/usr/include/rdkit/GraphMol/new_canon.h is in librdkit-dev 201603.5-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 | //
// Copyright (C) 2014 Greg Landrum
// Adapted from pseudo-code from Roger Sayle
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <RDGeneral/hanoiSort.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/RingInfo.h>
#include <boost/cstdint.hpp>
#include <boost/foreach.hpp>
#include <boost/dynamic_bitset.hpp>
#include <cstring>
#include <iostream>
#include <cassert>
#include <cstring>
#include <vector>
//#define VERBOSE_CANON 1
namespace RDKit {
namespace Canon {
struct bondholder {
Bond::BondType bondType;
unsigned int bondStereo;
unsigned int nbrSymClass;
unsigned int nbrIdx;
bondholder()
: bondType(Bond::UNSPECIFIED),
bondStereo(static_cast<unsigned int>(Bond::STEREONONE)),
nbrSymClass(0),
nbrIdx(0){};
bondholder(Bond::BondType bt, Bond::BondStereo bs, unsigned int ni,
unsigned int nsc)
: bondType(bt),
bondStereo(static_cast<unsigned int>(bs)),
nbrSymClass(nsc),
nbrIdx(ni){};
bondholder(Bond::BondType bt, unsigned int bs, unsigned int ni,
unsigned int nsc)
: bondType(bt), bondStereo(bs), nbrSymClass(nsc), nbrIdx(ni){};
bool operator<(const bondholder &o) const {
if (bondType != o.bondType) return bondType < o.bondType;
if (bondStereo != o.bondStereo) return bondStereo < o.bondStereo;
return nbrSymClass < o.nbrSymClass;
}
static bool greater(const bondholder &lhs, const bondholder &rhs) {
if (lhs.bondType != rhs.bondType) return lhs.bondType > rhs.bondType;
if (lhs.bondStereo != rhs.bondStereo)
return lhs.bondStereo > rhs.bondStereo;
return lhs.nbrSymClass > rhs.nbrSymClass;
}
static int compare(const bondholder &x, const bondholder &y,
unsigned int div = 1) {
if (x.bondType < y.bondType)
return -1;
else if (x.bondType > y.bondType)
return 1;
if (x.bondStereo < y.bondStereo)
return -1;
else if (x.bondStereo > y.bondStereo)
return 1;
return x.nbrSymClass / div - y.nbrSymClass / div;
}
};
struct canon_atom {
const Atom *atom;
int index;
unsigned int degree;
unsigned int totalNumHs;
bool hasRingNbr;
bool isRingStereoAtom;
int *nbrIds;
const std::string *p_symbol; // if provided, this is used to order atoms
std::vector<int> neighborNum;
std::vector<int> revistedNeighbors;
std::vector<bondholder> bonds;
canon_atom()
: atom(NULL),
index(-1),
degree(0),
totalNumHs(0),
hasRingNbr(false),
isRingStereoAtom(false),
nbrIds(NULL),
p_symbol(NULL){};
};
void updateAtomNeighborIndex(canon_atom *atoms, std::vector<bondholder> &nbrs);
void updateAtomNeighborNumSwaps(
canon_atom *atoms, std::vector<bondholder> &nbrs, unsigned int atomIdx,
std::vector<std::pair<unsigned int, unsigned int> > &result);
/*
* Different types of atom compare functions:
*
* - SpecialChiralityAtomCompareFunctor: Allows canonizing molecules exhibiting
*dependent chirality
* - SpecialSymmetryAtomCompareFunctor: Very specialized, allows canonizing
*highly symmetrical graphs/molecules
* - AtomCompareFunctor: Basic atom compare function which also allows to
*include neighbors within the ranking
*/
class SpecialChiralityAtomCompareFunctor {
public:
Canon::canon_atom *dp_atoms;
const ROMol *dp_mol;
const boost::dynamic_bitset<> *dp_atomsInPlay, *dp_bondsInPlay;
SpecialChiralityAtomCompareFunctor()
: dp_atoms(NULL),
dp_mol(NULL),
dp_atomsInPlay(NULL),
dp_bondsInPlay(NULL){};
SpecialChiralityAtomCompareFunctor(
Canon::canon_atom *atoms, const ROMol &m,
const boost::dynamic_bitset<> *atomsInPlay = NULL,
const boost::dynamic_bitset<> *bondsInPlay = NULL)
: dp_atoms(atoms),
dp_mol(&m),
dp_atomsInPlay(atomsInPlay),
dp_bondsInPlay(bondsInPlay){};
