/usr/include/ql/math/interpolations/xabrinterpolation.hpp is in libquantlib0-dev 1.9.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | /* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
Copyright (C) 2006 Ferdinando Ametrano
Copyright (C) 2007 Marco Bianchetti
Copyright (C) 2007 François du Vignaud
Copyright (C) 2007 Giorgio Facchinetti
Copyright (C) 2006 Mario Pucci
Copyright (C) 2006 StatPro Italia srl
Copyright (C) 2014 Peter Caspers
This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/
QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license. You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the license for more details.
*/
/*! \file xabrinterpolation.hpp
\brief generic interpolation class for sabr style underlying models
like the Hagan 2002 expansion, Doust's no arbitrage sabr,
Andreasen's zabr expansion for the masses and similar
*/
#ifndef ql_xabr_interpolation_hpp
#define ql_xabr_interpolation_hpp
#include <ql/utilities/null.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/interpolation.hpp>
#include <ql/math/optimization/method.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/math/optimization/levenbergmarquardt.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/math/optimization/projectedcostfunction.hpp>
#include <ql/math/optimization/constraint.hpp>
#include <ql/math/randomnumbers/haltonrsg.hpp>
namespace QuantLib {
namespace detail {
template <typename Model> class XABRCoeffHolder {
public:
XABRCoeffHolder(const Time t, const Real &forward, std::vector<Real> params,
std::vector<bool> paramIsFixed, std::vector<Real> addParams)
: t_(t), forward_(forward), params_(params),
paramIsFixed_(paramIsFixed.size(), false),
weights_(std::vector<Real>()), error_(Null<Real>()),
maxError_(Null<Real>()), XABREndCriteria_(EndCriteria::None),
addParams_(addParams) {
QL_REQUIRE(t > 0.0, "expiry time must be positive: " << t
<< " not allowed");
QL_REQUIRE(params.size() == Model().dimension(),
"wrong number of parameters (" << params.size()
<< "), should be "
<< Model().dimension());
QL_REQUIRE(paramIsFixed.size() == Model().dimension(),
"wrong number of fixed parameters flags ("
<< paramIsFixed.size() << "), should be "
<< Model().dimension());
for (Size i = 0; i < params.size(); ++i) {
if (params[i] != Null<Real>())
paramIsFixed_[i] = paramIsFixed[i];
}
Model().defaultValues(params_, paramIsFixed_, forward_, t_, addParams_);
updateModelInstance();
}
virtual ~XABRCoeffHolder() {}
void updateModelInstance() {
modelInstance_ = Model().instance(t_, forward_, params_, addParams_);
}
/*! Expiry, Forward */
Real t_;
const Real &forward_;
/*! Parameters */
std::vector<Real> params_;
std::vector<bool> paramIsFixed_;
std::vector<Real> weights_;
/*! Interpolation results */
Real error_, maxError_;
EndCriteria::Type XABREndCriteria_;
/*! Model instance (if required) */
boost::shared_ptr<typename Model::type> modelInstance_;
/*! additional parameters */
std::vector<Real> addParams_;
};
template <class I1, class I2, typename Model>
class XABRInterpolationImpl : public Interpolation::templateImpl<I1, I2>,
public XABRCoeffHolder<Model> {
public:
XABRInterpolationImpl(
const I1 &xBegin, const I1 &xEnd, const I2 &yBegin, Time t,
const Real &forward, std::vector<Real> params,
std::vector<bool> paramIsFixed, bool vegaWeighted,
const boost::shared_ptr<EndCriteria> &endCriteria,
const boost::shared_ptr<OptimizationMethod> &optMethod,
const Real errorAccept, const bool useMaxError, const Size maxGuesses,
const std::vector<Real> addParams = std::vector<Real>())
: Interpolation::templateImpl<I1, I2>(xBegin, xEnd, yBegin, 1),
XABRCoeffHolder<Model>(t, forward, params, paramIsFixed, addParams),
endCriteria_(endCriteria), optMethod_(optMethod),
errorAccept_(errorAccept), useMaxError_(useMaxError),
maxGuesses_(maxGuesses), forward_(forward),
vegaWeighted_(vegaWeighted) {
// if no optimization method or endCriteria is provided, we provide one
if (!optMethod_)
optMethod_ = boost::shared_ptr<OptimizationMethod>(
new LevenbergMarquardt(1e-8, 1e-8, 1e-8));
// optMethod_ = boost::shared_ptr<OptimizationMethod>(new
// Simplex(0.01));
if (!endCriteria_) {
endCriteria_ = boost::shared_ptr<EndCriteria>(
new EndCriteria(60000, 100, 1e-8, 1e-8, 1e-8));
}
this->weights_ =
std::vector<Real>(xEnd - xBegin, 1.0 / (xEnd - xBegin));
}
void update() {
this->updateModelInstance();
// we should also check that y contains positive values only
// we must update weights if it is vegaWeighted
if (vegaWeighted_) {
std::vector<Real>::const_iterator x = this->xBegin_;
std::vector<Real>::const_iterator y = this->yBegin_;
// std::vector<Real>::iterator w = weights_.begin();
this->weights_.clear();
Real weightsSum = 0.0;
for (; x != this->xEnd_; ++x, ++y) {
Real stdDev = std::sqrt((*y) * (*y) * this->t_);
this->weights_.push_back(Model().weight(*x, forward_, stdDev,
this->addParams_));
weightsSum += this->weights_.back();
