functor to the value of the voxel at the given offset
/// and mark the voxel as active.
template<typename ModifyOp>
void modifyValue(Index offset, const ModifyOp& op)
{
ValueType val = mBuffer[offset];
op(val);
mBuffer.setValue(offset, val);
mValueMask.setOn(offset);
}
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
template<typename ModifyOp>
void modifyValue(const Coord& xyz, const ModifyOp& op)
{
this->modifyValue(this->coordToOffset(xyz), op);
}
/// Apply a functor to the voxel at the given coordinates.
template<typename ModifyOp>
void modifyValueAndActiveState(const Coord& xyz, const ModifyOp& op)
{
const Index offset = this->coordToOffset(xyz);
bool state = mValueMask.isOn(offset);
ValueType val = mBuffer[offset];
op(val, state);
mBuffer.setValue(offset, val);
mValueMask.set(offset, state);
}
/// Mark all voxels as active but don't change their values.
void setValuesOn() { mValueMask.setOn(); }
/// Mark all voxels as inactive but don't change their values.
void setValuesOff() { mValueMask.setOff(); }
/// Return @c true if the voxel at the given coordinates is active.
bool isValueOn(const Coord& xyz) const {return this->isValueOn(LeafNode::coordToOffset(xyz));}
/// Return @c true if the voxel at the given offset is active.
bool isValueOn(Index offset) const { return mValueMask.isOn(offset); }
/// Return @c false since leaf nodes never contain tiles.
static bool hasActiveTiles() { return false; }
/// Set all voxels that lie outside the given axis-aligned box to the background.
void clip(const CoordBBox&, const ValueType& background);
/// Set all voxels within an axis-aligned box to the specified value and active state.
void fill(const CoordBBox& bbox, const ValueType&, bool active = true);
/// Set all voxels to the specified value but don't change their active states.
void fill(const ValueType& value);
/// Set all voxels to the specified value and active state.
void fill(const ValueType& value, bool active);
/// @brief Copy into a dense grid the values of the voxels that lie within
/// a given bounding box.
///
/// @param bbox inclusive bounding box of the voxels to be copied into the dense grid
/// @param dense dense grid with a stride in @e z of one (see tools::Dense
/// in tools/Dense.h for the required API)
///
/// @note @a bbox is assumed to be identical to or contained in the coordinate domains
/// of both the dense grid and this node, i.e., no bounds checking is performed.
/// @note Consider using tools::CopyToDense in tools/Dense.h
/// instead of calling this method directly.
template<typename DenseT>
void copyToDense(const CoordBBox& bbox, DenseT& dense) const;
/// @brief Copy from a dense grid into this node the values of the voxels
/// that lie within a given bounding box.
/// @details Only values that are different (by more than the given tolerance)
/// from the background value will be active. Other values are inactive
/// and truncated to the background value.
///
/// @param bbox inclusive bounding box of the voxels to be copied into this node
/// @param dense dense grid with a stride in @e z of one (see tools::Dense
/// in tools/Dense.h for the required API)
/// @param background background value of the tree that this node belongs to
/// @param tolerance tolerance within which a value equals the background value
///
/// @note @a bbox is assumed to be identical to or contained in the coordinate domains
/// of both the dense grid and this node, i.e., no bounds checking is performed.
/// @note Consider using tools::CopyFromDense in tools/Dense.h
/// instead of calling this method directly.
template<typename DenseT>
void copyFromDense(const CoordBBox& bbox, const DenseT& dense,
const ValueType& background, const ValueType& tolerance);
/// @brief Return the value of the voxel at the given coordinates.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
const ValueType& getValueAndCache(const Coord& xyz, AccessorT&) const
{
return this->getValue(xyz);
}
/// @brief Return @c true if the voxel at the given coordinates is active.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool isValueOnAndCache(const Coord& xyz, AccessorT&) const { return this->isValueOn(xyz); }
/// @brief Change the value of the voxel at the given coordinates and mark it as active.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
{
this->setValueOn(xyz, val);
}
/// @brief Change the value of the voxel at the given coordinates
/// but preserve its state.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOnlyAndCache(const Coord& xyz, const ValueType& val, AccessorT&)
{
this->setValueOnly(xyz, val);
}
/// @brief Apply a functor to the value of the voxel at the given coordinates
/// and mark the voxel as active.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
{
this->modifyValue(xyz, op);
}
/// Apply a functor to the voxel at the given coordinates.
/// @note Used internally by ValueAccessor.
template<typename ModifyOp, typename AccessorT>
void modifyValueAndActiveStateAndCache(const Coord& xyz, const ModifyOp& op, AccessorT&)
{
this->modifyValueAndActiveState(xyz, op);
}
/// @brief Change the value of the voxel at the given coordinates and mark it as inactive.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setValueOffAndCache(const Coord& xyz, const ValueType& value, AccessorT&)
{
this->setValueOff(xyz, value);
}
/// @brief Set the active state of the voxel at the given coordinates
/// without changing its value.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
void setActiveStateAndCache(const Coord& xyz, bool on, AccessorT&)
{
this->setActiveState(xyz, on);
}
/// @brief Return @c true if the voxel at the given coordinates is active
/// and return the voxel value in @a val.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
bool probeValueAndCache(const Coord& xyz, ValueType& val, AccessorT&) const
{
return this->probeValue(xyz, val);
}
/// @brief Return the value of the voxel at the given coordinates and return
/// its active state and level (i.e., 0) in @a state and @a level.
