/usr/include/ql/experimental/math/multidimquadrature.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2014 Jose Aparicio
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
#ifndef quantlib_math_multidimquadrature_hpp
#define quantlib_math_multidimquadrature_hpp
#include <ql/math/integrals/gaussianquadratures.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/lambda/bind.hpp>
namespace QuantLib {
namespace detail {
typedef Disposable<std::vector<Real> > DispArray;
}
/*! \brief Integrates a vector or scalar function of vector domain.
A template recursion along dimensions avoids calling depth
test or virtual functions.
\todo Add coherence test between the integrand function dimensions (the
vector size) and the declared dimension in the constructor.
\todo Split into integrator classes for functions returning scalar and
vector?
*/
class GaussianQuadMultidimIntegrator {
private:
// Vector integration. Quadrature to functions returning a vector of
// real numbers, turns 1D quadratures into ND
class VectorIntegrator : public GaussHermiteIntegration {
public:
VectorIntegrator(Size n, Real mu = 0.0)
: GaussHermiteIntegration(n, mu) {}
template <class F> // todo: fix copies.
detail::DispArray operator()(const F& f) const {
//first one, we do not know the size of the vector returned by f
Integer i = order()-1;
std::vector<Real> term = f(x_[i]);// potential copy! @#$%^!!!
std::for_each(term.begin(), term.end(),
std::bind1st(std::multiplies<Real>(), w_[i]));
std::vector<Real> sum = term;
for (i--; i >= 0; --i) {
term = f(x_[i]);// potential copy! @#$%^!!!
// sum[j] += term[j] * w_[i];
std::transform(term.begin(), term.end(), sum.begin(),
sum.begin(),
boost::bind(std::plus<Real>(), _2,
boost::bind(std::multiplies<Real>(), w_[i], _1)));
}
return sum;
}
};
public:
/*!
@param dimension The number of dimensions of the argument of the
function we want to integrate.
@param dimension Integration variable dimension.
@param mu Parameter in the Gauss Hermite weight (i.e. points load).
*/
GaussianQuadMultidimIntegrator(Size dimension, Size quadOrder,
Real mu = 0.);
//! Integration quadrature order.
Size order() const {return integralV_.order();}
//! Integrates function f over \f$ R^{dim} \f$
/* This function is just syntax since the only thing it does is calling
to integrate<RetType> which has to exist for the type returned by the
function. So theres one redundant call but there should not be any extra
cost... up to the compiler. It can not be templated all the way since
the integration entries functions can not be templates.
Most times integrands will return a scalar or vector but could be a
matrix too. Also vectors might be returned as vector or Disposable
wrapped (which is preferred and I have removed the plain vector
version).
*/
template<class RetType_T>
RetType_T operator()(const boost::function<RetType_T (
const std::vector<Real>& arg)>& f) const
{
return integrate<RetType_T>(f);
}
//---------------------------------------------------------
/* Boost fails on MSVC2008 to recognise the return type when
calling op() , its not boost, its me.... FIX ME*/
// Declare, spezializations follow.
template<class RetType_T>
RetType_T integrate(const boost::function<RetType_T (
const std::vector<Real>& v1)>& f) const;
private:
/* The maximum number of dimensions of the integration variable domain
A higher than this number of dimension would presumably be
impractical and another integration algorithm (MC) should be
considered.
\to do Consider moving it to a library configuration variable.
