This file is indexed.

/usr/include/ql/experimental/math/multidimquadrature.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2014 Jose Aparicio

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#ifndef quantlib_math_multidimquadrature_hpp
#define quantlib_math_multidimquadrature_hpp

#include <ql/math/integrals/gaussianquadratures.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/bind.hpp>

namespace QuantLib {

    namespace detail {
        typedef Disposable<std::vector<Real> > DispArray;
    }

    /*! \brief Integrates a vector or scalar function of vector domain. 
        
        A template recursion along dimensions avoids calling depth 
        test or virtual functions.

        \todo Add coherence test between the integrand function dimensions (the
        vector size) and the declared dimension in the constructor.

        \todo Split into integrator classes for functions returning scalar and 
            vector?
    */
    class GaussianQuadMultidimIntegrator {
    private:
        // Vector integration. Quadrature to functions returning a vector of 
        // real numbers, turns 1D quadratures into ND
        class VectorIntegrator : public GaussHermiteIntegration {
        public:
            VectorIntegrator(Size n, Real mu = 0.0) 
            : GaussHermiteIntegration(n, mu) {}

            template <class F> // todo: fix copies.
            detail::DispArray operator()(const F& f) const {
                //first one, we do not know the size of the vector returned by f
                Integer i = order()-1;
                std::vector<Real> term = f(x_[i]);// potential copy! @#$%^!!!
                std::for_each(term.begin(), term.end(), 
                    std::bind1st(std::multiplies<Real>(), w_[i]));
                std::vector<Real> sum = term;
           
                for (i--; i >= 0; --i) {
                    term = f(x_[i]);// potential copy! @#$%^!!!
                    // sum[j] += term[j] * w_[i];
                    std::transform(term.begin(), term.end(), sum.begin(), 
                        sum.begin(), 
                        boost::bind(std::plus<Real>(), _2,
                            boost::bind(std::multiplies<Real>(), w_[i], _1)));
                }
                return sum;
            }
        };

    public:
        /*!
            @param dimension The number of dimensions of the argument of the 
            function we want to integrate.
            @param dimension Integration variable dimension.
            @param mu Parameter in the Gauss Hermite weight (i.e. points load).
        */
        GaussianQuadMultidimIntegrator(Size dimension, Size quadOrder, 
            Real mu = 0.);
        //! Integration quadrature order.
        Size order() const {return integralV_.order();}

        //! Integrates function f over \f$ R^{dim} \f$
        /* This function is just syntax since the only thing it does is calling 
        to integrate<RetType> which has to exist for the type returned by the 
        function. So theres one redundant call but there should not be any extra 
        cost... up to the compiler. It can not be templated all the way since
        the integration entries functions can not be templates.
        Most times integrands will return a scalar or vector but could be a 
        matrix too. Also vectors might be returned as vector or Disposable 
        wrapped (which is preferred and I have removed the plain vector
        version).
         */
        template<class RetType_T>
        RetType_T operator()(const boost::function<RetType_T (
            const std::vector<Real>& arg)>& f) const 
        {
            return integrate<RetType_T>(f);
        }


        //---------------------------------------------------------
        /* Boost fails on MSVC2008 to recognise the return type when 
        calling op()  , its not boost, its me.... FIX ME*/

        // Declare, spezializations follow.
        template<class RetType_T>
        RetType_T integrate(const boost::function<RetType_T (
            const std::vector<Real>& v1)>& f) const;

    private:
        /* The maximum number of dimensions of the integration variable domain
            A higher than this number of dimension would presumably be 
           impractical and another integration algorithm (MC) should be 
           considered.
           \to do Consider moving it to a library configuration variable.
        */
        static const Size maxDimensions_ = 15;

        //! \name Integration entry points generation
        //@{
        //! Recursive template methods to statically generate (at this 
        //    class construction time) handles to the integration entry points
        template<Size levelSpawn>
        void spawnFcts() const {
            integrationEntries_[levelSpawn-1] = 
                boost::bind(
                &GaussianQuadMultidimIntegrator::scalarIntegrator<levelSpawn>, 
                    this, _1, _2);
            integrationEntriesVR_[levelSpawn-1] = 
                boost::bind(
                &GaussianQuadMultidimIntegrator::vectorIntegratorVR<levelSpawn>, 
                    this, _1, _2);
            spawnFcts<levelSpawn-1>();
        }
        //@}

