/usr/include/sdpa_newton.h is in libsdpa-dev 7.3.9+dfsg-1+b3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 | /* -------------------------------------------------------------
This file is a component of SDPA
Copyright (C) 2004-2013 SDPA Project
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
------------------------------------------------------------- */
#ifndef __sdpa_newton_h__
#define __sdpa_newton_h__
#include "sdpa_chordal.h"
#define SparseCholesky 1
#include <pthread.h> // for multiple threading
#ifdef GOTO_BLAS
extern "C" {
void goto_set_num_threads(int);
};
#endif
namespace sdpa {
class Newton;
class Solutions;
class InputData;
class Residuals;
class WorkVariables;
class ComputeTime;
class Parameter;
class StepLength;
class DirectionParameter;
class Switch;
class RatioInitResCurrentRes;
class SolveInfo;
class Phase;
class AverageComplementarity;
class Newton
{
public:
enum bMat_Sp_De {SPARSE, DENSE};
bMat_Sp_De bMat_type;
SparseMatrix sparse_bMat;
DenseMatrix bMat; // the coefficent of Schur complement
Vector gVec; // the right hand side of Schur complement
DenseLinearSpace DxMat;
Vector DyVec;
DenseLinearSpace DzMat;
DenseLinearSpace r_zinvMat;
DenseLinearSpace x_rd_zinvMat;
enum FormulaType {F1,F2,F3};
FormulaType** useFormula;
// Caution:
// if SDPA doesn't use sparse bMat, following variables are indefinite.
//
// nBLock : number of block
// nConstraint[k]: number of combination of nonzero matrices in k-th block
// when A[k].block[i] and A[k].block[j] are nonzero matrices,
// i <-> constraint1[k][t]
// j <-> constraint2[k][t]
// A[k].block[i] <-> A[k].sp_block[blockIndex1[k][t]]
// A[k].block[j] <-> A[k].sp_block[blockIndex2[k][t]]
// B_{ij} <-> sparse_bMat.sp_ele[location_sparse_bMat[k][t]]
int SDP_nBlock; int* SDP_number;
int** SDP_constraint1; int** SDP_constraint2;
int** SDP_blockIndex1; int** SDP_blockIndex2;
int** SDP_location_sparse_bMat;
int SOCP_nBlock; int* SOCP_number;
int** SOCP_constraint1; int** SOCP_constraint2;
int** SOCP_blockIndex1; int** SOCP_blockIndex2;
int** SOCP_location_sparse_bMat;
int LP_nBlock; int* LP_number;
int** LP_constraint1; int** LP_constraint2;
int** LP_blockIndex1; int** LP_blockIndex2;
int** LP_location_sparse_bMat;
// from index of aggrigate sparsity pattern to index of sparse_bMat
// B_{ii} <-> sparse_bMat[diagonalIndex[i]]
int* diagonalIndex;
// B_{ij} for all i is between diagonalIndex[j] and rowStartIndex[j+1]
Newton();
Newton(int m, BlockStruct& bs);
~Newton();
void initialize(int m, BlockStruct& bs);
void terminate();
void initialize_dense_bMat(int m);
// 2008/03/12 kazuhide nakata
void initialize_sparse_bMat(int m);
// 2008/03/12 kazuhide nakata
void initialize_bMat(int m, Chordal& chordal, InputData& inputData,
FILE* Display, FILE* fpOut);
int binarySearchIndex(int i, int j);
void make_aggrigateIndex_SDP(InputData& inputData);
void make_aggrigateIndex_SOCP(InputData& inputData);
void make_aggrigateIndex_LP(InputData& inputData);
void make_aggrigateIndex(InputData& inputData);
void computeFormula_SDP(InputData& inputData,
double DenseRatio,double Kappa);
enum WHICH_DIRECTION {PREDICTOR, CORRECTOR};
void compute_rMat(WHICH_DIRECTION direction,
AverageComplementarity& mu,
DirectionParameter& beta,
Solutions& cuurentPt,
WorkVariables& work);
void Make_gVec(Newton::WHICH_DIRECTION direction,