/// @note Used internally by ValueAccessor.
template<typename AccessorT>
const ValueType& getValue(const Coord& xyz, bool& state, int& level, AccessorT&) const
{
const Index offset = this->coordToOffset(xyz);
state = mValueMask.isOn(offset);
level = LEVEL;
return mBuffer[offset];
}
/// @brief Return the LEVEL (=0) at which leaf node values reside.
/// @note Used internally by ValueAccessor (note last argument is a dummy).
template<typename AccessorT>
static Index getValueLevelAndCache(const Coord&, AccessorT&) { return LEVEL; }
/// @brief Return a const reference to the first value in the buffer.
/// @note Though it is potentially risky you can convert this
/// to a non-const pointer by means of const_case<ValueType*>&.
const ValueType& getFirstValue() const { return mBuffer[0]; }
/// Return a const reference to the last value in the buffer.
const ValueType& getLastValue() const { return mBuffer[SIZE - 1]; }
/// @brief Replace inactive occurrences of @a oldBackground with @a newBackground,
/// and inactive occurrences of @a -oldBackground with @a -newBackground.
void resetBackground(const ValueType& oldBackground, const ValueType& newBackground);
void negate();
/// @brief No-op
/// @details This function exists only to enable template instantiation.
void voxelizeActiveTiles(bool = true) {}
template<MergePolicy Policy> void merge(const LeafNode&);
template<MergePolicy Policy> void merge(const ValueType& tileValue, bool tileActive);
template<MergePolicy Policy>
void merge(const LeafNode& other, const ValueType& /*bg*/, const ValueType& /*otherBG*/);
/// @brief Union this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active if either of the original voxels
/// were active.
///
/// @note This operation modifies only active states, not values.
template<typename OtherType>
void topologyUnion(const LeafNode<OtherType, Log2Dim>& other);
/// @brief Intersect this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active only if both of the original voxels
/// were active.
///
/// @details The last dummy argument is required to match the signature
/// for InternalNode::topologyIntersection.
///
/// @note This operation modifies only active states, not
/// values. Also note that this operation can result in all voxels
/// being inactive so consider subsequnetly calling prune.
template<typename OtherType>
void topologyIntersection(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);
/// @brief Difference this node's set of active values with the active values
/// of the other node, whose @c ValueType may be different. So a
/// resulting voxel will be active only if the original voxel is
/// active in this LeafNode and inactive in the other LeafNode.
///
/// @details The last dummy argument is required to match the signature
/// for InternalNode::topologyDifference.
///
/// @note This operation modifies only active states, not values.
/// Also, because it can deactivate all of this node's voxels,
/// consider subsequently calling prune.
template<typename OtherType>
void topologyDifference(const LeafNode<OtherType, Log2Dim>& other, const ValueType&);
template<typename CombineOp>
void combine(const LeafNode& other, CombineOp& op);
template<typename CombineOp>
void combine(const ValueType& value, bool valueIsActive, CombineOp& op);
template<typename CombineOp, typename OtherType /*= ValueType*/>
void combine2(const LeafNode& other, const OtherType&, bool valueIsActive, CombineOp&);
template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
void combine2(const ValueType&, const OtherNodeT& other, bool valueIsActive, CombineOp&);
template<typename CombineOp, typename OtherNodeT /*= LeafNode*/>
void combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp&);
/// @brief Calls the templated functor BBoxOp with bounding box
/// information. An additional level argument is provided to the
/// callback.
///
/// @note The bounding boxes are guarenteed to be non-overlapping.
template<typename BBoxOp> void visitActiveBBox(BBoxOp&) const;
template<typename VisitorOp> void visit(VisitorOp&);
template<typename VisitorOp> void visit(VisitorOp&) const;
template<typename OtherLeafNodeType, typename VisitorOp>
void visit2Node(OtherLeafNodeType& other, VisitorOp&);
template<typename OtherLeafNodeType, typename VisitorOp>
void visit2Node(OtherLeafNodeType& other, VisitorOp&) const;
template<typename IterT, typename VisitorOp>
void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false);
template<typename IterT, typename VisitorOp>
void visit2(IterT& otherIter, VisitorOp&, bool otherIsLHS = false) const;
//@{
/// This function exists only to enable template instantiation.
void prune(const ValueType& /*tolerance*/ = zeroVal<ValueType>()) {}
void addLeaf(LeafNode*) {}
template<typename AccessorT>
void addLeafAndCache(LeafNode*, AccessorT&) {}
template<typename NodeT>
NodeT* stealNode(const Coord&, const ValueType&, bool) { return NULL; }
template<typename NodeT>
NodeT* probeNode(const Coord&) { return NULL; }
template<typename NodeT>
const NodeT* probeConstNode(const Coord&) const { return NULL; }
template<typename ArrayT> void getNodes(ArrayT&) const {}
template<typename ArrayT> void stealNodes(ArrayT&, const ValueType&, bool) {}
//@}
void addTile(Index level, const Coord&, const ValueType&, bool);
void addTile(Index offset, const ValueType&, bool);
template<typename AccessorT>
void addTileAndCache(Index, const Coord&, const ValueType&, bool, AccessorT&);
//@{
/// @brief Return a pointer to this node.
