/usr/include/sfst-1/sfst/alphabet.h is in libsfst1-1.4-dev 1.4.7b-1+b1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | /*******************************************************************/
/* */
/* FILE alphabet.h */
/* MODULE alphabet */
/* PROGRAM SFST */
/* AUTHOR Helmut Schmid, IMS, University of Stuttgart */
/* */
/* PURPOSE finite state tools */
/* */
/*******************************************************************/
#ifndef _ALPHABET_H_
#define _ALPHABET_H_
#include <stdio.h>
#include "basic.h"
#include <set>
using std::set;
#include <vector>
using std::vector;
#include <iostream>
using std::ostream;
#include <cstring>
#include "sgi.h"
#define SFSTVersion "1.4.7a"
namespace SFST {
#ifndef CODE_DATA_TYPE
typedef unsigned short Character; // data type of the symbol codes
#else
typedef unsigned CODE_DATA_TYPE Character;
#endif
// data type used to indicate whether some action is to be performed
// on the analysis level (lower) or the surface level (upper)
typedef enum {upper, lower, both} Level;
/***************** class Label ***********************************/
class Label {
private:
// data structure where the two symbols are stored
struct {
Character lower;
Character upper;
} label;
public:
static const Character epsilon=0; // code of the empty symbol
// new label with two identical symbols
Label( Character c=epsilon ) { label.lower = label.upper = c; };
// new label with two different symbols
Label( Character c1, Character c2 )
{ label.lower = c1; label.upper = c2; };
// returns the indicated symbol of the label
Character get_char( Level l ) const
{ return ((l==upper)? label.upper: label.lower); };
// returns the "upper" symbol of the label (i.e. the surface symbol)
Character upper_char() const { return label.upper; };
// returns the "lower" symbol of the label (i.e. the analysis symbol)
Character lower_char() const { return label.lower; };
// replaces symbols in a label
Label replace_char( Character c, Character nc ) const {
Label l = *this;
if (l.label.lower == c)
l.label.lower = nc;
if (l.label.upper == c)
l.label.upper = nc;
return l;
};
// operators checking the equality of labels
int operator==( Label l ) const
{ return (label.lower==l.label.lower && label.upper==l.label.upper); };
int operator!=( Label l ) const
{ return !(l == *this); };
// comparison operator needed for sorting labels in compact.C
int operator<( Label l ) const {
if (upper_char() < l.upper_char())
return true;
if (upper_char() > l.upper_char())
return false;
if (lower_char() < l.lower_char())
return true;
return false;
};
int operator>( Label l ) const {
if (upper_char() > l.upper_char())
return true;
if (upper_char() < l.upper_char())
return false;
if (lower_char() > l.lower_char())
return true;
return false;
};
// check whether the label is epsilon (i.e. both symbols are epsilon)
// transitions with epsilon labels are epsilon transitions
int is_epsilon() const
{ return (label.upper == epsilon && label.lower == epsilon); };
// check whether the "upper" symbol is epsilon
int upper_is_epsilon() const
{ return (label.upper == epsilon); };
// check whether the "lower" symbol is epsilon
int lower_is_epsilon() const
{ return (label.lower == epsilon); };
// hash function needed to store labels in a hash table
struct label_hash {
size_t operator() ( const Label l ) const {
return (size_t)l.lower_char() ^
((size_t)l.upper_char() << 16) ^
((size_t)l.upper_char() >> 16);
}
};
// comparison function needed to store labels in a map table
struct label_cmp {
bool operator() ( const Label l1, const Label l2 ) const {
return (l1.lower_char() < l2.lower_char() ||
(l1.lower_char() == l2.lower_char() &&
l1.upper_char() < l2.upper_char()));
}
};
// comparison operator needed to store labels in a hash table
struct label_eq {
bool operator() ( const Label l1, const Label l2 ) const {
return (l1.lower_char() == l2.lower_char() &&
l1.upper_char() == l2.upper_char());
}
};
};
typedef vector<Label> Analysis;
/***************** class Alphabet *******************************/
class Alphabet {
// string comparison operators needed to stored strings in a hash table
struct eqstr {
bool operator()(const char* s1, const char* s2) const {