        //---------------------------------------------------------

        template <int intgDepth>
        Real scalarIntegrator(
            boost::function<Real (const std::vector<Real>& arg1)> f, 
            const Real mFctr) const 
        {
            varBuffer_[intgDepth-1] = mFctr;
            return integral_(boost::bind(
                &GaussianQuadMultidimIntegrator::scalarIntegrator<intgDepth-1>,
                this,
                f,
                _1)
            );
        }

        template <int intgDepth>
        detail::DispArray vectorIntegratorVR(
            const boost::function<detail::DispArray(const std::vector<Real>& arg1)>& f,
            const Real mFctr) const 
        {
            varBuffer_[intgDepth-1] = mFctr;
            return 
              integralV_(boost::bind(
               &GaussianQuadMultidimIntegrator::vectorIntegratorVR<intgDepth-1>,
               this,
               f,
               _1)
            );
        }
    private:
        // Same object for all dimensions poses problems when using the 
        //   parallelized integrals version.
        //! The actual integrators.
        GaussHermiteIntegration integral_;
        VectorIntegrator integralV_;

        //! Buffer to allow acces to integrations. We do not know at which 
        //    level/dimension we are going to start integration
        // \todo Declare typedefs for traits
        mutable std::vector<
        boost::function<Real (boost::function<Real (
            const std::vector<Real>& varg2)> f1, 
            const Real r3)> > integrationEntries_;
        mutable std::vector<
        boost::function<detail::DispArray (const boost::function<detail::DispArray(
            const std::vector<Real>& vvarg2)>& vf1, 
            const Real vr3)> > integrationEntriesVR_;

        Size dimension_;
        // integration veriable buffer
        mutable std::vector<Real> varBuffer_;
    };


    // Template specializations ---------------------------------------------

    template<>
    inline Real GaussianQuadMultidimIntegrator::operator()(
        const boost::function<Real (const std::vector<Real>& v1)>& f) const
    {
        return integral_(boost::bind(
                   // integration entry level is selected now
                   integrationEntries_[dimension_-1],
                   boost::cref(f),
                   _1)
                   );
    }

    // Scalar integrand version (merge with vector case?)
    template<>
    inline Real GaussianQuadMultidimIntegrator::integrate<Real>(
        const boost::function<Real (const std::vector<Real>& v1)>& f) const 
    {
        // integration variables
        // call vector quadrature integration with the function and start 
        // values, kicks in recursion over the dimensions of the integration
        // variable.
        return integral_(boost::bind(
                   // integration entry level is selected now
                   integrationEntries_[dimension_-1],
                   boost::cref(f),
                   _1)
                   );
    }

    // Vector integrand version
    template<>
    inline detail::DispArray GaussianQuadMultidimIntegrator::integrate<detail::DispArray>(
        const boost::function<detail::DispArray (const std::vector<Real>& v1)>& f) const
    {
        return integralV_(boost::bind(
                   boost::cref(integrationEntriesVR_[dimension_-1]),
                   boost::cref(f),
                   _1)
                   );
    } 

    //! Terminal integrand; scalar function version
    template<> 
    inline Real GaussianQuadMultidimIntegrator::scalarIntegrator<1>(
        boost::function<Real (const std::vector<Real>& arg1)> f,
        const Real mFctr) const
    {
        varBuffer_[0] = mFctr;
        return f(varBuffer_);
    }

    //! Terminal integrand; disposable vector function version
    template<>
    inline detail::DispArray
        GaussianQuadMultidimIntegrator::vectorIntegratorVR<1>(
        const boost::function<detail::DispArray (const std::vector<Real>& arg1)>& f,
        const Real mFctr) const 
    {
        varBuffer_[0] = mFctr;
        return f(varBuffer_);
    }

    //! Terminal level:
    template<>
    inline void GaussianQuadMultidimIntegrator::spawnFcts<1>() const {
        integrationEntries_[0] = 
          boost::bind(&GaussianQuadMultidimIntegrator::scalarIntegrator<1>, 
          this, _1, _2);
        integrationEntriesVR_[0] = 
         boost::bind(&GaussianQuadMultidimIntegrator::vectorIntegratorVR<1>, 
         this, _1, _2);
    }

}

#endif