LeafNode* touchLeaf(const Coord&) { return this; }
template<typename AccessorT>
LeafNode* touchLeafAndCache(const Coord&, AccessorT&) { return this; }
template<typename NodeT, typename AccessorT>
NodeT* probeNodeAndCache(const Coord&, AccessorT&)
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(boost::is_same<NodeT,LeafNode>::value)) return NULL;
return reinterpret_cast<NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
LeafNode* probeLeaf(const Coord&) { return this; }
template<typename AccessorT>
LeafNode* probeLeafAndCache(const Coord&, AccessorT&) { return this; }
//@}
//@{
/// @brief Return a @const pointer to this node.
const LeafNode* probeConstLeaf(const Coord&) const { return this; }
template<typename AccessorT>
const LeafNode* probeConstLeafAndCache(const Coord&, AccessorT&) const { return this; }
template<typename AccessorT>
const LeafNode* probeLeafAndCache(const Coord&, AccessorT&) const { return this; }
const LeafNode* probeLeaf(const Coord&) const { return this; }
template<typename NodeT, typename AccessorT>
const NodeT* probeConstNodeAndCache(const Coord&, AccessorT&) const
{
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (!(boost::is_same<NodeT,LeafNode>::value)) return NULL;
return reinterpret_cast<const NodeT*>(this);
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
//@}
/// Return @c true if all of this node's values have the same active state
/// and are in the range this->getFirstValue() +/- @a tolerance.
///
///
/// @param firstValue Is updated with the first value of this leaf node.
/// @param state Is updated with the state of all values IF method
/// returns @c true. Else the value is undefined!
/// @param tolerance The tolerance used to determine if values are
/// approximatly equal to the for value.
bool isConstant(ValueType& firstValue, bool& state,
const ValueType& tolerance = zeroVal<ValueType>()) const;
/// Return @c true if all of this node's values have the same active state
/// and the range (@a maxValue - @a minValue) < @a tolerance.
///
/// @param minValue Is updated with the minimum of all values IF method
/// returns @c true. Else the value is undefined!
/// @param maxValue Is updated with the maximum of all values IF method
/// returns @c true. Else the value is undefined!
/// @param state Is updated with the state of all values IF method
/// returns @c true. Else the value is undefined!
/// @param tolerance The tolerance used to determine if values are
/// approximatly constant.
bool isConstant(ValueType& minValue, ValueType& maxValue,
bool& state, const ValueType& tolerance = zeroVal<ValueType>()) const;
/// Return @c true if all of this node's values are inactive.
bool isInactive() const { return mValueMask.isOff(); }
protected:
friend class ::TestLeaf;
template<typename> friend class ::TestLeafIO;
// During topology-only construction, access is needed
// to protected/private members of other template instances.
template<typename, Index> friend class LeafNode;
friend struct ValueIter<MaskOnIterator, LeafNode, ValueType, ValueOn>;
friend struct ValueIter<MaskOffIterator, LeafNode, ValueType, ValueOff>;
friend struct ValueIter<MaskDenseIterator, LeafNode, ValueType, ValueAll>;
friend struct ValueIter<MaskOnIterator, const LeafNode, ValueType, ValueOn>;
friend struct ValueIter<MaskOffIterator, const LeafNode, ValueType, ValueOff>;
friend struct ValueIter<MaskDenseIterator, const LeafNode, ValueType, ValueAll>;
// Allow iterators to call mask accessor methods (see below).
/// @todo Make mask accessors public?
friend class IteratorBase<MaskOnIterator, LeafNode>;
friend class IteratorBase<MaskOffIterator, LeafNode>;
friend class IteratorBase<MaskDenseIterator, LeafNode>;
// Mask accessors
public:
bool isValueMaskOn(Index n) const { return mValueMask.isOn(n); }
bool isValueMaskOn() const { return mValueMask.isOn(); }
bool isValueMaskOff(Index n) const { return mValueMask.isOff(n); }
bool isValueMaskOff() const { return mValueMask.isOff(); }
const NodeMaskType& getValueMask() const { return mValueMask; }
NodeMaskType& getValueMask() { return mValueMask; }
const NodeMaskType& valueMask() const { return mValueMask; }
void setValueMask(const NodeMaskType& mask) { mValueMask = mask; }
bool isChildMaskOn(Index) const { return false; } // leaf nodes have no children
bool isChildMaskOff(Index) const { return true; }
bool isChildMaskOff() const { return true; }
protected:
void setValueMask(Index n, bool on) { mValueMask.set(n, on); }
void setValueMaskOn(Index n) { mValueMask.setOn(n); }
void setValueMaskOff(Index n) { mValueMask.setOff(n); }
/// Compute the origin of the leaf node that contains the voxel with the given coordinates.
static void evalNodeOrigin(Coord& xyz) { xyz &= ~(DIM - 1); }
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
static inline void doVisit(NodeT&, VisitorOp&);
template<typename NodeT, typename OtherNodeT, typename VisitorOp,
typename ChildAllIterT, typename OtherChildAllIterT>
static inline void doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp&);
template<typename NodeT, typename VisitorOp,
typename ChildAllIterT, typename OtherChildAllIterT>
static inline void doVisit2(NodeT& self, OtherChildAllIterT&, VisitorOp&, bool otherIsLHS);
private:
/// Buffer containing the actual data values
Buffer mBuffer;
/// Bitmask that determines which voxels are active
NodeMaskType mValueMask;
/// Global grid index coordinates (x,y,z) of the local origin of this node
Coord mOrigin;
}; // end of LeafNode class
#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename T, Index Log2Dim>
const T LeafNode<T, Log2Dim>::Buffer::sZero = zeroVal<T>();
#endif
////////////////////////////////////////
//@{
/// Helper metafunction used to implement LeafNode::SameConfiguration
/// (which, as an inner class, can't be independently specialized)
template<Index Dim1, typename NodeT2>
struct SameLeafConfig { static const bool value = false; };
template<Index Dim1, typename T2>
struct SameLeafConfig<Dim1, LeafNode<T2, Dim1> > { static const bool value = true; };
//@}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode():
mValueMask(),//default is off!