return strcmp(s1, s2) == 0;
}
};
// data structure storing labels without repetitions (i.e. as a set)
typedef set<Label, Label::label_cmp> LabelSet;
// hash table used to map the symbols to their codes
typedef hash_map<const char*, Character, hash<const char*>,eqstr> SymbolMap;
public: // HFST addition
// hash table used to map the codes back to the symbols
typedef hash_map<Character, char*> CharMap;
// HFST addition
bool operator==(const Alphabet &alpha) const;
private:
SymbolMap sm; // maps symbols to codes
CharMap cm; // maps codes to symbols
LabelSet ls; // set of labels known to the alphabet
// add a new symbol with symbol code c
void add( const char *symbol, Character c );
public:
bool utf8;
// iterators over the set of known labels
typedef LabelSet::iterator iterator;
typedef LabelSet::const_iterator const_iterator;
Alphabet();
~Alphabet() { clear(); };
const_iterator begin() const { return ls.begin(); };
const_iterator end() const { return ls.end(); };
size_t size() const { return ls.size(); };
// HFST additions
CharMap get_char_map(void) { return cm; };
void print(void);
void clear();
void clear_char_pairs() { ls.clear(); };
// lookup a label in the alphabet
iterator find( Label l ) { return ls.find(l); };
// insert a label in the alphabet
void insert( Label l ) { if (!l.is_epsilon()) ls.insert(l); };
// insert the known symbols from another alphabet
void insert_symbols( const Alphabet& );
// insert the labels and known symbols from another alphabet
void copy( const Alphabet &a, Level level=both );
// create the alphabet of a transducer obtained by a composition operation
void compose( const Alphabet &la, const Alphabet &ua );
// add a symbol to the alphabet and return its code
Character add_symbol(const char *symbol);
// add a symbol to the alphabet with a given code
void add_symbol(const char *symbol, Character c );
// create a new marker symbol and return its code
Character new_marker( void );
void delete_markers();
// compute the complement of a symbol set
void complement( vector<Character> &sym );
// return the code of the argument symbol
int symbol2code( const char *s ) const {
SymbolMap::const_iterator p = sm.find(s);
if (p != sm.end()) return p->second;
return EOF;
};
// return the symbol for the given symbol code
const char *code2symbol( Character c ) const {
CharMap::const_iterator p=cm.find(c);
if (p == cm.end())
return NULL;
else
return p->second;
};
// write the symbol for the given symbol code into a string
void write_char( Character c, char *buffer, int *pos,
bool with_brackets=true ) const;
// write the symbol pair of a given label into a string
void write_label( Label l, char *buffer, int *pos,
bool with_brackets=true ) const;
// write the symbol for the given symbol code into a buffer and return
// a pointer to it
// the flag "with_brackets" indicates whether the angle brackets
// surrounding multi-character symbols are to be printed or not
const char *write_char( Character c, bool with_brackets=true ) const;
// write the symbol pair of a given label into a string
// and return a pointer to it
const char *write_label( Label l, bool with_brackets=true ) const;
// scan the next multi-character symbol in the argument string
int next_mcsym( char*&, bool insert=true );
// scan the next symbol in the argument string
int next_code( char*&, bool extended=true, bool insert=true );
// convert a character string into a symbol or label sequence
void string2symseq( char*, vector<Character>& );
void string2labelseq( char*, vector<Label>& );
// scan the next label in the argument string
Label next_label( char*&, bool extended=true );
// store the alphabet in the argument file (in binary form)
void store( FILE* ) const;
// read the alphabet from the argument file
void read( FILE* );
// disambiguation and printing of analyses
int compute_score( Analysis &ana );
void disambiguate( vector<Analysis> &analyses );
char *print_analysis( Analysis &ana, bool both_layers );
friend ostream &operator<<(ostream&, const Alphabet&);
};
// write the alphabet to the output stream (in readable form)
ostream &operator<<(ostream&, const Alphabet&);
}
#endif
|