/usr/include/kdl/frames.hpp is in liborocos-kdl-dev 1.3.1+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 | /***************************************************************************
frames.hpp `- description
-------------------------
begin : June 2006
copyright : (C) 2006 Erwin Aertbelien
email : firstname.lastname@mech.kuleuven.be
History (only major changes)( AUTHOR-Description ) :
***************************************************************************
* This library is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2.1 of the License, or (at your option) any later version. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with this library; if not, write to the Free Software *
* Foundation, Inc., 59 Temple Place, *
* Suite 330, Boston, MA 02111-1307 USA *
* *
***************************************************************************/
/**
* \file
* \warning
* Efficienty can be improved by writing p2 = A*(B*(C*p1))) instead of
* p2=A*B*C*p1
*
* \par PROPOSED NAMING CONVENTION FOR FRAME-like OBJECTS
*
* \verbatim
* A naming convention of objects of the type defined in this file :
* (1) Frame : F...
* Rotation : R ...
* (2) Twist : T ...
* Wrench : W ...
* Vector : V ...
* This prefix is followed by :
* for category (1) :
* F_A_B : w.r.t. frame A, frame B expressed
* ( each column of F_A_B corresponds to an axis of B,
* expressed w.r.t. frame A )
* in mathematical convention :
* A
* F_A_B == F
* B
*
* for category (2) :
* V_B : a vector expressed w.r.t. frame B
*
* This can also be prepended by a name :
* e.g. : temporaryV_B
*
* With this convention one can write :
*
* F_A_B = F_B_A.Inverse();
* F_A_C = F_A_B * F_B_C;
* V_B = F_B_C * V_C; // both translation and rotation
* V_B = R_B_C * V_C; // only rotation
* \endverbatim
*
* \par CONVENTIONS FOR WHEN USED WITH ROBOTS :
*
* \verbatim
* world : represents the frame ([1 0 0,0 1 0,0 0 1],[0 0 0]')
* mp : represents mounting plate of a robot
* (i.e. everything before MP is constructed by robot manufacturer
* everything after MP is tool )
* tf : represents task frame of a robot
* (i.e. frame in which motion and force control is expressed)
* sf : represents sensor frame of a robot
* (i.e. frame at which the forces measured by the force sensor
* are expressed )
*
* Frame F_world_mp=...;
* Frame F_mp_sf(..)
* Frame F_mp_tf(,.)
*
* Wrench are measured in sensor frame SF, so one could write :
* Wrench_tf = F_mp_tf.Inverse()* ( F_mp_sf * Wrench_sf );
* \endverbatim
*
* \par CONVENTIONS REGARDING UNITS :
* Any consistent series of units can be used, e.g. N,mm,Nmm,..mm/sec
*
* \par Twist and Wrench transformations
* 3 different types of transformations do exist for the twists
* and wrenches.
*
* \verbatim
* 1) Frame * Twist or Frame * Wrench :
* this transforms both the velocity/force reference point
* and the basis to which the twist/wrench are expressed.
* 2) Rotation * Twist or Rotation * Wrench :
* this transforms the basis to which the twist/wrench are
* expressed, but leaves the reference point intact.
* 3) Twist.RefPoint(v_base_AB) or Wrench.RefPoint(v_base_AB)
* this transforms only the reference point. v is expressed
* in the same base as the twist/wrench and points from the
* old reference point to the new reference point.
* \endverbatim
*
*\par Spatial cross products
* Let m be a 6D motion vector (Twist) and f be a 6D force vector (Wrench)
* attached to a rigid body moving with a certain velocity v (Twist). Then
*\verbatim
* 1) m_dot = v cross m or Twist=Twist*Twist
* 2) f_dot = v cross f or Wrench=Twist*Wrench
*\endverbatim
*
* \par Complexity
* Sometimes the amount of work is given in the documentation
* e.g. 6M+3A means 6 multiplications and 3 additions.
*
* \author
* Erwin Aertbelien, Div. PMA, Dep. of Mech. Eng., K.U.Leuven
*
****************************************************************************/
#ifndef KDL_FRAMES_H
#define KDL_FRAMES_H
#include "utilities/kdl-config.h"
#include "utilities/utility.h"
/////////////////////////////////////////////////////////////
namespace KDL {
class Vector;
class Rotation;
class Frame;
class Wrench;
class Twist;
class Vector2;
class Rotation2;
class Frame2;
// Equal is friend function, but default arguments for friends are forbidden (ยง8.3.6.4)
inline bool Equal(const Vector& a,const Vector& b,double eps=epsilon);
inline bool Equal(const Frame& a,const Frame& b,double eps=epsilon);
inline bool Equal(const Twist& a,const Twist& b,double eps=epsilon);
inline bool Equal(const Wrench& a,const Wrench& b,double eps=epsilon);
inline bool Equal(const Vector2& a,const Vector2& b,double eps=epsilon);
inline bool Equal(const Rotation2& a,const Rotation2& b,double eps=epsilon);
inline bool Equal(const Frame2& a,const Frame2& b,double eps=epsilon);
/**
* \brief A concrete implementation of a 3 dimensional vector class
*/
class Vector
{
public:
double data[3];
//! Does not initialise the Vector to zero. use Vector::Zero() or SetToZero for that
inline Vector() {data[0]=data[1]=data[2] = 0.0;}
//! Constructs a vector out of the three values x, y and z
inline Vector(double x,double y, double z);
//! Assignment operator. The normal copy by value semantics.