mOrigin(0, 0, 0)
{
}
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const Coord& xyz, const ValueType& val, bool active):
mBuffer(val),
mValueMask(active),
mOrigin(xyz & (~(DIM - 1)))
{
}
#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(PartialCreate, const Coord& xyz, const ValueType& val, bool active):
mBuffer(PartialCreate(), val),
mValueMask(active),
mOrigin(xyz & (~(DIM - 1)))
{
}
#endif
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode &other):
mBuffer(other.mBuffer),
mValueMask(other.valueMask()),
mOrigin(other.mOrigin)
{
}
// Copy-construct from a leaf node with the same configuration but a different ValueType.
template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other):
mValueMask(other.valueMask()),
mOrigin(other.mOrigin)
{
struct Local {
/// @todo Consider using a value conversion functor passed as an argument instead.
static inline ValueType convertValue(const OtherValueType& val) { return ValueType(val); }
};
for (Index i = 0; i < SIZE; ++i) {
mBuffer[i] = Local::convertValue(other.mBuffer[i]);
}
}
template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
const ValueType& background, TopologyCopy):
mBuffer(background),
mValueMask(other.valueMask()),
mOrigin(other.mOrigin)
{
}
template<typename T, Index Log2Dim>
template<typename OtherValueType>
inline
LeafNode<T, Log2Dim>::LeafNode(const LeafNode<OtherValueType, Log2Dim>& other,
const ValueType& offValue, const ValueType& onValue, TopologyCopy):
mValueMask(other.valueMask()),
mOrigin(other.mOrigin)
{
for (Index i = 0; i < SIZE; ++i) {
mBuffer[i] = (mValueMask.isOn(i) ? onValue : offValue);
}
}
template<typename T, Index Log2Dim>
inline
LeafNode<T, Log2Dim>::~LeafNode()
{
}
template<typename T, Index Log2Dim>
inline std::string
LeafNode<T, Log2Dim>::str() const
{
std::ostringstream ostr;
ostr << "LeafNode @" << mOrigin << ": " << mBuffer;
return ostr.str();
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline Index
LeafNode<T, Log2Dim>::coordToOffset(const Coord& xyz)
{
assert ((xyz[0] & (DIM-1u)) < DIM && (xyz[1] & (DIM-1u)) < DIM && (xyz[2] & (DIM-1u)) < DIM);
return ((xyz[0] & (DIM-1u)) << 2*Log2Dim)
+ ((xyz[1] & (DIM-1u)) << Log2Dim)
+ (xyz[2] & (DIM-1u));
}
template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToLocalCoord(Index n)
{
assert(n<(1<< 3*Log2Dim));
Coord xyz;
xyz.setX(n >> 2*Log2Dim);
n &= ((1<<2*Log2Dim)-1);
xyz.setY(n >> Log2Dim);
xyz.setZ(n & ((1<<Log2Dim)-1));
return xyz;
}
template<typename T, Index Log2Dim>
inline Coord
LeafNode<T, Log2Dim>::offsetToGlobalCoord(Index n) const
{
return (this->offsetToLocalCoord(n) + this->origin());
}
////////////////////////////////////////
template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(const Coord& xyz) const
{
return this->getValue(LeafNode::coordToOffset(xyz));
}
template<typename ValueT, Index Log2Dim>
inline const ValueT&
LeafNode<ValueT, Log2Dim>::getValue(Index offset) const
{
assert(offset < SIZE);
return mBuffer[offset];
}
template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(const Coord& xyz, ValueType& val) const
{
return this->probeValue(LeafNode::coordToOffset(xyz), val);
}
template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::probeValue(Index offset, ValueType& val) const
{
assert(offset < SIZE);
val = mBuffer[offset];
return mValueMask.isOn(offset);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(const Coord& xyz, const ValueType& val)
{
this->setValueOff(LeafNode::coordToOffset(xyz), val);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOff(Index offset, const ValueType& val)
{
assert(offset < SIZE);
mBuffer.setValue(offset, val);
mValueMask.setOff(offset);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setActiveState(const Coord& xyz, bool on)
{
mValueMask.set(this->coordToOffset(xyz), on);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(const Coord& xyz, const ValueType& val)
{
this->setValueOnly(LeafNode::coordToOffset(xyz), val);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::setValueOnly(Index offset, const ValueType& val)
{
assert(offset<SIZE); mBuffer.setValue(offset, val);
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::clip(const CoordBBox& clipBBox, const T& background)
{
CoordBBox nodeBBox = this->getNodeBoundingBox();
if (!clipBBox.hasOverlap(nodeBBox)) {
// This node lies completely outside the clipping region. Fill it with the background.
this->fill(background, /*active=*/false);
} else if (clipBBox.isInside(nodeBBox)) {
// This node lies completely inside the clipping region. Leave it intact.
return;
}
// This node isn't completely contained inside the clipping region.
// Set any voxels that lie outside the region to the background value.
// Construct a boolean mask that is on inside the clipping region and off outside it.
