This file is indexed.

/usr/include/ql/math/interpolations/xabrinterpolation.hpp is in libquantlib0-dev 1.9.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*
 Copyright (C) 2006 Ferdinando Ametrano
 Copyright (C) 2007 Marco Bianchetti
 Copyright (C) 2007 François du Vignaud
 Copyright (C) 2007 Giorgio Facchinetti
 Copyright (C) 2006 Mario Pucci
 Copyright (C) 2006 StatPro Italia srl
 Copyright (C) 2014 Peter Caspers

 This file is part of QuantLib, a free-software/open-source library
 for financial quantitative analysts and developers - http://quantlib.org/

 QuantLib is free software: you can redistribute it and/or modify it
 under the terms of the QuantLib license.  You should have received a
 copy of the license along with this program; if not, please email
 <quantlib-dev@lists.sf.net>. The license is also available online at
 <http://quantlib.org/license.shtml>.

 This program is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
 FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

/*! \file xabrinterpolation.hpp
    \brief generic interpolation class for sabr style underlying models
           like the Hagan 2002 expansion, Doust's no arbitrage sabr,
           Andreasen's zabr expansion for the masses and similar
*/

#ifndef ql_xabr_interpolation_hpp
#define ql_xabr_interpolation_hpp

#include <ql/utilities/null.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/interpolation.hpp>
#include <ql/math/optimization/method.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/optimization/projectedcostfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/randomnumbers/haltonrsg.hpp>

namespace QuantLib {

namespace detail {

template <typename Model> class XABRCoeffHolder {
  public:
    XABRCoeffHolder(const Time t, const Real &forward, std::vector<Real> params,
                    std::vector<bool> paramIsFixed, std::vector<Real> addParams)
        : t_(t), forward_(forward), params_(params),
          paramIsFixed_(paramIsFixed.size(), false),
          weights_(std::vector<Real>()), error_(Null<Real>()),
          maxError_(Null<Real>()), XABREndCriteria_(EndCriteria::None),
          addParams_(addParams) {
        QL_REQUIRE(t > 0.0, "expiry time must be positive: " << t
                                                             << " not allowed");
        QL_REQUIRE(params.size() == Model().dimension(),
                   "wrong number of parameters (" << params.size()
                                                  << "), should be "
                                                  << Model().dimension());
        QL_REQUIRE(paramIsFixed.size() == Model().dimension(),
                   "wrong number of fixed parameters flags ("
                       << paramIsFixed.size() << "), should be "
                       << Model().dimension());

        for (Size i = 0; i < params.size(); ++i) {
            if (params[i] != Null<Real>())
                paramIsFixed_[i] = paramIsFixed[i];
        }
        Model().defaultValues(params_, paramIsFixed_, forward_, t_, addParams_);
        updateModelInstance();
    }
    virtual ~XABRCoeffHolder() {}

    void updateModelInstance() {
        modelInstance_ = Model().instance(t_, forward_, params_, addParams_);
    }

    /*! Expiry, Forward */
    Real t_;
    const Real &forward_;
    /*! Parameters */
    std::vector<Real> params_;
    std::vector<bool> paramIsFixed_;
    std::vector<Real> weights_;
    /*! Interpolation results */
    Real error_, maxError_;
    EndCriteria::Type XABREndCriteria_;
    /*! Model instance (if required) */
    boost::shared_ptr<typename Model::type> modelInstance_;
    /*! additional parameters */
    std::vector<Real> addParams_;
};