inline Vector(const Vector& arg);
//! Assignment operator. The normal copy by value semantics.
inline Vector& operator = ( const Vector& arg);
//! Access to elements, range checked when NDEBUG is not set, from 0..2
inline double operator()(int index) const;
//! Access to elements, range checked when NDEBUG is not set, from 0..2
inline double& operator() (int index);
//! Equivalent to double operator()(int index) const
double operator[] ( int index ) const
{
return this->operator() ( index );
}
//! Equivalent to double& operator()(int index)
double& operator[] ( int index )
{
return this->operator() ( index );
}
inline double x() const;
inline double y() const;
inline double z() const;
inline void x(double);
inline void y(double);
inline void z(double);
//! Reverses the sign of the Vector object itself
inline void ReverseSign();
//! subtracts a vector from the Vector object itself
inline Vector& operator-=(const Vector& arg);
//! Adds a vector from the Vector object itself
inline Vector& operator +=(const Vector& arg);
//! Scalar multiplication is defined
inline friend Vector operator*(const Vector& lhs,double rhs);
//! Scalar multiplication is defined
inline friend Vector operator*(double lhs,const Vector& rhs);
//! Scalar division is defined
inline friend Vector operator/(const Vector& lhs,double rhs);
inline friend Vector operator+(const Vector& lhs,const Vector& rhs);
inline friend Vector operator-(const Vector& lhs,const Vector& rhs);
inline friend Vector operator*(const Vector& lhs,const Vector& rhs);
inline friend Vector operator-(const Vector& arg);
inline friend double dot(const Vector& lhs,const Vector& rhs);
//! To have a uniform operator to put an element to zero, for scalar values
//! and for objects.
inline friend void SetToZero(Vector& v);
//! @return a zero vector
inline static Vector Zero();
/** Normalizes this vector and returns it norm
* makes v a unitvector and returns the norm of v.
* if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
* if this is not good, check the return value of this method.
*/
double Normalize(double eps=epsilon);
//! @return the norm of the vector
double Norm() const;
//! a 3D vector where the 2D vector v is put in the XY plane
inline void Set2DXY(const Vector2& v);
//! a 3D vector where the 2D vector v is put in the YZ plane
inline void Set2DYZ(const Vector2& v);
//! a 3D vector where the 2D vector v is put in the ZX plane
inline void Set2DZX(const Vector2& v);
//! a 3D vector where the 2D vector v_XY is put in the XY plane of the frame F_someframe_XY.
inline void Set2DPlane(const Frame& F_someframe_XY,const Vector2& v_XY);
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Vector& a,const Vector& b,double eps);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const Vector& a,const Vector& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const Vector& a,const Vector& b);
friend class Rotation;
friend class Frame;
};
/**
\brief represents rotations in 3 dimensional space.
This class represents a rotation matrix with the following
conventions :
\verbatim
Suppose V2 = R*V, (1)
V is expressed in frame B
V2 is expressed in frame A
This matrix R consists of 3 collumns [ X,Y,Z ],
X,Y, and Z contain the axes of frame B, expressed in frame A
Because of linearity expr(1) is valid.
\endverbatim
This class only represents rotational_interpolation, not translation
Two interpretations are possible for rotation angles.
* if you rotate with angle around X frame A to have frame B,
then the result of SetRotX is equal to frame B expressed wrt A.
In code:
\verbatim
Rotation R;
F_A_B = R.SetRotX(angle);
\endverbatim
* Secondly, if you take the following code :
\verbatim
Vector p,p2; Rotation R;
R.SetRotX(angle);
p2 = R*p;
\endverbatim
then the frame p2 is rotated around X axis with (-angle).
Analogue reasonings can be applyd to SetRotY,SetRotZ,SetRot
\par type
Concrete implementation
*/
class Rotation
{
public:
double data[9];
inline Rotation() {
*this = Rotation::Identity();
}
inline Rotation(double Xx,double Yx,double Zx,
double Xy,double Yy,double Zy,
double Xz,double Yz,double Zz);
inline Rotation(const Vector& x,const Vector& y,const Vector& z);
// default copy constructor is sufficient
inline Rotation& operator=(const Rotation& arg);
//! Defines a multiplication R*V between a Rotation R and a Vector V.
//! Complexity : 9M+6A
inline Vector operator*(const Vector& v) const;
//! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
inline double& operator()(int i,int j);
//! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
inline double operator() (int i,int j) const;
friend Rotation operator *(const Rotation& lhs,const Rotation& rhs);
//! Sets the value of *this to its inverse.
inline void SetInverse();
//! Gives back the inverse rotation matrix of *this.
inline Rotation Inverse() const;
//! The same as R.Inverse()*v but more efficient.
inline Vector Inverse(const Vector& v) const;
//! The same as R.Inverse()*arg but more efficient.
inline Wrench Inverse(const Wrench& arg) const;
//! The same as R.Inverse()*arg but more efficient.
inline Twist Inverse(const Twist& arg) const;
//! Gives back an identity rotaton matrix
inline static Rotation Identity();
// = Rotations
//! The Rot... static functions give the value of the appropriate rotation matrix back.
inline static Rotation RotX(double angle);
//! The Rot... static functions give the value of the appropriate rotation matrix back.
inline static Rotation RotY(double angle);
//! The Rot... static functions give the value of the appropriate rotation matrix back.
inline static Rotation RotZ(double angle);
//! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
//! DoRot... functions are only defined when they can be executed more efficiently
inline void DoRotX(double angle);
//! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
//! DoRot... functions are only defined when they can be executed more efficiently
inline void DoRotY(double angle);
//! The DoRot... functions apply a rotation R to *this,such that *this = *this * Rot..