*/
static const Size maxDimensions_ = 15;
//! \name Integration entry points generation
//@{
//! Recursive template methods to statically generate (at this
// class construction time) handles to the integration entry points
template<Size levelSpawn>
void spawnFcts() const {
integrationEntries_[levelSpawn-1] =
boost::bind(
&GaussianQuadMultidimIntegrator::scalarIntegrator<levelSpawn>,
this, _1, _2);
integrationEntriesVR_[levelSpawn-1] =
boost::bind(
&GaussianQuadMultidimIntegrator::vectorIntegratorVR<levelSpawn>,
this, _1, _2);
spawnFcts<levelSpawn-1>();
}
//@}
//---------------------------------------------------------
template <int intgDepth>
Real scalarIntegrator(
boost::function<Real (const std::vector<Real>& arg1)> f,
const Real mFctr) const
{
varBuffer_[intgDepth-1] = mFctr;
return integral_(boost::bind(
&GaussianQuadMultidimIntegrator::scalarIntegrator<intgDepth-1>,
this,
f,
_1)
);
}
template <int intgDepth>
detail::DispArray vectorIntegratorVR(
const boost::function<detail::DispArray(const std::vector<Real>& arg1)>& f,
const Real mFctr) const
{
varBuffer_[intgDepth-1] = mFctr;
return
integralV_(boost::bind(
&GaussianQuadMultidimIntegrator::vectorIntegratorVR<intgDepth-1>,
this,
f,
_1)
);
}
private:
// Same object for all dimensions poses problems when using the
// parallelized integrals version.
//! The actual integrators.
GaussHermiteIntegration integral_;
VectorIntegrator integralV_;
//! Buffer to allow acces to integrations. We do not know at which
// level/dimension we are going to start integration
// \todo Declare typedefs for traits
mutable std::vector<
boost::function<Real (boost::function<Real (
const std::vector<Real>& varg2)> f1,
const Real r3)> > integrationEntries_;
mutable std::vector<
boost::function<detail::DispArray (const boost::function<detail::DispArray(
const std::vector<Real>& vvarg2)>& vf1,
const Real vr3)> > integrationEntriesVR_;
Size dimension_;
// integration veriable buffer
mutable std::vector<Real> varBuffer_;
};
// Template specializations ---------------------------------------------
template<>
inline Real GaussianQuadMultidimIntegrator::operator()(
const boost::function<Real (const std::vector<Real>& v1)>& f) const
{
return integral_(boost::bind(
// integration entry level is selected now
integrationEntries_[dimension_-1],
boost::cref(f),
_1)
);
}
// Scalar integrand version (merge with vector case?)
template<>
inline Real GaussianQuadMultidimIntegrator::integrate<Real>(
const boost::function<Real (const std::vector<Real>& v1)>& f) const
{
// integration variables
// call vector quadrature integration with the function and start
// values, kicks in recursion over the dimensions of the integration
// variable.
return integral_(boost::bind(
// integration entry level is selected now
integrationEntries_[dimension_-1],
boost::cref(f),
_1)
);
}
// Vector integrand version
template<>
inline detail::DispArray GaussianQuadMultidimIntegrator::integrate<detail::DispArray>(
const boost::function<detail::DispArray (const std::vector<Real>& v1)>& f) const
{
return integralV_(boost::bind(
boost::cref(integrationEntriesVR_[dimension_-1]),
boost::cref(f),
_1)
);
}
//! Terminal integrand; scalar function version
template<>
inline Real GaussianQuadMultidimIntegrator::scalarIntegrator<1>(
boost::function<Real (const std::vector<Real>& arg1)> f,
const Real mFctr) const
{
varBuffer_[0] = mFctr;
return f(varBuffer_);
}
//! Terminal integrand; disposable vector function version
template<>
inline detail::DispArray
GaussianQuadMultidimIntegrator::vectorIntegratorVR<1>(
const boost::function<detail::DispArray (const std::vector<Real>& arg1)>& f,
const Real mFctr) const
{
varBuffer_[0] = mFctr;
return f(varBuffer_);
}
//! Terminal level:
template<>
inline void GaussianQuadMultidimIntegrator::spawnFcts<1>() const {
integrationEntries_[0] =
boost::bind(&GaussianQuadMultidimIntegrator::scalarIntegrator<1>,
this, _1, _2);
integrationEntriesVR_[0] =
boost::bind(&GaussianQuadMultidimIntegrator::vectorIntegratorVR<1>,
this, _1, _2);
}
}
#endif
|