template <class I1, class I2, typename Model>
class XABRInterpolationImpl : public Interpolation::templateImpl<I1, I2>,
                              public XABRCoeffHolder<Model> {
  public:
    XABRInterpolationImpl(
        const I1 &xBegin, const I1 &xEnd, const I2 &yBegin, Time t,
        const Real &forward, std::vector<Real> params,
        std::vector<bool> paramIsFixed, bool vegaWeighted,
        const boost::shared_ptr<EndCriteria> &endCriteria,
        const boost::shared_ptr<OptimizationMethod> &optMethod,
        const Real errorAccept, const bool useMaxError, const Size maxGuesses,
        const std::vector<Real> addParams = std::vector<Real>())
        : Interpolation::templateImpl<I1, I2>(xBegin, xEnd, yBegin, 1),
          XABRCoeffHolder<Model>(t, forward, params, paramIsFixed, addParams),
          endCriteria_(endCriteria), optMethod_(optMethod),
          errorAccept_(errorAccept), useMaxError_(useMaxError),
          maxGuesses_(maxGuesses), forward_(forward),
          vegaWeighted_(vegaWeighted) {
        // if no optimization method or endCriteria is provided, we provide one
        if (!optMethod_)
            optMethod_ = boost::shared_ptr<OptimizationMethod>(
                new LevenbergMarquardt(1e-8, 1e-8, 1e-8));
        // optMethod_ = boost::shared_ptr<OptimizationMethod>(new
        //    Simplex(0.01));
        if (!endCriteria_) {
            endCriteria_ = boost::shared_ptr<EndCriteria>(
                new EndCriteria(60000, 100, 1e-8, 1e-8, 1e-8));
        }
        this->weights_ =
            std::vector<Real>(xEnd - xBegin, 1.0 / (xEnd - xBegin));
    }

    void update() {

        this->updateModelInstance();

        // we should also check that y contains positive values only

        // we must update weights if it is vegaWeighted
        if (vegaWeighted_) {
            std::vector<Real>::const_iterator x = this->xBegin_;
            std::vector<Real>::const_iterator y = this->yBegin_;
            // std::vector<Real>::iterator w = weights_.begin();
            this->weights_.clear();
            Real weightsSum = 0.0;
            for (; x != this->xEnd_; ++x, ++y) {
                Real stdDev = std::sqrt((*y) * (*y) * this->t_);
                this->weights_.push_back(Model().weight(*x, forward_, stdDev,
                                                        this->addParams_));
                weightsSum += this->weights_.back();
            }
            // weight normalization
            std::vector<Real>::iterator w = this->weights_.begin();
            for (; w != this->weights_.end(); ++w)
                *w /= weightsSum;
        }

        // there is nothing to optimize
        if (std::accumulate(this->paramIsFixed_.begin(),
                            this->paramIsFixed_.end(), true,
                            std::logical_and<bool>())) {
            this->error_ = interpolationError();
            this->maxError_ = interpolationMaxError();
            this->XABREndCriteria_ = EndCriteria::None;
            return;
        } else {
            XABRError costFunction(this);

            Array guess(Model().dimension());
            for (Size i = 0; i < guess.size(); ++i)
                guess[i] = this->params_[i];

            Size iterations = 0;
            Size freeParameters = 0;
            Real bestError = QL_MAX_REAL;
            Array bestParameters;
            for (Size i = 0; i < Model().dimension(); ++i)
                if (!this->paramIsFixed_[i])
                    ++freeParameters;
            HaltonRsg halton(freeParameters, 42);
            EndCriteria::Type tmpEndCriteria;
            Real tmpInterpolationError;

            do {

                if (iterations > 0) {
                    HaltonRsg::sample_type s = halton.nextSequence();
                    Model().guess(guess, this->paramIsFixed_, forward_,
                                  this->t_, s.value, this->addParams_);
                    for (Size i = 0; i < this->paramIsFixed_.size(); ++i)
                        if (this->paramIsFixed_[i])
                            guess[i] = this->params_[i];
                }

                Array inversedTransformatedGuess(Model().inverse(
                    guess, this->paramIsFixed_, this->params_, forward_));

                ProjectedCostFunction constrainedXABRError(
                    costFunction, inversedTransformatedGuess,
                    this->paramIsFixed_);

                Array projectedGuess(
                    constrainedXABRError.project(inversedTransformatedGuess));

                NoConstraint constraint;
                Problem problem(constrainedXABRError, constraint,
                                projectedGuess);
                tmpEndCriteria = optMethod_->minimize(problem, *endCriteria_);
                Array projectedResult(problem.currentValue());
                Array transfResult(
                    constrainedXABRError.include(projectedResult));