//! DoRot... functions are only defined when they can be executed more efficiently
inline void DoRotZ(double angle);
//! Along an arbitrary axes. It is not necessary to normalize rotvec.
//! returns identity rotation matrix in the case that the norm of rotvec
//! is to small to be used.
// @see Rot2 if you want to handle this error in another way.
static Rotation Rot(const Vector& rotvec,double angle);
//! Along an arbitrary axes. rotvec should be normalized.
static Rotation Rot2(const Vector& rotvec,double angle);
//! Returns a vector with the direction of the equiv. axis
//! and its norm is angle
Vector GetRot() const;
/** Returns the rotation angle around the equiv. axis
* @param axis the rotation axis is returned in this variable
* @param eps : in the case of angle == 0 : rot axis is undefined and choosen
* to be +/- Z-axis
* in the case of angle == PI : 2 solutions, positive Z-component
* of the axis is choosen.
* @result returns the rotation angle (between [0..PI] )
*/
double GetRotAngle(Vector& axis,double eps=epsilon) const;
/** Gives back a rotation matrix specified with EulerZYZ convention :
* - First rotate around Z with alfa,
* - then around the new Y with beta,
* - then around new Z with gamma.
* Invariants:
* - EulerZYX(alpha,beta,gamma) == EulerZYX(alpha +/- PHI, -beta, gamma +/- PI)
* - (angle + 2*k*PI)
**/
static Rotation EulerZYZ(double Alfa,double Beta,double Gamma);
/** Gives back the EulerZYZ convention description of the rotation matrix :
First rotate around Z with alpha,
then around the new Y with beta, then around
new Z with gamma.
Variables are bound by:
- (-PI < alpha <= PI),
- (0 <= beta <= PI),
- (-PI < gamma <= PI)
if beta==0 or beta==PI, then alpha and gamma are not unique, in this case gamma is chosen to be zero.
Invariants:
- EulerZYX(alpha,beta,gamma) == EulerZYX(alpha +/- PI, -beta, gamma +/- PI)
- angle + 2*k*PI
*/
void GetEulerZYZ(double& alpha,double& beta,double& gamma) const;
//! Gives back a rotation matrix specified with Quaternion convention
//! the norm of (x,y,z,w) should be equal to 1
static Rotation Quaternion(double x,double y,double z, double w);
//! Get the quaternion of this matrix
//! \post the norm of (x,y,z,w) is 1
void GetQuaternion(double& x,double& y,double& z, double& w) const;
/**
*
* Gives back a rotation matrix specified with RPY convention:
* first rotate around X with roll, then around the
* old Y with pitch, then around old Z with yaw
*
* Invariants:
* - RPY(roll,pitch,yaw) == RPY( roll +/- PI, PI-pitch, yaw +/- PI )
* - angles + 2*k*PI
*/
static Rotation RPY(double roll,double pitch,double yaw);
/** Gives back a vector in RPY coordinates, variables are bound by
- -PI <= roll <= PI
- -PI <= Yaw <= PI
- -PI/2 <= PITCH <= PI/2
convention :
- first rotate around X with roll,
- then around the old Y with pitch,
- then around old Z with yaw
if pitch == PI/2 or pitch == -PI/2, multiple solutions for gamma and alpha exist. The solution where roll==0
is chosen.
Invariants:
- RPY(roll,pitch,yaw) == RPY( roll +/- PI, PI-pitch, yaw +/- PI )
- angles + 2*k*PI
**/
void GetRPY(double& roll,double& pitch,double& yaw) const;
/** EulerZYX constructs a Rotation from the Euler ZYX parameters:
* - First rotate around Z with alfa,
* - then around the new Y with beta,
* - then around new X with gamma.
*
* Closely related to RPY-convention.
*
* Invariants:
* - EulerZYX(alpha,beta,gamma) == EulerZYX(alpha +/- PI, PI-beta, gamma +/- PI)
* - (angle + 2*k*PI)
**/
inline static Rotation EulerZYX(double Alfa,double Beta,double Gamma) {
return RPY(Gamma,Beta,Alfa);
}
/** GetEulerZYX gets the euler ZYX parameters of a rotation :
* First rotate around Z with alfa,
* then around the new Y with beta, then around
* new X with gamma.
*
* Range of the results of GetEulerZYX :
* - -PI <= alfa <= PI
* - -PI <= gamma <= PI
* - -PI/2 <= beta <= PI/2
*
* if beta == PI/2 or beta == -PI/2, multiple solutions for gamma and alpha exist. The solution where gamma==0
* is chosen.
