This file is indexed.

/usr/include/shark/Data/CVDatasetTools.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//===========================================================================
/*!
 *
 *
 * \brief       Tools for cross-validation
 *
 *
 *
 * \author      O.Krause
 * \date        2010-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 *
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 *
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_DATA_CVDATASETTOOLS_H
#define SHARK_DATA_CVDATASETTOOLS_H

#include <shark/Data/Dataset.h>
#include <shark/Rng/DiscreteUniform.h>
#include <algorithm>
//
#include <shark/Data/DataView.h>

#include <utility> //for std::pair

namespace shark {


template<class DatasetTypeT>
class CVFolds {
public:
	typedef DatasetTypeT DatasetType;
	typedef typename DatasetType::IndexSet IndexSet;

	/// \brief Creates an empty set of folds.
	CVFolds() {}
	///\brief partitions set in validation folds indicated by the second argument.
	///
	/// The folds are given as the batch indices of the validation sets
	CVFolds(
	    DatasetType const &set,
	    std::vector<IndexSet> const &validationIndizes
	) : m_dataset(set),m_validationFolds(validationIndizes) {}
	
	CVFolds(
		DatasetType const &set,
		std::vector<std::size_t> const &foldStart
	) : m_dataset(set){
		for (std::size_t partition = 0; partition != foldStart.size(); partition++) {
			std::size_t partitionSize = (partition+1 == foldStart.size()) ? set.numberOfBatches() : foldStart[partition+1];
			partitionSize -= foldStart[partition];
			//create the set with the indices of the validation set of the current partition
			//also update the starting element
			IndexSet validationIndizes(partitionSize);
			for (std::size_t batch = 0; batch != partitionSize; ++batch) {
				validationIndizes[batch]=batch+foldStart[partition];
			}
			m_validationFolds.push_back(validationIndizes);
		}
	}

	DatasetType training(std::size_t i) const {
		SIZE_CHECK(i < size());

		return indexedSubset(m_dataset, trainingFoldIndices(i));
	}
	DatasetType validation(std::size_t i) const {
		SIZE_CHECK(i < size());

		return indexedSubset(m_dataset,validationFoldIndices(i));
	}

	///\brief returns the indices that make up the i-th validation fold
	IndexSet const &validationFoldIndices(std::size_t i)const {
		SIZE_CHECK(i < size());
		return m_validationFolds[i];
	}
	
	IndexSet trainingFoldIndices(std::size_t i)const {
		SIZE_CHECK(i < size());
		IndexSet trainingFold;
		detail::complement(m_validationFolds[i], m_dataset.numberOfBatches(), trainingFold);
		return trainingFold;
	}

	///\brief Returns the number of folds of the dataset.
	std::size_t size()const {
		return m_validationFolds.size();
	}

	//~ /// \brief Returns the overall number of elements in the partitioned dataset
	//~ std::size_t numberOfElements() const {
		//~ return m_foldElementStart[size()];
	//~ }
	//~ /// \brief Returns the overall number of elements in the i-th training fold
	//~ std::size_t numberOfTrainingElements(std::size_t i) const {
		//~ SIZE_CHECK(i < size());
		//~ return m_datasetSize-m_validationFoldSizes[i];
	//~ }
	//~ /// \brief Returns the overall number of elements in the i-th valdiation fold
	//~ std::size_t numberOfValidationElements(std::size_t i) const {
		//~ SIZE_CHECK(i < size());
		//~ return m_validationFoldSizes[i];
	//~ }

	/// \brief Returns the dataset underying the folds
	DatasetType const& dataset()const{
		return m_dataset;
	}
	
	/// \brief Returns the dataset underying the folds
	DatasetType& dataset(){
		return m_dataset;
	}

private:
	DatasetType m_dataset;
	std::vector<IndexSet> m_validationFolds;
	std::size_t m_datasetSize;
	std::vector<std::size_t> m_validationFoldSizes;
};


/// auxiliary typedef for createCVSameSizeBalanced and createCVFullyIndexed, stores location index in the first and partition index in the second
typedef std::pair< std::vector<std::size_t> , std::vector<std::size_t> > RecreationIndices;

namespace detail {

///\brief Version of createCVSameSizeBalanced which works regardless of the label type
///
/// Instead of a class label to interpret, this class uses a membership vector for every
/// class which members[k][i] returns the positon of the i-th member of class k in the set.
template<class I, class L>
CVFolds<LabeledData<I,L> > createCVSameSizeBalanced(
	LabeledData<I,L> &set,
	std::size_t numberOfPartitions,
	std::vector< std::vector<std::size_t> > members,
	std::size_t batchSize,
	RecreationIndices * cv_indices = NULL //if not NULL: the first vector stores location information, and
					  // the second the partition information. The i-th value of the
					  // first vector shows what the original position of the now i-th
					  // sample was. The i-th value of the second vector shows what
					  // partition that sample now belongs to.
) {
	std::size_t numInputs = set.numberOfElements();
	std::size_t numClasses = members.size();