}
// weight normalization
std::vector<Real>::iterator w = this->weights_.begin();
for (; w != this->weights_.end(); ++w)
*w /= weightsSum;
}
// there is nothing to optimize
if (std::accumulate(this->paramIsFixed_.begin(),
this->paramIsFixed_.end(), true,
std::logical_and<bool>())) {
this->error_ = interpolationError();
this->maxError_ = interpolationMaxError();
this->XABREndCriteria_ = EndCriteria::None;
return;
} else {
XABRError costFunction(this);
Array guess(Model().dimension());
for (Size i = 0; i < guess.size(); ++i)
guess[i] = this->params_[i];
Size iterations = 0;
Size freeParameters = 0;
Real bestError = QL_MAX_REAL;
Array bestParameters;
for (Size i = 0; i < Model().dimension(); ++i)
if (!this->paramIsFixed_[i])
++freeParameters;
HaltonRsg halton(freeParameters, 42);
EndCriteria::Type tmpEndCriteria;
Real tmpInterpolationError;
do {
if (iterations > 0) {
HaltonRsg::sample_type s = halton.nextSequence();
Model().guess(guess, this->paramIsFixed_, forward_,
this->t_, s.value, this->addParams_);
for (Size i = 0; i < this->paramIsFixed_.size(); ++i)
if (this->paramIsFixed_[i])
guess[i] = this->params_[i];
}
Array inversedTransformatedGuess(Model().inverse(
guess, this->paramIsFixed_, this->params_, forward_));
ProjectedCostFunction constrainedXABRError(
costFunction, inversedTransformatedGuess,
this->paramIsFixed_);
Array projectedGuess(
constrainedXABRError.project(inversedTransformatedGuess));
NoConstraint constraint;
Problem problem(constrainedXABRError, constraint,
projectedGuess);
tmpEndCriteria = optMethod_->minimize(problem, *endCriteria_);
Array projectedResult(problem.currentValue());
Array transfResult(
constrainedXABRError.include(projectedResult));
Array result = Model().direct(transfResult, this->paramIsFixed_,
this->params_, forward_);
tmpInterpolationError = useMaxError_ ? interpolationMaxError()
: interpolationError();
if (tmpInterpolationError < bestError) {
bestError = tmpInterpolationError;
bestParameters = result;
this->XABREndCriteria_ = tmpEndCriteria;
}
} while (++iterations < maxGuesses_ &&
tmpInterpolationError > errorAccept_);
for (Size i = 0; i < bestParameters.size(); ++i)
this->params_[i] = bestParameters[i];
this->error_ = interpolationError();
this->maxError_ = interpolationMaxError();
}
}
Real value(Real x) const {
return this->modelInstance_->volatility(x);
}
Real primitive(Real) const { QL_FAIL("XABR primitive not implemented"); }
Real derivative(Real) const { QL_FAIL("XABR derivative not implemented"); }
Real secondDerivative(Real) const {
QL_FAIL("XABR secondDerivative not implemented");
}
// calculate total squared weighted difference (L2 norm)
Real interpolationSquaredError() const {
Real error, totalError = 0.0;
std::vector<Real>::const_iterator x = this->xBegin_;
std::vector<Real>::const_iterator y = this->yBegin_;
std::vector<Real>::const_iterator w = this->weights_.begin();
for (; x != this->xEnd_; ++x, ++y, ++w) {
error = (value(*x) - *y);
totalError += error * error * (*w);
}
return totalError;
}
// calculate weighted differences
Disposable<Array> interpolationErrors() const {
Array results(this->xEnd_ - this->xBegin_);
std::vector<Real>::const_iterator x = this->xBegin_;
Array::iterator r = results.begin();
std::vector<Real>::const_iterator y = this->yBegin_;
std::vector<Real>::const_iterator w = this->weights_.begin();
for (; x != this->xEnd_; ++x, ++r, ++w, ++y) {
*r = (value(*x) - *y) * std::sqrt(*w);
}
return results;
}
Real interpolationError() const {
Size n = this->xEnd_ - this->xBegin_;
Real squaredError = interpolationSquaredError();
return std::sqrt(n * squaredError / (n==1 ? 1 : (n - 1)));
}
Real interpolationMaxError() const {
Real error, maxError = QL_MIN_REAL;
I1 i = this->xBegin_;
I2 j = this->yBegin_;
for (; i != this->xEnd_; ++i, ++j) {
error = std::fabs(value(*i) - *j);
maxError = std::max(maxError, error);
}
return maxError;
}
private:
class XABRError : public CostFunction {
public:
XABRError(XABRInterpolationImpl *xabr) : xabr_(xabr) {}
Real value(const Array &x) const {
const Array y = Model().direct(x, xabr_->paramIsFixed_,
xabr_->params_, xabr_->forward_);
for (Size i = 0; i < xabr_->params_.size(); ++i)
xabr_->params_[i] = y[i];
xabr_->updateModelInstance();
return xabr_->interpolationSquaredError();
}
Disposable<Array> values(const Array &x) const {
const Array y = Model().direct(x, xabr_->paramIsFixed_,
xabr_->params_, xabr_->forward_);
for (Size i = 0; i < xabr_->params_.size(); ++i)
xabr_->params_[i] = y[i];
xabr_->updateModelInstance();
return xabr_->interpolationErrors();
}
private:
XABRInterpolationImpl *xabr_;
};
boost::shared_ptr<EndCriteria> endCriteria_;
boost::shared_ptr<OptimizationMethod> optMethod_;
const Real errorAccept_;
const bool useMaxError_;
const Size maxGuesses_;
const Real &forward_;
bool vegaWeighted_;
NoConstraint constraint_;
};
} // namespace detail
} // namespace QuantLib
#endif
|