NodeMaskType mask;
nodeBBox.intersect(clipBBox);
Coord xyz;
int &x = xyz.x(), &y = xyz.y(), &z = xyz.z();
for (x = nodeBBox.min().x(); x <= nodeBBox.max().x(); ++x) {
for (y = nodeBBox.min().y(); y <= nodeBBox.max().y(); ++y) {
for (z = nodeBBox.min().z(); z <= nodeBBox.max().z(); ++z) {
mask.setOn(static_cast<Index32>(this->coordToOffset(xyz)));
}
}
}
// Set voxels that lie in the inactive region of the mask (i.e., outside
// the clipping region) to the background value.
for (MaskOffIterator maskIter = mask.beginOff(); maskIter; ++maskIter) {
this->setValueOff(maskIter.pos(), background);
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const CoordBBox& bbox, const ValueType& value, bool active)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
for (Int32 x = bbox.min().x(); x <= bbox.max().x(); ++x) {
const Index offsetX = (x & (DIM-1u)) << 2*Log2Dim;
for (Int32 y = bbox.min().y(); y <= bbox.max().y(); ++y) {
const Index offsetXY = offsetX + ((y & (DIM-1u)) << Log2Dim);
for (Int32 z = bbox.min().z(); z <= bbox.max().z(); ++z) {
const Index offset = offsetXY + (z & (DIM-1u));
mBuffer[offset] = value;
mValueMask.set(offset, active);
}
}
}
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value)
{
mBuffer.fill(value);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::fill(const ValueType& value, bool active)
{
mBuffer.fill(value);
mValueMask.set(active);
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyToDense(const CoordBBox& bbox, DenseT& dense) const
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->isAllocated()) return;
#endif
typedef typename DenseT::ValueType DenseValueType;
const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
const Coord& min = dense.bbox().min();
DenseValueType* t0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // target array
const T* s0 = &mBuffer[bbox.min()[2] & (DIM-1u)]; // source array
for (Int32 x = bbox.min()[0], ex = bbox.max()[0] + 1; x < ex; ++x) {
DenseValueType* t1 = t0 + xStride * (x - min[0]);
const T* s1 = s0 + ((x & (DIM-1u)) << 2*Log2Dim);
for (Int32 y = bbox.min()[1], ey = bbox.max()[1] + 1; y < ey; ++y) {
DenseValueType* t2 = t1 + yStride * (y - min[1]);
const T* s2 = s1 + ((y & (DIM-1u)) << Log2Dim);
for (Int32 z = bbox.min()[2], ez = bbox.max()[2] + 1; z < ez; ++z, t2 += zStride) {
*t2 = DenseValueType(*s2++);
}
}
}
}
template<typename T, Index Log2Dim>
template<typename DenseT>
inline void
LeafNode<T, Log2Dim>::copyFromDense(const CoordBBox& bbox, const DenseT& dense,
const ValueType& background, const ValueType& tolerance)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
typedef typename DenseT::ValueType DenseValueType;
const size_t xStride = dense.xStride(), yStride = dense.yStride(), zStride = dense.zStride();
const Coord& min = dense.bbox().min();
const DenseValueType* s0 = dense.data() + zStride * (bbox.min()[2] - min[2]); // source
const Int32 n0 = bbox.min()[2] & (DIM-1u);
for (Int32 x = bbox.min()[0], ex = bbox.max()[0]+1; x < ex; ++x) {
const DenseValueType* s1 = s0 + xStride * (x - min[0]);
const Int32 n1 = n0 + ((x & (DIM-1u)) << 2*LOG2DIM);
for (Int32 y = bbox.min()[1], ey = bbox.max()[1]+1; y < ey; ++y) {
const DenseValueType* s2 = s1 + yStride * (y - min[1]);
Int32 n2 = n1 + ((y & (DIM-1u)) << LOG2DIM);
for (Int32 z = bbox.min()[2], ez = bbox.max()[2]+1; z < ez; ++z, ++n2, s2 += zStride) {
if (math::isApproxEqual(background, ValueType(*s2), tolerance)) {
mValueMask.setOff(n2);
mBuffer[n2] = background;
} else {
mValueMask.setOn(n2);
mBuffer[n2] = ValueType(*s2);
}
}
}
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::readTopology(std::istream& is, bool /*fromHalf*/)
{
mValueMask.load(is);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeTopology(std::ostream& os, bool /*toHalf*/) const
{
mValueMask.save(os);
}
////////////////////////////////////////
#ifndef OPENVDB_2_ABI_COMPATIBLE
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::Buffer::doLoad() const
{
if (!this->isOutOfCore()) return;
Buffer* self = const_cast<Buffer*>(this);
// This lock will be contended at most once, after which this buffer
// will no longer be out-of-core.
tbb::spin_mutex::scoped_lock lock(self->mMutex);
if (!this->isOutOfCore()) return;
boost::scoped_ptr<FileInfo> info(self->mFileInfo);
assert(info.get() != NULL);
assert(info->mapping.get() != NULL);
assert(info->meta.get() != NULL);
/// @todo For now, we have to clear the mData pointer in order for allocate() to take effect.