	//shuffle elements in members
	DiscreteUniform< Rng::rng_type > uni(shark::Rng::globalRng) ;
	for (std::size_t c = 0; c != numClasses; c++) {
		std::random_shuffle(members[c].begin(), members[c].end(), uni);
	}

	//calculate number of elements per validation subset in the new to construct container
	std::size_t nn = numInputs / numberOfPartitions;
	std::size_t leftOver = numInputs % nn;
	std::vector<std::size_t> validationSize(numberOfPartitions,nn);
	for (std::size_t partition = 0; partition != leftOver; partition++) {
		validationSize[partition]++;
	}

	//calculate the size of the batches for every validation part
	std::vector<std::size_t> partitionStart;
	std::vector<std::size_t> batchSizes;
	std::size_t numBatches = batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);


	LabeledData<I,L> newSet(numBatches);//set of empty batches
	DataView<LabeledData<I,L> > setView(set);//fast access to single elements of the original set
	std::vector<std::size_t> validationSetStart = partitionStart;//current index for the batch of every fold
	//partition classes into the validation subsets of newSet
	std::size_t fold = 0;//current fold
	std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);

	//initialize the list of position indices which can later be used to re-create the fold (via createCV(Fully)Indexed)
	if ( cv_indices != NULL ) {
		cv_indices->first.clear();
		cv_indices->first.resize( numInputs );
		cv_indices->second.clear();
		cv_indices->second.resize( numInputs );
	}

	size_t j = 0; //for recreation indices
	for (std::size_t c = 0; c != numClasses; c++) {
		for (std::size_t i = 0; i != members[c].size(); i++) {
			std::size_t oldPos = members[c][i];
			std::size_t batchNumber = validationSetStart[fold];

			batchElements[fold].push_back(oldPos);

			if ( cv_indices != NULL ) {
				cv_indices->first[ j ] = oldPos; //store the position in which the (now) i-th sample previously resided
				cv_indices->second[ j ] = fold; //store the partition to which the (now) i-th sample gets assigned
				// old: //(*cv_indices)[ oldPos ] = fold; //store in vector to recreate partition if desired
			}

			//if all elements for the current batch are found, create it
			if (batchElements[fold].size() == batchSizes[batchNumber]) {
				newSet.batch(validationSetStart[fold]) = subBatch(setView,batchElements[fold]);
				batchElements[fold].clear();
				++validationSetStart[fold];
			}

			fold = (fold+1) % numberOfPartitions;

			j++;
		}
	}
	SHARK_ASSERT( j == numInputs );

	//swap old and new set
	swap(set, newSet);

	//create folds
	return CVFolds<LabeledData<I,L> >(set,partitionStart);

}
}//namespace detail

/**
 * \ingroup shark_globals
 *
 * @{
 */

//! \brief Create a partition for cross validation
//!
//! The subset each training examples belongs to
//! is drawn independently and uniformly distributed.
//! For every partition, all but one subset form the
//! training set, while the remaining one is used for
//! validation. The partitions can be accessed using
//! getCVPartitionName
//!
//! \param set the input data for which the new partitions are created
//! \param numberOfPartitions  number of partitions to create
//! \param batchSize  maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVIID(LabeledData<I,L> &set,
        std::size_t numberOfPartitions,
        std::size_t batchSize=Data<I>::DefaultBatchSize) {
	std::vector<std::size_t> indices(set.numberOfElements());
	for (std::size_t i=0; i != set.numberOfElements(); i++)
		indices[i] = Rng::discrete(0, numberOfPartitions - 1);
	return createCVIndexed(set,numberOfPartitions,indices,batchSize);
}

//! \brief Create a partition for cross validation
//!
//! Every subset contains (approximately) the same
//! number of elements. For every partition, all
//! but one subset form the training set, while the
//! remaining one is used for validation. The partitions
//! can be accessed using getCVPartitionName
//!
//! \param numberOfPartitions  number of partitions to create
//! \param set the input data from which to draw the partitions
//! \param batchSize  maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVSameSize(LabeledData<I,L> &set,std::size_t numberOfPartitions,std::size_t batchSize = LabeledData<I,L>::DefaultBatchSize) {
	std::size_t numInputs = set.numberOfElements();