*
*
* Invariants:
* - EulerZYX(alpha,beta,gamma) == EulerZYX(alpha +/- PI, PI-beta, gamma +/- PI)
* - and also (angle + 2*k*PI)
*
* Closely related to RPY-convention.
**/
inline void GetEulerZYX(double& Alfa,double& Beta,double& Gamma) const {
GetRPY(Gamma,Beta,Alfa);
}
//! Transformation of the base to which the twist is expressed.
//! Complexity : 18M+12A
//! @see Frame*Twist for a transformation that also transforms
//! the velocity reference point.
inline Twist operator * (const Twist& arg) const;
//! Transformation of the base to which the wrench is expressed.
//! Complexity : 18M+12A
//! @see Frame*Wrench for a transformation that also transforms
//! the force reference point.
inline Wrench operator * (const Wrench& arg) const;
//! Access to the underlying unitvectors of the rotation matrix
inline Vector UnitX() const {
return Vector(data[0],data[3],data[6]);
}
//! Access to the underlying unitvectors of the rotation matrix
inline void UnitX(const Vector& X) {
data[0] = X(0);
data[3] = X(1);
data[6] = X(2);
}
//! Access to the underlying unitvectors of the rotation matrix
inline Vector UnitY() const {
return Vector(data[1],data[4],data[7]);
}
//! Access to the underlying unitvectors of the rotation matrix
inline void UnitY(const Vector& X) {
data[1] = X(0);
data[4] = X(1);
data[7] = X(2);
}
//! Access to the underlying unitvectors of the rotation matrix
inline Vector UnitZ() const {
return Vector(data[2],data[5],data[8]);
}
//! Access to the underlying unitvectors of the rotation matrix
inline void UnitZ(const Vector& X) {
data[2] = X(0);
data[5] = X(1);
data[8] = X(2);
}
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
friend bool Equal(const Rotation& a,const Rotation& b,double eps);
//! The literal equality operator==(), also identical.
friend bool operator==(const Rotation& a,const Rotation& b);
//! The literal inequality operator!=()
friend bool operator!=(const Rotation& a,const Rotation& b);
friend class Frame;
};
bool operator==(const Rotation& a,const Rotation& b);
bool Equal(const Rotation& a,const Rotation& b,double eps=epsilon);
/**
\brief represents a frame transformation in 3D space (rotation + translation)
if V2 = Frame*V1 (V2 expressed in frame A, V1 expressed in frame B)
then V2 = Frame.M*V1+Frame.p
Frame.M contains columns that represent the axes of frame B wrt frame A
Frame.p contains the origin of frame B expressed in frame A.
*/
class Frame {
public:
Vector p; //!< origine of the Frame
Rotation M; //!< Orientation of the Frame
public:
inline Frame(const Rotation& R,const Vector& V);
//! The rotation matrix defaults to identity
explicit inline Frame(const Vector& V);
//! The position matrix defaults to zero
explicit inline Frame(const Rotation& R);
inline Frame() {}
//! The copy constructor. Normal copy by value semantics.
inline Frame(const Frame& arg);
//! Reads data from an double array
//\TODO should be formulated as a constructor
void Make4x4(double* d);
//! Treats a frame as a 4x4 matrix and returns element i,j
//! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
inline double operator()(int i,int j);
//! Treats a frame as a 4x4 matrix and returns element i,j
//! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
inline double operator() (int i,int j) const;
// = Inverse
//! Gives back inverse transformation of a Frame
inline Frame Inverse() const;
//! The same as p2=R.Inverse()*p but more efficient.
inline Vector Inverse(const Vector& arg) const;
//! The same as p2=R.Inverse()*p but more efficient.
inline Wrench Inverse(const Wrench& arg) const;
//! The same as p2=R.Inverse()*p but more efficient.
inline Twist Inverse(const Twist& arg) const;
//! Normal copy-by-value semantics.
inline Frame& operator = (const Frame& arg);
//! Transformation of the base to which the vector
//! is expressed.
inline Vector operator * (const Vector& arg) const;
//! Transformation of both the force reference point
//! and of the base to which the wrench is expressed.
//! look at Rotation*Wrench operator for a transformation
//! of only the base to which the twist is expressed.
//!
//! Complexity : 24M+18A
inline Wrench operator * (const Wrench& arg) const;
//! Transformation of both the velocity reference point
//! and of the base to which the twist is expressed.
//! look at Rotation*Twist for a transformation of only the
//! base to which the twist is expressed.
//!
//! Complexity : 24M+18A
inline Twist operator * (const Twist& arg) const;
//! Composition of two frames.
inline friend Frame operator *(const Frame& lhs,const Frame& rhs);
//! @return the identity transformation Frame(Rotation::Identity(),Vector::Zero()).
inline static Frame Identity();
//! The twist <t_this> is expressed wrt the current
//! frame. This frame is integrated into an updated frame with
//! <samplefrequency>. Very simple first order integration rule.
inline void Integrate(const Twist& t_this,double frequency);
/*
// DH_Craig1989 : constructs a transformationmatrix
// T_link(i-1)_link(i) with the Denavit-Hartenberg convention as
// described in the Craigs book: Craig, J. J.,Introduction to
// Robotics: Mechanics and Control, Addison-Wesley,
// isbn:0-201-10326-5, 1986.