self->mData = NULL;
self->allocate();
boost::shared_ptr<std::streambuf> buf = info->mapping->createBuffer();
std::istream is(buf.get());
io::setStreamMetadataPtr(is, info->meta, /*transfer=*/true);
NodeMaskType mask;
is.seekg(info->maskpos);
mask.load(is);
is.seekg(info->bufpos);
io::readCompressedValues(is, self->mData, SIZE, mask, io::getHalfFloat(is));
self->setOutOfCore(false);
}
#endif
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::readBuffers(std::istream& is, bool fromHalf)
{
this->readBuffers(is, CoordBBox::inf(), fromHalf);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T,Log2Dim>::readBuffers(std::istream& is, const CoordBBox& clipBBox, bool fromHalf)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
std::streamoff maskpos = is.tellg();
#endif
// Read in the value mask.
mValueMask.load(is);
int8_t numBuffers = 1;
if (io::getFormatVersion(is) < OPENVDB_FILE_VERSION_NODE_MASK_COMPRESSION) {
// Read in the origin.
is.read(reinterpret_cast<char*>(&mOrigin), sizeof(Coord::ValueType) * 3);
// Read in the number of buffers, which should now always be one.
is.read(reinterpret_cast<char*>(&numBuffers), sizeof(int8_t));
}
CoordBBox nodeBBox = this->getNodeBoundingBox();
if (!clipBBox.hasOverlap(nodeBBox)) {
// This node lies completely outside the clipping region.
// Read and discard its voxel values.
Buffer temp;
io::readCompressedValues(is, temp.mData, SIZE, mValueMask, fromHalf);
mValueMask.setOff();
mBuffer.setOutOfCore(false);
} else {
#ifndef OPENVDB_2_ABI_COMPATIBLE
// If this node lies completely inside the clipping region and it is being read
// from a memory-mapped file, delay loading of its buffer until the buffer
// is actually accessed. (If this node requires clipping, its buffer
// must be accessed and therefore must be loaded.)
io::MappedFile::Ptr mappedFile = io::getMappedFilePtr(is);
const bool delayLoad = ((mappedFile.get() != NULL) && clipBBox.isInside(nodeBBox));
if (delayLoad) {
mBuffer.setOutOfCore(true);
mBuffer.mFileInfo = new FileInfo;
mBuffer.mFileInfo->bufpos = is.tellg();
mBuffer.mFileInfo->mapping = mappedFile;
// Save the offset to the value mask, because the in-memory copy
// might change before the value buffer gets read.
mBuffer.mFileInfo->maskpos = maskpos;
mBuffer.mFileInfo->meta = io::getStreamMetadataPtr(is);
// Read and discard voxel values.
Buffer temp;
io::readCompressedValues(is, temp.mData, SIZE, mValueMask, fromHalf);
} else {
#endif
mBuffer.allocate();
io::readCompressedValues(is, mBuffer.mData, SIZE, mValueMask, fromHalf);
mBuffer.setOutOfCore(false);
// Get this tree's background value.
T background = zeroVal<T>();
if (const void* bgPtr = io::getGridBackgroundValuePtr(is)) {
background = *static_cast<const T*>(bgPtr);
}
this->clip(clipBBox, background);
#ifndef OPENVDB_2_ABI_COMPATIBLE
}
#endif
}
if (numBuffers > 1) {
// Read in and discard auxiliary buffers that were created with earlier
// versions of the library. (Auxiliary buffers are not mask compressed.)
const bool zipped = io::getDataCompression(is) & io::COMPRESS_ZIP;
Buffer temp;
for (int i = 1; i < numBuffers; ++i) {
if (fromHalf) {
io::HalfReader<io::RealToHalf<T>::isReal, T>::read(is, temp.mData, SIZE, zipped);
} else {
io::readData<T>(is, temp.mData, SIZE, zipped);
}
}
}
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::writeBuffers(std::ostream& os, bool toHalf) const
{
// Write out the value mask.
mValueMask.save(os);
mBuffer.loadValues();
io::writeCompressedValues(os, mBuffer.mData, SIZE,
mValueMask, /*childMask=*/NodeMaskType(), toHalf);
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::operator==(const LeafNode& other) const
{
return mOrigin == other.mOrigin &&
mValueMask == other.valueMask() &&
mBuffer == other.mBuffer;
}
template<typename T, Index Log2Dim>
inline Index64
LeafNode<T, Log2Dim>::memUsage() const
{
// Use sizeof(*this) to capture alignment-related padding
// (but note that sizeof(*this) includes sizeof(mBuffer)).
return sizeof(*this) + mBuffer.memUsage() - sizeof(mBuffer);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::evalActiveBoundingBox(CoordBBox& bbox, bool visitVoxels) const
{
CoordBBox this_bbox = this->getNodeBoundingBox();
if (bbox.isInside(this_bbox)) return;//this LeafNode is already enclosed in the bbox
if (ValueOnCIter iter = this->cbeginValueOn()) {//any active values?
if (visitVoxels) {//use voxel granularity?