	//calculate the number of validation examples for every partition
	std::vector<std::size_t> validationSize(numberOfPartitions);
	std::size_t inputsForValidation = numInputs / numberOfPartitions;
	std::size_t leftOver = numInputs - inputsForValidation * numberOfPartitions;
	for (std::size_t i = 0; i != numberOfPartitions; i++) {
		std::size_t vs=inputsForValidation+(i<leftOver);
		validationSize[i] =vs;
	}

	//calculate the size of batches for every validation part and their total number
	std::vector<std::size_t> partitionStart;
	std::vector<std::size_t> batchSizes;
	detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);

	set.repartition(batchSizes);
	set.shuffle();

	CVFolds<LabeledData<I,L> > folds(set,partitionStart);
	return folds;//set;
}


//! \brief Create a partition for cross validation
//!
//! Every subset contains (approximately) the same
//! number of elements. For every partition, all
//! but one subset form the training set, while the
//! remaining one is used for validation.
//!
//! \param numberOfPartitions  number of partitions to create
//! \param set the input data from which to draw the partitions
//! \param batchSize  maximum batch size
//! \param cv_indices if not NULL [default]: for each element, store the fold it is assigned to; this can be used to later/externally recreate the fold via createCVIndexed
template<class I>
CVFolds<LabeledData<I,unsigned int> > createCVSameSizeBalanced (
	LabeledData<I,unsigned int> &set,
	std::size_t numberOfPartitions,
	std::size_t batchSize=Data<I>::DefaultBatchSize,
	RecreationIndices * cv_indices = NULL //if not NULL: for each element, store the fold it is assigned to; this can be used to later/externally recreate the fold via createCVIndexed
){
	DataView<LabeledData<I,unsigned int> > setView(set);
	std::size_t numInputs = setView.size();
	std::size_t numClasses = numberOfClasses(set);


	//find members of each class
	std::vector< std::vector<std::size_t> > members(numClasses);
	for (std::size_t i = 0; i != numInputs; i++) {
		members[setView[i].label].push_back(i);
	}
	return detail::createCVSameSizeBalanced(set, numberOfPartitions, members, batchSize, cv_indices);

}

//! \brief Create a partition for cross validation without changing the dataset
//!
//! This method behaves similar to createCVIID
//! with the difference that batches are not reordered. Thus the batches
//! are only rearranged randomly in folds, but the dataset itself is not changed.
//!
//! \param numberOfPartitions  number of partitions to create
//! \param set the input data from which to draw the partitions
template<class I, class L>
CVFolds<LabeledData<I,L> > createCVBatch (
	LabeledData<I,L> const& set,
	std::size_t numberOfPartitions
){
	std::vector<std::size_t> indizes(set.numberOfBatches());
	for(std::size_t i= 0; i != set.numberOfBatches(); ++i)
		indizes[i] = i;
	DiscreteUniform<Rng::rng_type> uni(Rng::globalRng);
	shark::shuffle(indizes.begin(),indizes.end(), uni);
	
	typedef typename LabeledData<I,L>::IndexSet IndexSet;
	
	std::vector<IndexSet> folds;
	std::size_t partitionSize = set.numberOfBatches()/numberOfPartitions;
	std::size_t remainder = set.numberOfBatches() - partitionSize*numberOfPartitions;
	std::vector<std::size_t>::iterator pos = indizes.begin();
	for(std::size_t i = 0; i!= numberOfPartitions; ++i){
		std::size_t size = partitionSize;
		if(remainder> 0){
			++size;
			--remainder;
		}
		folds.push_back(IndexSet(pos,pos+size));
		pos+=size;
	}
	return CVFolds<LabeledData<I,L> >(set,folds);
}

//! \brief Create a partition for cross validation from indices
//!
//! Create a partition from indices. The indices vector for each sample states of what
//! validation partition that sample should become a member. In other words, the index
//! maps a sample to a validation partition, meaning that it will become a part of the
//! training partition for all other folds.
//!
//! \param set partitions will be subsets of this set
//! \param numberOfPartitions  number of partitions to create
//! \param indices             partition indices of the examples in [0, ..., numberOfPartitions[.
//! \param batchSize  maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVIndexed(
	LabeledData<I,L> &set,
    std::size_t numberOfPartitions,
	std::vector<std::size_t> indices,
	std::size_t batchSize=Data<I>::DefaultBatchSize
) {
	std::size_t numInputs = set.numberOfElements();
	SIZE_CHECK(indices.size() == numInputs);
	SIZE_CHECK(numberOfPartitions == *std::max_element(indices.begin(),indices.end())+1);