int operator()(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
PRECONDITION(dp_mol, "no molecule");
PRECONDITION(i != j, "bad call");
if (dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])) {
return 0;
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
}
for (unsigned int ii = 0;
ii < dp_atoms[i].bonds.size() && ii < dp_atoms[j].bonds.size(); ++ii) {
int cmp =
bondholder::compare(dp_atoms[i].bonds[ii], dp_atoms[j].bonds[ii]);
if (cmp) return cmp;
}
std::vector<std::pair<unsigned int, unsigned int> > swapsi;
std::vector<std::pair<unsigned int, unsigned int> > swapsj;
if ((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay) {
updateAtomNeighborNumSwaps(dp_atoms, dp_atoms[i].bonds, i, swapsi);
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay) {
updateAtomNeighborNumSwaps(dp_atoms, dp_atoms[j].bonds, j, swapsj);
}
for (unsigned int ii = 0; ii < swapsi.size() && ii < swapsj.size(); ++ii) {
int cmp = swapsi[ii].second - swapsj[ii].second;
if (cmp) return cmp;
}
return 0;
}
};
class SpecialSymmetryAtomCompareFunctor {
public:
Canon::canon_atom *dp_atoms;
const ROMol *dp_mol;
const boost::dynamic_bitset<> *dp_atomsInPlay, *dp_bondsInPlay;
SpecialSymmetryAtomCompareFunctor()
: dp_atoms(NULL),
dp_mol(NULL),
dp_atomsInPlay(NULL),
dp_bondsInPlay(NULL){};
SpecialSymmetryAtomCompareFunctor(
Canon::canon_atom *atoms, const ROMol &m,
const boost::dynamic_bitset<> *atomsInPlay = NULL,
const boost::dynamic_bitset<> *bondsInPlay = NULL)
: dp_atoms(atoms),
dp_mol(&m),
dp_atomsInPlay(atomsInPlay),
dp_bondsInPlay(bondsInPlay){};
int operator()(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
PRECONDITION(dp_mol, "no molecule");
PRECONDITION(i != j, "bad call");
if (dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])) {
return 0;
}
if (dp_atoms[i].neighborNum < dp_atoms[j].neighborNum) {
return -1;
} else if (dp_atoms[i].neighborNum > dp_atoms[j].neighborNum) {
return 1;
}
if (dp_atoms[i].revistedNeighbors < dp_atoms[j].revistedNeighbors) {
return -1;
} else if (dp_atoms[i].revistedNeighbors > dp_atoms[j].revistedNeighbors) {
return 1;
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
}
for (unsigned int ii = 0;
ii < dp_atoms[i].bonds.size() && ii < dp_atoms[j].bonds.size(); ++ii) {
int cmp =
bondholder::compare(dp_atoms[i].bonds[ii], dp_atoms[j].bonds[ii]);
if (cmp) return cmp;
}
if (dp_atoms[i].bonds.size() < dp_atoms[j].bonds.size()) {
return -1;
} else if (dp_atoms[i].bonds.size() > dp_atoms[j].bonds.size()) {
return 1;
}
return 0;
}
};
class AtomCompareFunctor {
unsigned int getAtomRingNbrCode(unsigned int i) const {
if (!dp_atoms[i].hasRingNbr) return 0;
int *nbrs = dp_atoms[i].nbrIds;
unsigned int code = 0;
for (unsigned j = 0; j < dp_atoms[i].degree; ++j) {
if (dp_atoms[nbrs[j]].isRingStereoAtom) {
code += dp_atoms[nbrs[j]].index * 10000 + 1; // j;
}
}
return code;
}
int basecomp(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
unsigned int ivi, ivj;
// always start with the current class:
ivi = dp_atoms[i].index;
ivj = dp_atoms[j].index;
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// use the atom-mapping numbers if they were assigned
/* boost::any_cast FILED here:
std::string molAtomMapNumber_i="";
std::string molAtomMapNumber_j="";
*/
int molAtomMapNumber_i = 0;
int molAtomMapNumber_j = 0;
dp_atoms[i].atom->getPropIfPresent(common_properties::molAtomMapNumber,
molAtomMapNumber_i);
dp_atoms[j].atom->getPropIfPresent(common_properties::molAtomMapNumber,
molAtomMapNumber_j);
if (molAtomMapNumber_i < molAtomMapNumber_j)
return -1;
else if (molAtomMapNumber_i > molAtomMapNumber_j)