this_bbox.reset();
for(; iter; ++iter) this_bbox.expand(this->offsetToLocalCoord(iter.pos()));
this_bbox.translate(this->origin());
}
bbox.expand(this_bbox);
}
}
template<typename T, Index Log2Dim>
template<typename OtherType, Index OtherLog2Dim>
inline bool
LeafNode<T, Log2Dim>::hasSameTopology(const LeafNode<OtherType, OtherLog2Dim>* other) const
{
assert(other);
return (Log2Dim == OtherLog2Dim && mValueMask == other->getValueMask());
}
template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::isConstant(ValueType& firstValue,
bool& state,
const ValueType& tolerance) const
{
if (!mValueMask.isConstant(state)) return false;// early termination
firstValue = mBuffer[0];
for (Index i = 1; i < SIZE; ++i) {
if ( !math::isApproxEqual(mBuffer[i], firstValue, tolerance) ) return false;// early termination
}
return true;
}
template<typename T, Index Log2Dim>
inline bool
LeafNode<T, Log2Dim>::isConstant(ValueType& minValue,
ValueType& maxValue,
bool& state,
const ValueType& tolerance) const
{
if (!mValueMask.isConstant(state)) return false;// early termination
minValue = maxValue = mBuffer[0];
for (Index i = 1; i < SIZE; ++i) {
const T& v = mBuffer[i];
if (v < minValue) {
if ((maxValue - v) > tolerance) return false;// early termination
minValue = v;
} else if (v > maxValue) {
if ((v - minValue) > tolerance) return false;// early termination
maxValue = v;
}
}
return true;
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index /*level*/, const Coord& xyz, const ValueType& val, bool active)
{
this->addTile(this->coordToOffset(xyz), val, active);
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::addTile(Index offset, const ValueType& val, bool active)
{
assert(offset < SIZE);
setValueOnly(offset, val);
setActiveState(offset, active);
}
template<typename T, Index Log2Dim>
template<typename AccessorT>
inline void
LeafNode<T, Log2Dim>::addTileAndCache(Index level, const Coord& xyz,
const ValueType& val, bool active, AccessorT&)
{
this->addTile(level, xyz, val, active);
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::resetBackground(const ValueType& oldBackground,
const ValueType& newBackground)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
typename NodeMaskType::OffIterator iter;
// For all inactive values...
for (iter = this->mValueMask.beginOff(); iter; ++iter) {
ValueType &inactiveValue = mBuffer[iter.pos()];
if (math::isApproxEqual(inactiveValue, oldBackground)) {
inactiveValue = newBackground;
} else if (math::isApproxEqual(inactiveValue, math::negative(oldBackground))) {
inactiveValue = math::negative(newBackground);
}
}
}
template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (Policy == MERGE_NODES) return;
typename NodeMaskType::OnIterator iter = other.valueMask().beginOn();
for (; iter; ++iter) {
const Index n = iter.pos();
if (mValueMask.isOff(n)) {
mBuffer[n] = other.mBuffer[n];
mValueMask.setOn(n);
}
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const LeafNode& other,
const ValueType& /*bg*/, const ValueType& /*otherBG*/)
{
this->template merge<Policy>(other);
}
template<typename T, Index Log2Dim>
template<MergePolicy Policy>
inline void
LeafNode<T, Log2Dim>::merge(const ValueType& tileValue, bool tileActive)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
OPENVDB_NO_UNREACHABLE_CODE_WARNING_BEGIN
if (Policy != MERGE_ACTIVE_STATES_AND_NODES) return;
if (!tileActive) return;
// Replace all inactive values with the active tile value.
for (typename NodeMaskType::OffIterator iter = mValueMask.beginOff(); iter; ++iter) {
const Index n = iter.pos();
mBuffer[n] = tileValue;
mValueMask.setOn(n);
}
OPENVDB_NO_UNREACHABLE_CODE_WARNING_END
}
template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyUnion(const LeafNode<OtherType, Log2Dim>& other)
{
mValueMask |= other.valueMask();
}
template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyIntersection(const LeafNode<OtherType, Log2Dim>& other,
const ValueType&)
{
mValueMask &= other.valueMask();
}
template<typename T, Index Log2Dim>
template<typename OtherType>
inline void
LeafNode<T, Log2Dim>::topologyDifference(const LeafNode<OtherType, Log2Dim>& other,
const ValueType&)
{
mValueMask &= !other.valueMask();
}
template<typename T, Index Log2Dim>
inline void
LeafNode<T, Log2Dim>::negate()
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
for (Index i = 0; i < SIZE; ++i) {
mBuffer[i] = -mBuffer[i];
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const LeafNode& other, CombineOp& op)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
CombineArgs<T> args;
for (Index i = 0; i < SIZE; ++i) {
op(args.setARef(mBuffer[i])
.setAIsActive(mValueMask.isOn(i))
.setBRef(other.mBuffer[i])
.setBIsActive(other.valueMask().isOn(i))
.setResultRef(mBuffer[i]));
mValueMask.set(i, args.resultIsActive());
}
}
template<typename T, Index Log2Dim>
template<typename CombineOp>
inline void
LeafNode<T, Log2Dim>::combine(const ValueType& value, bool valueIsActive, CombineOp& op)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
CombineArgs<T> args;
args.setBRef(value).setBIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
op(args.setARef(mBuffer[i])
.setAIsActive(mValueMask.isOn(i))
.setResultRef(mBuffer[i]));
mValueMask.set(i, args.resultIsActive());
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherType>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& other, const OtherType& value,
