/usr/include/shark/Data/DataView.h is in libshark-dev 3.1.3+ds1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 | //===========================================================================
/*!
*
*
* \brief Fast lookup for elements in constant datasets
*
*
*
*
*
* \author O. Krause
* \date 2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_DATA_DATAVIEW_H
#define SHARK_DATA_DATAVIEW_H
#include <shark/Data/Dataset.h>
#include <shark/Core/utility/functional.h>
#include <boost/type_traits/is_const.hpp>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/bind.hpp>
#include <boost/range/algorithm/copy.hpp>
namespace shark {
/// \brief Constant time Element-Lookup for Datasets
///
/// Datasets are fast for random lookup of batches. Since batch sizes can be arbitrary structured and
/// changed by the user, there is no way for the Data and LabeledData classes to provide fast random access
/// to single elements. Still, this property is needed quite often, for example for creating subsets,
/// randomize data or tree structures.
/// A View stores the position of every element in a dataset. So it has constant time access to the elements but
/// it also requires linear memory in the number of elements in the set. This is typically small compared
/// to the size of the set itself, but construction imposes an considerable overhead.
///
/// In contrast to (Un)LabeledData, which is centered around batches, the View is centered around single elements,
/// so its iterators iterate over the elements.
/// For a better support for bagging an index method is added which returns the position of the element in the
/// underlying data container. Also the iterators are indexed and return this index.
template <class DatasetType> //template parameter can be const!
class DataView
{
public:
typedef typename boost::remove_const<DatasetType>::type dataset_type; //(non const) type of the underlying dataset
typedef typename dataset_type::element_type value_type;
typedef typename dataset_type::const_element_reference const_reference;
typedef typename dataset_type::batch_type batch_type;
// We want to support immutable as well as mutable datasets. So we query whether the dataset
// is mutable and change the reference type to const if the dataset is immutable.
typedef typename boost::mpl::if_<
boost::is_const<DatasetType>,
typename dataset_type::const_element_reference,
typename dataset_type::element_reference
>::type reference;
private:
typedef typename boost::mpl::if_<
boost::is_const<DatasetType>,
typename dataset_type::const_batch_range,
typename dataset_type::batch_range
>::type batch_range;
template<class Reference, class View>
class IteratorBase: public SHARK_ITERATOR_FACADE<
IteratorBase<Reference,View>,
value_type,
std::random_access_iterator_tag,
Reference
>{
public:
IteratorBase(){}
IteratorBase(View& view, std::size_t position)
: mpe_view(&view),m_position(position) {}
template<class R,class V>
IteratorBase(IteratorBase<R,V> const& other)
: mpe_view(other.mpe_view),m_position(other.position){}
/// \brief returns the position of the element referenced by the iterator inside the dataset
///
/// This is usefull for bagging, when identical elements between several susbsets are to be identified
std::size_t index()const{
return mpe_view->index(m_position);
}
private:
friend class SHARK_ITERATOR_CORE_ACCESS;
template <class, class> friend class IteratorBase;
void increment() {
++m_position;
}
void decrement() {
--m_position;
}
void advance(std::ptrdiff_t n){
m_position+=n;
}
template<class R,class V>
std::ptrdiff_t distance_to(IteratorBase<R,V> const& other) const{
return (std::ptrdiff_t)other.m_position - (std::ptrdiff_t)m_position;
}
template<class R,class V>
bool equal(IteratorBase<R,V> const& other) const{
return m_position == other.m_position;
}
Reference dereference() const {
return (*mpe_view)[m_position];
}
View* mpe_view;
std::size_t m_position;
};
public:
typedef IteratorBase<reference,DataView<DatasetType> > iterator;
typedef IteratorBase<const_reference, DataView<DatasetType> const > const_iterator;
DataView(){}
DataView(DatasetType& dataset)
:m_dataset(dataset),m_indices(dataset.numberOfElements())
{
std::size_t index = 0;
for(std::size_t i = 0; i != dataset.numberOfBatches(); ++i){
std::size_t batchSize = shark::size(dataset.batch(i));
for(std::size_t j = 0; j != batchSize; ++j,++index){
m_indices[index].batch = i;
m_indices[index].positionInBatch = j;
m_indices[index].datasetIndex = index;
}
}
}
/// create a subset of the dataset type using only the elemnt indexed by indices
template<class IndexRange>
DataView(DataView<DatasetType> const& view, IndexRange const& indices)
:m_dataset(view.m_dataset),m_indices(shark::size(indices))
{
for(std::size_t i = 0; i != m_indices.size(); ++i)
m_indices[i] = view.m_indices[indices[i]];
}
reference operator[](std::size_t position){
SIZE_CHECK(position < size());
Index const& index = m_indices[position];
return get(m_dataset.batch(index.batch),index.positionInBatch);
}
const_reference operator[](std::size_t position) const{
SIZE_CHECK(position < size());
Index const& index = m_indices[position];
return get(m_dataset.batch(index.batch),index.positionInBatch);
}
/// \brief returns the position of the element inside the dataset
///
/// This is useful for bagging, when identical elements among
/// several subsets are to be identified.