return 1;
// start by comparing degree
ivi = dp_atoms[i].degree;
ivj = dp_atoms[j].degree;
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
if (dp_atoms[i].p_symbol && dp_atoms[j].p_symbol) {
if (*(dp_atoms[i].p_symbol) < *(dp_atoms[j].p_symbol))
return -1;
else if (*(dp_atoms[i].p_symbol) > *(dp_atoms[j].p_symbol))
return 1;
else
return 0;
}
// move onto atomic number
ivi = dp_atoms[i].atom->getAtomicNum();
ivj = dp_atoms[j].atom->getAtomicNum();
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// isotopes if we're using them
if (df_useIsotopes) {
ivi = dp_atoms[i].atom->getIsotope();
ivj = dp_atoms[j].atom->getIsotope();
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
}
// nHs
ivi = dp_atoms[i].totalNumHs;
ivj = dp_atoms[j].totalNumHs;
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// charge
ivi = dp_atoms[i].atom->getFormalCharge();
ivj = dp_atoms[j].atom->getFormalCharge();
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// chirality if we're using it
if (df_useChirality) {
// first atom stereochem:
ivi = 0;
ivj = 0;
std::string cipCode;
if (dp_atoms[i].atom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
ivi = cipCode == "R" ? 2 : 1;
}
if (dp_atoms[j].atom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
ivj = cipCode == "R" ? 2 : 1;
}
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// can't actually use values here, because they are arbitrary
ivi = dp_atoms[i].atom->getChiralTag() != 0;
ivj = dp_atoms[j].atom->getChiralTag() != 0;
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
}
if (df_useChiralityRings) {
// ring stereochemistry
ivi = getAtomRingNbrCode(i);
ivj = getAtomRingNbrCode(j);
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// bond stereo is taken care of in the neighborhood comparison
}
return 0;
}
public:
Canon::canon_atom *dp_atoms;
const ROMol *dp_mol;
const boost::dynamic_bitset<> *dp_atomsInPlay, *dp_bondsInPlay;
bool df_useNbrs;
bool df_useIsotopes;
bool df_useChirality;
bool df_useChiralityRings;
AtomCompareFunctor()
: dp_atoms(NULL),
dp_mol(NULL),
dp_atomsInPlay(NULL),
dp_bondsInPlay(NULL),
df_useNbrs(false),
df_useIsotopes(true),
df_useChirality(true),
df_useChiralityRings(true){};
AtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m,
const boost::dynamic_bitset<> *atomsInPlay = NULL,
const boost::dynamic_bitset<> *bondsInPlay = NULL)
: dp_atoms(atoms),
dp_mol(&m),
dp_atomsInPlay(atomsInPlay),
dp_bondsInPlay(bondsInPlay),
df_useNbrs(false),
df_useIsotopes(true),
df_useChirality(true),
df_useChiralityRings(true){};
int operator()(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
PRECONDITION(dp_mol, "no molecule");
PRECONDITION(i != j, "bad call");
if (dp_atomsInPlay && !((*dp_atomsInPlay)[i] || (*dp_atomsInPlay)[j])) {
return 0;
}
int v = basecomp(i, j);
if (v) {
return v;
}
if (df_useNbrs) {
if ((dp_atomsInPlay && (*dp_atomsInPlay)[i]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[i].bonds);
}
if ((dp_atomsInPlay && (*dp_atomsInPlay)[j]) || !dp_atomsInPlay) {
updateAtomNeighborIndex(dp_atoms, dp_atoms[j].bonds);
}
for (unsigned int ii = 0;
ii < dp_atoms[i].bonds.size() && ii < dp_atoms[j].bonds.size();
++ii) {
int cmp =
bondholder::compare(dp_atoms[i].bonds[ii], dp_atoms[j].bonds[ii]);
if (cmp) return cmp;
}
if (dp_atoms[i].bonds.size() < dp_atoms[j].bonds.size()) {
return -1;
} else if (dp_atoms[i].bonds.size() > dp_atoms[j].bonds.size()) {
return 1;
}
}
return 0;
}
};
/*
* A compare function to discriminate chiral atoms, similar to the CIP rules.
* This functionality is currently not used.