bool valueIsActive, CombineOp& op)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
CombineArgs<T, OtherType> args;
args.setBRef(value).setBIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
op(args.setARef(other.mBuffer[i])
.setAIsActive(other.valueMask().isOn(i))
.setResultRef(mBuffer[i]));
mValueMask.set(i, args.resultIsActive());
}
}
template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<T, Log2Dim>::combine2(const ValueType& value, const OtherNodeT& other,
bool valueIsActive, CombineOp& op)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
CombineArgs<T, typename OtherNodeT::ValueType> args;
args.setARef(value).setAIsActive(valueIsActive);
for (Index i = 0; i < SIZE; ++i) {
op(args.setBRef(other.mBuffer[i])
.setBIsActive(other.valueMask().isOn(i))
.setResultRef(mBuffer[i]));
mValueMask.set(i, args.resultIsActive());
}
}
template<typename T, Index Log2Dim>
template<typename CombineOp, typename OtherNodeT>
inline void
LeafNode<T, Log2Dim>::combine2(const LeafNode& b0, const OtherNodeT& b1, CombineOp& op)
{
#ifndef OPENVDB_2_ABI_COMPATIBLE
if (!this->allocate()) return;
#endif
CombineArgs<T, typename OtherNodeT::ValueType> args;
for (Index i = 0; i < SIZE; ++i) {
mValueMask.set(i, b0.valueMask().isOn(i) || b1.valueMask().isOn(i));
op(args.setARef(b0.mBuffer[i])
.setAIsActive(b0.valueMask().isOn(i))
.setBRef(b1.mBuffer[i])
.setBIsActive(b1.valueMask().isOn(i))
.setResultRef(mBuffer[i]));
mValueMask.set(i, args.resultIsActive());
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename BBoxOp>
inline void
LeafNode<T, Log2Dim>::visitActiveBBox(BBoxOp& op) const
{
if (op.template descent<LEVEL>()) {
for (ValueOnCIter i=this->cbeginValueOn(); i; ++i) {
#ifdef _MSC_VER
op.operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#else
op.template operator()<LEVEL>(CoordBBox::createCube(i.getCoord(), 1));
#endif
}
} else {
#ifdef _MSC_VER
op.operator()<LEVEL>(this->getNodeBoundingBox());
#else
op.template operator()<LEVEL>(this->getNodeBoundingBox());
#endif
}
}
template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op)
{
doVisit<LeafNode, VisitorOp, ChildAllIter>(*this, op);
}
template<typename T, Index Log2Dim>
template<typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit(VisitorOp& op) const
{
doVisit<const LeafNode, VisitorOp, ChildAllCIter>(*this, op);
}
template<typename T, Index Log2Dim>
template<typename NodeT, typename VisitorOp, typename ChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit(NodeT& self, VisitorOp& op)
{
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(iter);
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op)
{
doVisit2Node<LeafNode, OtherLeafNodeType, VisitorOp, ChildAllIter,
typename OtherLeafNodeType::ChildAllIter>(*this, other, op);
}
template<typename T, Index Log2Dim>
template<typename OtherLeafNodeType, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2Node(OtherLeafNodeType& other, VisitorOp& op) const
{
doVisit2Node<const LeafNode, OtherLeafNodeType, VisitorOp, ChildAllCIter,
typename OtherLeafNodeType::ChildAllCIter>(*this, other, op);
}
template<typename T, Index Log2Dim>
template<
typename NodeT,
typename OtherNodeT,
typename VisitorOp,
typename ChildAllIterT,
typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2Node(NodeT& self, OtherNodeT& other, VisitorOp& op)
{
// Allow the two nodes to have different ValueTypes, but not different dimensions.
BOOST_STATIC_ASSERT(OtherNodeT::SIZE == NodeT::SIZE);
BOOST_STATIC_ASSERT(OtherNodeT::LEVEL == NodeT::LEVEL);
ChildAllIterT iter = self.beginChildAll();
OtherChildAllIterT otherIter = other.beginChildAll();
for ( ; iter && otherIter; ++iter, ++otherIter) {
op(iter, otherIter);
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS)
{
doVisit2<LeafNode, VisitorOp, ChildAllIter, IterT>(
*this, otherIter, op, otherIsLHS);
}
template<typename T, Index Log2Dim>
template<typename IterT, typename VisitorOp>
inline void
LeafNode<T, Log2Dim>::visit2(IterT& otherIter, VisitorOp& op, bool otherIsLHS) const
{
doVisit2<const LeafNode, VisitorOp, ChildAllCIter, IterT>(
*this, otherIter, op, otherIsLHS);
}
template<typename T, Index Log2Dim>
template<
typename NodeT,
typename VisitorOp,
typename ChildAllIterT,
typename OtherChildAllIterT>
inline void
LeafNode<T, Log2Dim>::doVisit2(NodeT& self, OtherChildAllIterT& otherIter,
VisitorOp& op, bool otherIsLHS)
{
if (!otherIter) return;
if (otherIsLHS) {
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(otherIter, iter);
}
} else {
for (ChildAllIterT iter = self.beginChildAll(); iter; ++iter) {
op(iter, otherIter);
}
}
}
////////////////////////////////////////
template<typename T, Index Log2Dim>
inline std::ostream&
operator<<(std::ostream& os, const typename LeafNode<T, Log2Dim>::Buffer& buf)
{
for (Index32 i = 0, N = buf.size(); i < N; ++i) os << buf.mData[i] << ", ";
return os;
}
} // namespace tree
} // namespace OPENVDB_VERSION_NAME
} // namespace openvdb
////////////////////////////////////////
// Specialization for LeafNodes of type bool
#include "LeafNodeBool.h"
// Specialization for LeafNodes with mask information only
#include "LeafNodeMask.h"
#endif // OPENVDB_TREE_LEAFNODE_HAS_BEEN_INCLUDED
// Copyright (c) 2012-2016 DreamWorks Animation LLC
// All rights reserved. This software is distributed under the
// Mozilla Public License 2.0 ( http://www.mozilla.org/MPL/2.0/ )
|