//
// Note that the frame is a redundant way to express the information
// in the DH-convention.
// \verbatim
// Parameters in full : a(i-1),alpha(i-1),d(i),theta(i)
//
// axis i-1 is connected by link i-1 to axis i numbering axis 1
// to axis n link 0 (immobile base) to link n
//
// link length a(i-1) length of the mutual perpendicular line
// (normal) between the 2 axes. This normal runs from (i-1) to
// (i) axis.
//
// link twist alpha(i-1): construct plane perpendicular to the
// normal project axis(i-1) and axis(i) into plane angle from
// (i-1) to (i) measured in the direction of the normal
//
// link offset d(i) signed distance between normal (i-1) to (i)
// and normal (i) to (i+1) along axis i joint angle theta(i)
// signed angle between normal (i-1) to (i) and normal (i) to
// (i+1) along axis i
//
// First and last joints : a(0)= a(n) = 0
// alpha(0) = alpha(n) = 0
//
// PRISMATIC : theta(1) = 0 d(1) arbitrarily
//
// REVOLUTE : theta(1) arbitrarily d(1) = 0
//
// Not unique : if intersecting joint axis 2 choices for normal
// Frame assignment of the DH convention : Z(i-1) follows axis
// (i-1) X(i-1) is the normal between axis(i-1) and axis(i)
// Y(i-1) follows out of Z(i-1) and X(i-1)
//
// a(i-1) = distance from Z(i-1) to Z(i) along X(i-1)
// alpha(i-1) = angle between Z(i-1) to Z(i) along X(i-1)
// d(i) = distance from X(i-1) to X(i) along Z(i)
// theta(i) = angle between X(i-1) to X(i) along X(i)
// \endverbatim
*/
static Frame DH_Craig1989(double a,double alpha,double d,double theta);
// DH : constructs a transformationmatrix T_link(i-1)_link(i) with
// the Denavit-Hartenberg convention as described in the original
// publictation: Denavit, J. and Hartenberg, R. S., A kinematic
// notation for lower-pair mechanisms based on matrices, ASME
// Journal of Applied Mechanics, 23:215-221, 1955.
static Frame DH(double a,double alpha,double d,double theta);
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Frame& a,const Frame& b,double eps);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const Frame& a,const Frame& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const Frame& a,const Frame& b);
};
/**
* \brief represents both translational and rotational velocities.
*
* This class represents a twist. A twist is the combination of translational
* velocity and rotational velocity applied at one point.
*/
class Twist {
public:
Vector vel; //!< The velocity of that point
Vector rot; //!< The rotational velocity of that point.
public:
//! The default constructor initialises to Zero via the constructor of Vector.
Twist():vel(),rot() {};
Twist(const Vector& _vel,const Vector& _rot):vel(_vel),rot(_rot) {};
inline Twist& operator-=(const Twist& arg);
inline Twist& operator+=(const Twist& arg);
//! index-based access to components, first vel(0..2), then rot(3..5)
inline double& operator()(int i);
//! index-based access to components, first vel(0..2), then rot(3..5)
//! For use with a const Twist
inline double operator()(int i) const;
double operator[] ( int index ) const
{
return this->operator() ( index );
}
double& operator[] ( int index )
{
return this->operator() ( index );
}
inline friend Twist operator*(const Twist& lhs,double rhs);
inline friend Twist operator*(double lhs,const Twist& rhs);
inline friend Twist operator/(const Twist& lhs,double rhs);
inline friend Twist operator+(const Twist& lhs,const Twist& rhs);
inline friend Twist operator-(const Twist& lhs,const Twist& rhs);
inline friend Twist operator-(const Twist& arg);
inline friend double dot(const Twist& lhs,const Wrench& rhs);
inline friend double dot(const Wrench& rhs,const Twist& lhs);
inline friend void SetToZero(Twist& v);
/// Spatial cross product for 6d motion vectors, beware all of them have to be expressed in the same reference frame/point
inline friend Twist operator*(const Twist& lhs,const Twist& rhs);
/// Spatial cross product for 6d force vectors, beware all of them have to be expressed in the same reference frame/point
inline friend Wrench operator*(const Twist& lhs,const Wrench& rhs);
//! @return a zero Twist : Twist(Vector::Zero(),Vector::Zero())
static inline Twist Zero();
//! Reverses the sign of the twist
inline void ReverseSign();
//! Changes the reference point of the twist.
//! The vector v_base_AB is expressed in the same base as the twist
//! The vector v_base_AB is a vector from the old point to
//! the new point.
//!
//! Complexity : 6M+6A
inline Twist RefPoint(const Vector& v_base_AB) const;
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Twist& a,const Twist& b,double eps);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const Twist& a,const Twist& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const Twist& a,const Twist& b);
// = Friends
friend class Rotation;
friend class Frame;
};
/**
* \brief represents both translational and rotational acceleration.
*
* This class represents an acceleration twist. A acceleration twist is
* the combination of translational
* acceleration and rotational acceleration applied at one point.
*/
/*
class AccelerationTwist {
public:
Vector trans; //!< The translational acceleration of that point
Vector rot; //!< The rotational acceleration of that point.
public:
//! The default constructor initialises to Zero via the constructor of Vector.