*/
const unsigned int ATNUM_CLASS_OFFSET = 10000;
class ChiralAtomCompareFunctor {
void getAtomNeighborhood(std::vector<bondholder> &nbrs) const {
for (unsigned j = 0; j < nbrs.size(); ++j) {
unsigned int nbrIdx = nbrs[j].nbrIdx;
if (nbrIdx == ATNUM_CLASS_OFFSET) {
// Ignore the Hs
continue;
}
const Atom *nbr = dp_atoms[nbrIdx].atom;
nbrs[j].nbrSymClass =
nbr->getAtomicNum() * ATNUM_CLASS_OFFSET + dp_atoms[nbrIdx].index + 1;
}
std::sort(nbrs.begin(), nbrs.end(), bondholder::greater);
// FIX: don't want to be doing this long-term
}
int basecomp(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
unsigned int ivi, ivj;
// always start with the current class:
ivi = dp_atoms[i].index;
ivj = dp_atoms[j].index;
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// move onto atomic number
ivi = dp_atoms[i].atom->getAtomicNum();
ivj = dp_atoms[j].atom->getAtomicNum();
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// isotopes:
ivi = dp_atoms[i].atom->getIsotope();
ivj = dp_atoms[j].atom->getIsotope();
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// atom stereochem:
ivi = 0;
ivj = 0;
std::string cipCode;
if (dp_atoms[i].atom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
ivi = cipCode == "R" ? 2 : 1;
}
if (dp_atoms[j].atom->getPropIfPresent(common_properties::_CIPCode,
cipCode)) {
ivj = cipCode == "R" ? 2 : 1;
}
if (ivi < ivj)
return -1;
else if (ivi > ivj)
return 1;
// bond stereo is taken care of in the neighborhood comparison
return 0;
}
public:
Canon::canon_atom *dp_atoms;
const ROMol *dp_mol;
bool df_useNbrs;
ChiralAtomCompareFunctor()
: dp_atoms(NULL), dp_mol(NULL), df_useNbrs(false){};
ChiralAtomCompareFunctor(Canon::canon_atom *atoms, const ROMol &m)
: dp_atoms(atoms), dp_mol(&m), df_useNbrs(false){};
int operator()(int i, int j) const {
PRECONDITION(dp_atoms, "no atoms");
PRECONDITION(dp_mol, "no molecule");
PRECONDITION(i != j, "bad call");
int v = basecomp(i, j);
if (v) return v;
if (df_useNbrs) {
getAtomNeighborhood(dp_atoms[i].bonds);
getAtomNeighborhood(dp_atoms[j].bonds);
// we do two passes through the neighbor lists. The first just uses the
// atomic numbers (by passing the optional 10000 to bondholder::compare),
// the second takes the already-computed index into account
for (unsigned int ii = 0;
ii < dp_atoms[i].bonds.size() && ii < dp_atoms[j].bonds.size();
++ii) {
int cmp = bondholder::compare(
dp_atoms[i].bonds[ii], dp_atoms[j].bonds[ii], ATNUM_CLASS_OFFSET);
if (cmp) return cmp;
}
for (unsigned int ii = 0;
ii < dp_atoms[i].bonds.size() && ii < dp_atoms[j].bonds.size();
++ii) {
int cmp =
bondholder::compare(dp_atoms[i].bonds[ii], dp_atoms[j].bonds[ii]);
if (cmp) return cmp;
}
if (dp_atoms[i].bonds.size() < dp_atoms[j].bonds.size()) {
return -1;
} else if (dp_atoms[i].bonds.size() > dp_atoms[j].bonds.size()) {
return 1;
}
}
return 0;
}
};
/*
* Basic canonicalization function to organize the partitions which will be
* sorted next.
* */
template <typename CompareFunc>
void RefinePartitions(const ROMol &mol, canon_atom *atoms, CompareFunc compar,
int mode, int *order, int *count, int &activeset,
int *next, int *changed, char *touchedPartitions) {
unsigned int nAtoms = mol.getNumAtoms();
int partition;
int symclass = 0;
int *start;
int offset;
int index;
int len;
int i;
// std::vector<char> touchedPartitions(mol.getNumAtoms(),0);
// std::cerr<<"&&&&&&&&&&&&&&&& RP"<<std::endl;
while (activeset != -1) {
// std::cerr<<"ITER: "<<activeset<<" next: "<<next[activeset]<<std::endl;
// std::cerr<<" next: ";
// for(unsigned int ii=0;ii<nAtoms;++ii){
// std::cerr<<ii<<":"<<next[ii]<<" ";
// }
// std::cerr<<std::endl;
// for(unsigned int ii=0;ii<nAtoms;++ii){
// std::cerr<<order[ii]<<" count: "<<count[order[ii]]<<" index:
// "<<atoms[order[ii]].index<<std::endl;
// }
partition = activeset;
activeset = next[partition];
next[partition] = -2;
len = count[partition];
offset = atoms[partition].index;
start = order + offset;