InputData& inputData,
Solutions& currentPt,
Residuals& currentRes,
AverageComplementarity& mu,
DirectionParameter& beta,
Phase& phase,
WorkVariables& work,
ComputeTime& com);
void calF1(double& ret, DenseMatrix& G,
SparseMatrix& Ai);
void calF2(double& ret, DenseMatrix& F, DenseMatrix& G,
DenseMatrix& invZ, SparseMatrix& Ai, bool& hasF2Gcal);
void calF3(double& ret,
DenseMatrix& X, DenseMatrix& invZ,
SparseMatrix& Ai, SparseMatrix& Aj);
// B_{i,j} = (X A_i Z^{-1}) \bullet A_j
void compute_bMat_dense_SDP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_dense_SDP_thread(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
// B_{i,j} = (X A_i Z^{-1}) \bullet A_j
void compute_bMat_sparse_SDP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_sparse_SDP_thread(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_dense_SOCP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_sparse_SOCP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_dense_LP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void compute_bMat_sparse_LP(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
void Make_bMat(InputData& inputData,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
bool compute_DyVec(Newton::WHICH_DIRECTION direction,
int m,
InputData& inputData,
Chordal& chordal,
Solutions& currentPt,
WorkVariables& work,
ComputeTime& com,
FILE* Display, FILE* fpOut);
void compute_DzMat(InputData& inputData,
Residuals& currentRes,
Phase& phase,
ComputeTime& com);
void compute_DxMat(Solutions& currentPt,
WorkVariables& work,
ComputeTime& com);
bool Mehrotra(WHICH_DIRECTION direction,
int m,
InputData& inputData,
Chordal& chordal,
Solutions& currentPt,
Residuals& currentRes,
AverageComplementarity& mu,
DirectionParameter& beta,
Switch& reduction,
Phase& phase,
WorkVariables& work,
ComputeTime& com,
FILE* Display, FILE* fpOut);
void display(FILE* fpout=stdout);
void display_index(FILE* fpout=stdout);
void display_sparse_bMat(FILE* fpout=stdout);
static pthread_mutex_t job_mutex;
static pthread_cond_t job_cond;
static int Column_Number;
static bool mutex_flag;
static int Calc_F1;
static void calF1_thread(double& ret, DenseMatrix& G,
SparseMatrix& Aj);
static void calF2_thread(double& ret, DenseMatrix& F, DenseMatrix& G,
DenseMatrix& X, SparseMatrix& Aj,
bool& hasF2Gcal);
static void calF3_thread(double& ret,
DenseMatrix& X, DenseMatrix& invZ,
SparseMatrix& Ai, SparseMatrix& Aj);
static void calF3_thread_1x1(double& ret,
DenseMatrix& X, DenseMatrix& invZ,
SparseMatrix& Ai, SparseMatrix& Aj);
static void calF3_thread_2(double& ret,
DenseMatrix& X, DenseMatrix& invZ,
SparseMatrix& Ai, SparseMatrix& Aj);
static void* compute_bMat_dense_SDP_thread_func(void *arg);
static void* compute_bMat_sparse_SDP_thread_func(void *arg);
int NUM_THREADS;
int NUM_GOTOBLAS;
void setNumThreads(FILE* Display, FILE* fpOut, int NumThreads=0);
};
typedef struct _thread_arg {
int Block_Number;
int thread_num;
int mDIM;
int SDP_nBlock;
int *SDP_number;
int **SDP_constraint1;
int **SDP_constraint2;
int **SDP_blockIndex1;
int **SDP_blockIndex2;
int **SDP_location_sparse_bMat;
DenseMatrix* bMat;
SparseMatrix* sparse_bMat;
Newton::FormulaType** useFormula;
InputData* inputData;
Solutions* currentPt;
WorkVariables* work;
ComputeTime* com;
} thread_arg_t;
} // end of namespace 'sdpa'
#endif // __sdpa_newton_h__
|