AccelerationTwist():trans(),rot() {};
AccelerationTwist(const Vector& _trans,const Vector& _rot):trans(_trans),rot(_rot) {};
inline AccelerationTwist& operator-=(const AccelerationTwist& arg);
inline AccelerationTwist& operator+=(const AccelerationTwist& arg);
//! index-based access to components, first vel(0..2), then rot(3..5)
inline double& operator()(int i);
//! index-based access to components, first vel(0..2), then rot(3..5)
//! For use with a const AccelerationTwist
inline double operator()(int i) const;
double operator[] ( int index ) const
{
return this->operator() ( index );
}
double& operator[] ( int index )
{
return this->operator() ( index );
}
inline friend AccelerationTwist operator*(const AccelerationTwist& lhs,double rhs);
inline friend AccelerationTwist operator*(double lhs,const AccelerationTwist& rhs);
inline friend AccelerationTwist operator/(const AccelerationTwist& lhs,double rhs);
inline friend AccelerationTwist operator+(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
inline friend AccelerationTwist operator-(const AccelerationTwist& lhs,const AccelerationTwist& rhs);
inline friend AccelerationTwist operator-(const AccelerationTwist& arg);
//inline friend double dot(const AccelerationTwist& lhs,const Wrench& rhs);
//inline friend double dot(const Wrench& rhs,const AccelerationTwist& lhs);
inline friend void SetToZero(AccelerationTwist& v);
//! @return a zero AccelerationTwist : AccelerationTwist(Vector::Zero(),Vector::Zero())
static inline AccelerationTwist Zero();
//! Reverses the sign of the AccelerationTwist
inline void ReverseSign();
//! Changes the reference point of the AccelerationTwist.
//! The vector v_base_AB is expressed in the same base as the AccelerationTwist
//! The vector v_base_AB is a vector from the old point to
//! the new point.
//!
//! Complexity : 6M+6A
inline AccelerationTwist RefPoint(const Vector& v_base_AB) const;
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const AccelerationTwist& a,const AccelerationTwist& b,double eps=epsilon);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const AccelerationTwist& a,const AccelerationTwist& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const AccelerationTwist& a,const AccelerationTwist& b);
// = Friends
friend class Rotation;
friend class Frame;
};
*/
/**
* \brief represents the combination of a force and a torque.
*
* This class represents a Wrench. A Wrench is the force and torque applied at a point
*/
class Wrench
{
public:
Vector force; //!< Force that is applied at the origin of the current ref frame
Vector torque; //!< Torque that is applied at the origin of the current ref frame
public:
//! Does initialise force and torque to zero via the underlying constructor of Vector
Wrench():force(),torque() {};
Wrench(const Vector& _force,const Vector& _torque):force(_force),torque(_torque) {};
// = Operators
inline Wrench& operator-=(const Wrench& arg);
inline Wrench& operator+=(const Wrench& arg);
//! index-based access to components, first force(0..2), then torque(3..5)
inline double& operator()(int i);
//! index-based access to components, first force(0..2), then torque(3..5)
//! for use with a const Wrench
inline double operator()(int i) const;
double operator[] ( int index ) const
{
return this->operator() ( index );
}
double& operator[] ( int index )
{
return this->operator() ( index );
}
//! Scalar multiplication
inline friend Wrench operator*(const Wrench& lhs,double rhs);
//! Scalar multiplication
inline friend Wrench operator*(double lhs,const Wrench& rhs);
//! Scalar division
inline friend Wrench operator/(const Wrench& lhs,double rhs);
inline friend Wrench operator+(const Wrench& lhs,const Wrench& rhs);
inline friend Wrench operator-(const Wrench& lhs,const Wrench& rhs);
//! An unary - operator
inline friend Wrench operator-(const Wrench& arg);
//! Sets the Wrench to Zero, to have a uniform function that sets an object or
//! double to zero.
inline friend void SetToZero(Wrench& v);
//! @return a zero Wrench
static inline Wrench Zero();
//! Reverses the sign of the current Wrench
inline void ReverseSign();
//! Changes the reference point of the wrench.
//! The vector v_base_AB is expressed in the same base as the twist
//! The vector v_base_AB is a vector from the old point to
//! the new point.
//!
//! Complexity : 6M+6A
inline Wrench RefPoint(const Vector& v_base_AB) const;
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Wrench& a,const Wrench& b,double eps);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const Wrench& a,const Wrench& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const Wrench& a,const Wrench& b);
friend class Rotation;
friend class Frame;
};
//! 2D version of Vector
class Vector2
{
double data[2];
public:
//! Does not initialise to Zero().