// std::cerr<<"\n\n**************************************************************"<<std::endl;
// std::cerr<<" sort - class:"<<atoms[partition].index<<" len: "<<len<<":";
// for(unsigned int ii=0;ii<len;++ii){
// std::cerr<<" "<<order[offset+ii]+1;
// }
// std::cerr<<std::endl;
// for(unsigned int ii=0;ii<nAtoms;++ii){
// std::cerr<<order[ii]+1<<" count: "<<count[order[ii]]<<" index:
// "<<atoms[order[ii]].index<<std::endl;
// }
hanoisort(start, len, count, changed, compar);
// std::cerr<<"*_*_*_*_*_*_*_*_*_*_*_*_*_*_*_*"<<std::endl;
// std::cerr<<" result:";
// for(unsigned int ii=0;ii<nAtoms;++ii){
// std::cerr<<order[ii]+1<<" count: "<<count[order[ii]]<<" index:
// "<<atoms[order[ii]].index<<std::endl;
// }
for (int k = 0; k < len; ++k) {
changed[start[k]] = 0;
}
index = start[0];
// std::cerr<<" len:"<<len<<" index:"<<index<<"
// count:"<<count[index]<<std::endl;
for (i = count[index]; i < len; i++) {
index = start[i];
if (count[index]) symclass = offset + i;
atoms[index].index = symclass;
// std::cerr<<" "<<index+1<<"("<<symclass<<")";
// if(mode && (activeset<0 || count[index]>count[activeset]) ){
// activeset=index;
//}
for (unsigned j = 0; j < atoms[index].degree; ++j) {
changed[atoms[index].nbrIds[j]] = 1;
}
}
// std::cerr<<std::endl;
if (mode) {
index = start[0];
for (i = count[index]; i < len; i++) {
index = start[i];
for (unsigned j = 0; j < atoms[index].degree; ++j) {
unsigned int nbor = atoms[index].nbrIds[j];
touchedPartitions[atoms[nbor].index] = 1;
}
}
for (unsigned int ii = 0; ii < nAtoms; ++ii) {
if (touchedPartitions[ii]) {
partition = order[ii];
if ((count[partition] > 1) && (next[partition] == -2)) {
next[partition] = activeset;
activeset = partition;
}
touchedPartitions[ii] = 0;
}
}
}
}
} // end of RefinePartitions()
template <typename CompareFunc>
void BreakTies(const ROMol &mol, canon_atom *atoms, CompareFunc compar,
int mode, int *order, int *count, int &activeset, int *next,
int *changed, char *touchedPartitions) {
unsigned int nAtoms = mol.getNumAtoms();
int partition;
int offset;
int index;
int len;
int oldPart = 0;
for (unsigned int i = 0; i < nAtoms; i++) {
partition = order[i];
oldPart = atoms[partition].index;
while (count[partition] > 1) {
len = count[partition];
offset = atoms[partition].index + len - 1;
index = order[offset];
atoms[index].index = offset;
count[partition] = len - 1;
count[index] = 1;
// test for ions, water molecules with no
if (atoms[index].degree < 1) {
continue;
}
for (unsigned j = 0; j < atoms[index].degree; ++j) {
unsigned int nbor = atoms[index].nbrIds[j];
touchedPartitions[atoms[nbor].index] = 1;
changed[nbor] = 1;
}
for (unsigned int ii = 0; ii < nAtoms; ++ii) {
if (touchedPartitions[ii]) {
int npart = order[ii];
if ((count[npart] > 1) && (next[npart] == -2)) {
next[npart] = activeset;
activeset = npart;
}
touchedPartitions[ii] = 0;
}
}
RefinePartitions(mol, atoms, compar, mode, order, count, activeset, next,
changed, touchedPartitions);
}
// not sure if this works each time
if (atoms[partition].index != oldPart) {
i -= 1;
}
}
} // end of BreakTies()
void CreateSinglePartition(unsigned int nAtoms, int *order, int *count,
canon_atom *atoms);
void ActivatePartitions(unsigned int nAtoms, int *order, int *count,
int &activeset, int *next, int *changed);
void rankMolAtoms(const ROMol &mol, std::vector<unsigned int> &res,
bool breakTies = true, bool includeChirality = true,
bool includeIsotopes = true);
void rankFragmentAtoms(const ROMol &mol, std::vector<unsigned int> &res,
const boost::dynamic_bitset<> &atomsInPlay,
const boost::dynamic_bitset<> &bondsInPlay,
const std::vector<std::string> *atomSymbols = NULL,
bool breakTies = true, bool includeChirality = true,
bool includeIsotopes = true);
void chiralRankMolAtoms(const ROMol &mol, std::vector<unsigned int> &res);
void initCanonAtoms(const ROMol &mol, std::vector<Canon::canon_atom> &atoms,
bool includeChirality = true);
} // end of Canon namespace
} // end of RDKit namespace
|