	//calculate the size of validation partitions
	std::vector<std::size_t> validationSize(numberOfPartitions,0);
	for (std::size_t input = 0; input != numInputs; input++) {
		validationSize[indices[input]]++;
	}

	//calculate the size of batches for every validation part and their total number
	std::vector<std::size_t> partitionStart;
	std::vector<std::size_t> batchSizes;
	std::size_t numBatches = detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);

	//construct a new set with the correct batch format from the old set
	LabeledData<I,L> newSet(numBatches);
	DataView<LabeledData<I,L> > setView(set); //fast access to single elements of the original set
	std::vector<std::size_t> validationSetStart = partitionStart; //current index for the batch of every partition
	std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);
	for (std::size_t input = 0; input != numInputs; input++) {
		std::size_t partition = indices[input];
		batchElements[partition].push_back(input);

		//if all elements for the current batch are found, create it
		std::size_t batchNumber = validationSetStart[partition];
		if (batchElements[partition].size() == batchSizes[batchNumber]) {
			newSet.batch(validationSetStart[partition]) = subBatch(setView,batchElements[partition]);
			batchElements[partition].clear();
			++validationSetStart[partition];
		}
	}
	swap(set, newSet);
	//now we only need to create the subset itself
	return CVFolds<LabeledData<I,L> >(set,partitionStart);
}



//! \brief Create a partition for cross validation from indices for both ordering and partitioning.
//!
//! Create a partition from indices. There is one index vector assigning an order
//! to the samples, and another one assigning each sample to a validation partition.
//! That is, given a dataset set, and at the i-th processing step, this function puts
//! the order_indices[i]-th sample into the partition_indices[i]-th partition. The
//! order_indices part of the above procedure matters if both an inner and
//! outer partition are to be recreated: for the inner partition to be recreated, too,
//! the outer partition must be recreated in the same order, not just partitioned into
//! the same splits.
//!
//! \param set                  partitions will be subsets of this set
//! \param numberOfPartitions   number of partitions to create
//! \param indices              stores location index in the first and partition index in the second vector
//! \param batchSize            maximum batch size
template<class I,class L>
CVFolds<LabeledData<I,L> > createCVFullyIndexed(
	LabeledData<I,L> &set,
	std::size_t numberOfPartitions,
	RecreationIndices indices,
	std::size_t batchSize=Data<I>::DefaultBatchSize
) {
	std::size_t numInputs = set.numberOfElements();
	SIZE_CHECK(indices.first.size() == numInputs);
	SIZE_CHECK(indices.second.size() == numInputs);
	SIZE_CHECK(numberOfPartitions == *std::max_element(indices.second.begin(),indices.second.end())+1);

	//calculate the size of validation partitions
	std::vector<std::size_t> validationSize(numberOfPartitions,0);
	for (std::size_t input = 0; input != numInputs; input++) {
		validationSize[indices.second[input]]++;
	}

	//calculate the size of batches for every validation part and their total number
	std::vector<std::size_t> partitionStart;
	std::vector<std::size_t> batchSizes;
	std::size_t numBatches = detail::batchPartitioning(validationSize,partitionStart,batchSizes,batchSize);

	//construct a new set with the correct batch format from the old set
	LabeledData<I,L> newSet(numBatches);
	DataView<LabeledData<I,L> > setView(set); //fast access to single elements of the original set
	std::vector<std::size_t> validationSetStart = partitionStart; //current index for the batch of every partition
	std::vector<std::vector<std::size_t> > batchElements(numberOfPartitions);
	for (std::size_t input = 0; input != numInputs; input++) {
		std::size_t partition = indices.second[input]; //the second vector's contents indicate the partition to assign each sample to.
		batchElements[partition].push_back( indices.first[input] ); //the first vector's contents indicate from what original position to get the next sample.

		//if all elements for the current batch are found, create it
		std::size_t batchNumber = validationSetStart[partition];
		if (batchElements[partition].size() == batchSizes[batchNumber]) {
			newSet.batch(validationSetStart[partition]) = subBatch(setView,batchElements[partition]);
			batchElements[partition].clear();
			++validationSetStart[partition];
		}
	}
	swap(set, newSet);
	//now we only need to create the subset itself
	return CVFolds<LabeledData<I,L> >(set,partitionStart);
}


// much more to come...

/** @}*/
}
#include "Impl/CVDatasetTools.inl"
#endif