Vector2() {data[0]=data[1] = 0.0;}
inline Vector2(double x,double y);
inline Vector2(const Vector2& arg);
inline Vector2& operator = ( const Vector2& arg);
//! Access to elements, range checked when NDEBUG is not set, from 0..1
inline double operator()(int index) const;
//! Access to elements, range checked when NDEBUG is not set, from 0..1
inline double& operator() (int index);
//! Equivalent to double operator()(int index) const
double operator[] ( int index ) const
{
return this->operator() ( index );
}
//! Equivalent to double& operator()(int index)
double& operator[] ( int index )
{
return this->operator() ( index );
}
inline double x() const;
inline double y() const;
inline void x(double);
inline void y(double);
inline void ReverseSign();
inline Vector2& operator-=(const Vector2& arg);
inline Vector2& operator +=(const Vector2& arg);
inline friend Vector2 operator*(const Vector2& lhs,double rhs);
inline friend Vector2 operator*(double lhs,const Vector2& rhs);
inline friend Vector2 operator/(const Vector2& lhs,double rhs);
inline friend Vector2 operator+(const Vector2& lhs,const Vector2& rhs);
inline friend Vector2 operator-(const Vector2& lhs,const Vector2& rhs);
inline friend Vector2 operator*(const Vector2& lhs,const Vector2& rhs);
inline friend Vector2 operator-(const Vector2& arg);
inline friend void SetToZero(Vector2& v);
//! @return a zero 2D vector.
inline static Vector2 Zero();
/** Normalizes this vector and returns it norm
* makes v a unitvector and returns the norm of v.
* if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
* if this is not good, check the return value of this method.
*/
double Normalize(double eps=epsilon);
//! @return the norm of the vector
double Norm() const;
//! projects v in its XY plane, and sets *this to these values
inline void Set3DXY(const Vector& v);
//! projects v in its YZ plane, and sets *this to these values
inline void Set3DYZ(const Vector& v);
//! projects v in its ZX plane, and sets *this to these values
inline void Set3DZX(const Vector& v);
//! projects v_someframe in the XY plane of F_someframe_XY,
//! and sets *this to these values
//! expressed wrt someframe.
inline void Set3DPlane(const Frame& F_someframe_XY,const Vector& v_someframe);
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Vector2& a,const Vector2& b,double eps);
//! The literal equality operator==(), also identical.
inline friend bool operator==(const Vector2& a,const Vector2& b);
//! The literal inequality operator!=().
inline friend bool operator!=(const Vector2& a,const Vector2& b);
friend class Rotation2;
};
//! A 2D Rotation class, for conventions see Rotation. For further documentation
//! of the methods see Rotation class.
class Rotation2
{
double s,c;
//! c,s represent cos(angle), sin(angle), this also represents first col. of rot matrix
//! from outside, this class behaves as if it would store the complete 2x2 matrix.
public:
//! Default constructor does NOT initialise to Zero().
Rotation2() {c=1.0;s=0.0;}
explicit Rotation2(double angle_rad):s(sin(angle_rad)),c(cos(angle_rad)) {}
Rotation2(double ca,double sa):s(sa),c(ca){}
inline Rotation2& operator=(const Rotation2& arg);
inline Vector2 operator*(const Vector2& v) const;
//! Access to elements 0..1,0..1, bounds are checked when NDEBUG is not set
inline double operator() (int i,int j) const;
inline friend Rotation2 operator *(const Rotation2& lhs,const Rotation2& rhs);
inline void SetInverse();
inline Rotation2 Inverse() const;
inline Vector2 Inverse(const Vector2& v) const;
inline void SetIdentity();
inline static Rotation2 Identity();
//! The SetRot.. functions set the value of *this to the appropriate rotation matrix.
inline void SetRot(double angle);
//! The Rot... static functions give the value of the appropriate rotation matrix bac
inline static Rotation2 Rot(double angle);
//! Gets the angle (in radians)
inline double GetRot() const;
//! do not use operator == because the definition of Equal(.,.) is slightly
//! different. It compares whether the 2 arguments are equal in an eps-interval
inline friend bool Equal(const Rotation2& a,const Rotation2& b,double eps);
};
//! A 2D frame class, for further documentation see the Frames class
//! for methods with unchanged semantics.
class Frame2
{
public:
Vector2 p; //!< origine of the Frame
Rotation2 M; //!< Orientation of the Frame
public:
inline Frame2(const Rotation2& R,const Vector2& V);
explicit inline Frame2(const Vector2& V);
explicit inline Frame2(const Rotation2& R);
inline Frame2(void);
inline Frame2(const Frame2& arg);
inline void Make4x4(double* d);
//! Treats a frame as a 3x3 matrix and returns element i,j
//! Access to elements 0..2,0..2, bounds are checked when NDEBUG is not set
inline double operator()(int i,int j);
//! Treats a frame as a 4x4 matrix and returns element i,j
//! Access to elements 0..3,0..3, bounds are checked when NDEBUG is not set
inline double operator() (int i,int j) const;
inline void SetInverse();
inline Frame2 Inverse() const;
inline Vector2 Inverse(const Vector2& arg) const;
inline Frame2& operator = (const Frame2& arg);
inline Vector2 operator * (const Vector2& arg);
inline friend Frame2 operator *(const Frame2& lhs,const Frame2& rhs);
inline void SetIdentity();
inline void Integrate(const Twist& t_this,double frequency);
inline static Frame2 Identity() {
Frame2 tmp;
tmp.SetIdentity();
return tmp;
}
inline friend bool Equal(const Frame2& a,const Frame2& b,double eps);
};
/**
* determines the difference of vector b with vector a.
*
* see diff for Rotation matrices for further background information.
*
* \param p_w_a start vector a expressed to some frame w
* \param p_w_b end vector b expressed to some frame w .
* \param dt [optional][obsolete] time interval over which the numerical differentiation takes place.
* \return the difference (b-a) expressed to the frame w.