                Array result = Model().direct(transfResult, this->paramIsFixed_,
                                              this->params_, forward_);
                tmpInterpolationError = useMaxError_ ? interpolationMaxError()
                                                     : interpolationError();

                if (tmpInterpolationError < bestError) {
                    bestError = tmpInterpolationError;
                    bestParameters = result;
                    this->XABREndCriteria_ = tmpEndCriteria;
                }

            } while (++iterations < maxGuesses_ &&
                     tmpInterpolationError > errorAccept_);

            for (Size i = 0; i < bestParameters.size(); ++i)
                this->params_[i] = bestParameters[i];

            this->error_ = interpolationError();
            this->maxError_ = interpolationMaxError();
        }
    }

    Real value(Real x) const {
        return this->modelInstance_->volatility(x);
    }

    Real primitive(Real) const { QL_FAIL("XABR primitive not implemented"); }
    Real derivative(Real) const { QL_FAIL("XABR derivative not implemented"); }
    Real secondDerivative(Real) const {
        QL_FAIL("XABR secondDerivative not implemented");
    }

    // calculate total squared weighted difference (L2 norm)
    Real interpolationSquaredError() const {
        Real error, totalError = 0.0;
        std::vector<Real>::const_iterator x = this->xBegin_;
        std::vector<Real>::const_iterator y = this->yBegin_;
        std::vector<Real>::const_iterator w = this->weights_.begin();
        for (; x != this->xEnd_; ++x, ++y, ++w) {
            error = (value(*x) - *y);
            totalError += error * error * (*w);
        }
        return totalError;
    }

    // calculate weighted differences
    Disposable<Array> interpolationErrors() const {
        Array results(this->xEnd_ - this->xBegin_);
        std::vector<Real>::const_iterator x = this->xBegin_;
        Array::iterator r = results.begin();
        std::vector<Real>::const_iterator y = this->yBegin_;
        std::vector<Real>::const_iterator w = this->weights_.begin();
        for (; x != this->xEnd_; ++x, ++r, ++w, ++y) {
            *r = (value(*x) - *y) * std::sqrt(*w);
        }
        return results;
    }

    Real interpolationError() const {
        Size n = this->xEnd_ - this->xBegin_;
        Real squaredError = interpolationSquaredError();
        return std::sqrt(n * squaredError / (n==1 ? 1 : (n - 1)));
    }

    Real interpolationMaxError() const {
        Real error, maxError = QL_MIN_REAL;
        I1 i = this->xBegin_;
        I2 j = this->yBegin_;
        for (; i != this->xEnd_; ++i, ++j) {
            error = std::fabs(value(*i) - *j);
            maxError = std::max(maxError, error);
        }
        return maxError;
    }

  private:
    class XABRError : public CostFunction {
      public:
        XABRError(XABRInterpolationImpl *xabr) : xabr_(xabr) {}

        Real value(const Array &x) const {
            const Array y = Model().direct(x, xabr_->paramIsFixed_,
                                           xabr_->params_, xabr_->forward_);
            for (Size i = 0; i < xabr_->params_.size(); ++i)
                xabr_->params_[i] = y[i];
            xabr_->updateModelInstance();
            return xabr_->interpolationSquaredError();
        }

        Disposable<Array> values(const Array &x) const {
            const Array y = Model().direct(x, xabr_->paramIsFixed_,
                                           xabr_->params_, xabr_->forward_);
            for (Size i = 0; i < xabr_->params_.size(); ++i)
                xabr_->params_[i] = y[i];
            xabr_->updateModelInstance();
            return xabr_->interpolationErrors();
        }

      private:
        XABRInterpolationImpl *xabr_;
    };
    boost::shared_ptr<EndCriteria> endCriteria_;
    boost::shared_ptr<OptimizationMethod> optMethod_;
    const Real errorAccept_;
    const bool useMaxError_;
    const Size maxGuesses_;
    const Real &forward_;
    bool vegaWeighted_;
    NoConstraint constraint_;
};

} // namespace detail
} // namespace QuantLib

#endif