*/
IMETHOD Vector diff(const Vector& p_w_a,const Vector& p_w_b,double dt=1);
/**
* determines the (scaled) rotation axis necessary to rotate from b1 to b2.
*
* This rotation axis is expressed w.r.t. frame a. The rotation axis is scaled
* by the necessary rotation angle. The rotation angle is always in the
* (inclusive) interval \f$ [0 , \pi] \f$.
*
* This definition is chosen in this way to facilitate numerical differentiation.
* With this definition diff(a,b) == -diff(b,a).
*
* The diff() function is overloaded for all classes in frames.hpp and framesvel.hpp, such that
* numerical differentiation, equality checks with tolerances, etc. can be performed
* without caring exactly on which type the operation is performed.
*
* \param R_a_b1: The rotation matrix \f$ _a^{b1} R \f$ of b1 with respect to frame a.
* \param R_a_b2: The Rotation matrix \f$ _a^{b2} R \f$ of b2 with respect to frame a.
* \param dt [optional][obsolete] time interval over which the numerical differentiation takes place. By default this is set to 1.0.
* \return rotation axis to rotate from b1 to b2, scaled by the rotation angle, expressed in frame a.
* \warning - The result is not a rotational vector, i.e. it is not a mathematical vector.
* (no communitative addition).
*
* \warning - When used in the context of numerical differentiation, with the frames b1 and b2 very
* close to each other, the semantics correspond to the twist, scaled by the time.
*
* \warning - For angles equal to \f$ \pi \f$, The negative of the
* return value is equally valid.
*/
IMETHOD Vector diff(const Rotation& R_a_b1,const Rotation& R_a_b2,double dt=1);
/**
* determines the rotation axis necessary to rotate the frame b1 to the same orientation as frame b2 and the vector
* necessary to translate the origin of b1 to the origin of b2, and stores the result in a Twist datastructure.
* \param F_a_b1 frame b1 expressed with respect to some frame a.
* \param F_a_b2 frame b2 expressed with respect to some frame a.
* \warning The result is not a Twist!
* see diff() for Rotation and Vector arguments for further detail on the semantics.
*/
IMETHOD Twist diff(const Frame& F_a_b1,const Frame& F_a_b2,double dt=1);
/**
* determines the difference between two twists i.e. the difference between
* the underlying velocity vectors and rotational velocity vectors.
*/
IMETHOD Twist diff(const Twist& a,const Twist& b,double dt=1);
/**
* determines the difference between two wrenches i.e. the difference between
* the underlying torque vectors and force vectors.
*/
IMETHOD Wrench diff(const Wrench& W_a_p1,const Wrench& W_a_p2,double dt=1);
/**
* \brief adds vector da to vector a.
* see also the corresponding diff() routine.
* \param p_w_a vector a expressed to some frame w.
* \param p_w_da vector da expressed to some frame w.
* \returns the vector resulting from the displacement of vector a by vector da, expressed in the frame w.
*/
IMETHOD Vector addDelta(const Vector& p_w_a,const Vector& p_w_da,double dt=1);
/**
* returns the rotation matrix resulting from the rotation of frame a by the axis and angle
* specified with da_w.
*
* see also the corresponding diff() routine.
*
* \param R_w_a Rotation matrix of frame a expressed to some frame w.
* \param da_w axis and angle of the rotation expressed to some frame w.
* \returns the rotation matrix resulting from the rotation of frame a by the axis and angle
* specified with da. The resulting rotation matrix is expressed with respect to
* frame w.
*/
IMETHOD Rotation addDelta(const Rotation& R_w_a,const Vector& da_w,double dt=1);
/**
* returns the frame resulting from the rotation of frame a by the axis and angle
* specified in da_w and the translation of the origin (also specified in da_w).
*
* see also the corresponding diff() routine.
* \param R_w_a Rotation matrix of frame a expressed to some frame w.
* \param da_w axis and angle of the rotation (da_w.rot), together with a displacement vector for the origin (da_w.vel), expressed to some frame w.
* \returns the frame resulting from the rotation of frame a by the axis and angle
* specified with da.rot, and the translation of the origin da_w.vel . The resulting frame is expressed with respect to frame w.
*/
IMETHOD Frame addDelta(const Frame& F_w_a,const Twist& da_w,double dt=1);
/**
* \brief adds the twist da to the twist a.
* see also the corresponding diff() routine.
* \param a a twist wrt some frame
* \param da a twist difference wrt some frame
* \returns The twist (a+da) wrt the corresponding frame.
*/
IMETHOD Twist addDelta(const Twist& a,const Twist&da,double dt=1);
/**
* \brief adds the wrench da to the wrench w.
* see also the corresponding diff() routine.
* see also the corresponding diff() routine.
* \param a a wrench wrt some frame
* \param da a wrench difference wrt some frame
* \returns the wrench (a+da) wrt the corresponding frame.
*/
IMETHOD Wrench addDelta(const Wrench& a,const Wrench&da,double dt=1);
#ifdef KDL_INLINE
// #include "vector.inl"
// #include "wrench.inl"
//#include "rotation.inl"
//#include "frame.inl"
//#include "twist.inl"
//#include "vector2.inl"
//#include "rotation2.inl"
//#include "frame2.inl"
#include "frames.inl"
#endif
}
#endif
|