std::size_t index(std::size_t position)const{
return m_indices[position].datasetIndex;
}
std::size_t size() const{
return m_indices.size();
}
iterator begin(){
return iterator(*this, 0);
}
const_iterator begin() const{
return const_iterator(*this, 0);
}
iterator end(){
return iterator(*this, size());
}
const_iterator end() const{
return const_iterator(*this, size());
}
dataset_type const& dataset()const{
return m_dataset;
}
private:
dataset_type m_dataset;
// Stores for an element of the dataset, at which position of which batch it is located
// as well as the real index of the element inside the dataset
struct Index{
std::size_t batch;//the batch in which the element is located
std::size_t positionInBatch;//at which position in the batch it is
std::size_t datasetIndex;//index inside the dataset
};
std::vector<Index> m_indices;//stores for every element of the set it's position inside the dataset
};
/// \brief creates a subset of a DataView with elements indexed by indices
///
/// \param view the view for which the subset is to be created
/// \param indizes the index of the elements to be stored in the view
template<class DatasetType,class IndexRange>
DataView<DatasetType> subset(DataView<DatasetType> const& view, IndexRange const& indizes){
//O.K. todo: Remove constructor later on, this is a quick fix.
return DataView<DatasetType>(view,indizes);
}
/// \brief creates a random subset of a DataView with given size
///
/// \param view the view for which the subset is to be created
/// \param size the size of the subset
template<class DatasetType>
DataView<DatasetType> randomSubset(DataView<DatasetType> const& view, std::size_t size){
std::vector<std::size_t> indices(view.size());
boost::iota(indices,0);
partial_shuffle(indices.begin(),indices.begin()+size,indices.end());
return subset(view,boost::make_iterator_range(indices.begin(),indices.begin()+size));
}
/// \brief Creates a batch given a set of indices
///
/// \param view the view from which the batch is to be created
/// \param indizes the set of indizes defining the batch
template<class DatasetType,class IndexRange>
typename DataView<DatasetType>::batch_type subBatch(
DataView<DatasetType> const& view,
IndexRange const& indizes
){
//create a subset of the view containing the elements of the batch
DataView<DatasetType> batchElems = subset(view,indizes);
//and now use the batch range construction to create it
return Batch<typename DatasetType::element_type>::createBatch(batchElems);
}
/// \brief Creates a random batch of a given size
///
/// \param view the view from which the batch is to be created
/// \param size the size of the batch
template<class DatasetType>
typename DataView<DatasetType>::batch_type randomSubBatch(
DataView<DatasetType> const& view,
std::size_t size
){
std::vector<std::size_t> indices(view.size());
boost::iota(indices,0);
partial_shuffle(indices.begin(),indices.begin()+size,indices.end());
return subBatch(view,boost::make_iterator_range(indices.begin(),indices.begin()+size));
}
/// \brief Creates a View from a dataset.
///
/// This is just a helper function to omit the actual type of the view
///
/// \param set the dataset from which to create the view
template<class DatasetType>
DataView<DatasetType> toView(DatasetType& set){
return DataView<DatasetType>(set);
}
/// \brief Creates a new dataset from a View.
///
/// When the elements of a View needs to be processed repeatedly it is often better to use
/// the packed format of the Dataset again, since then the faster batch processing can be used
///
/// \param view the view from which to create the new dataset
/// \param batchSize the size of the batches in the dataset
template<class T>
typename DataView<T>::dataset_type
toDataset(DataView<T> const& view, std::size_t batchSize = DataView<T>::dataset_type::DefaultBatchSize){
if(view.size() == 0)
return typename DataView<T>::dataset_type();
//O.K. todo: this is slow for sparse elements, use subBatch or something similar.
std::size_t elements = view.size();
typename DataView<T>::dataset_type dataset(elements,view[0],batchSize);
std::size_t batches = dataset.numberOfBatches();
std::size_t element = 0;
for(std::size_t i = 0; i != batches; ++i){
std::size_t batchSize = shark::size(dataset.batch(i));
for(std::size_t j = 0; j != batchSize; ++j, ++element){
get(dataset.batch(i),j) = view[element];
}
}
return dataset;
}
/// Return the number of classes (size of the label vector)
/// of a classification dataset with RealVector label encoding.
template <class DatasetType>
std::size_t numberOfClasses(DataView<DatasetType> const& view){
return numberOfClasses(view.dataset());
}
/// Return the input dimensionality of the labeled dataset represented by the view
template <class DatasetType>
std::size_t inputDimension(DataView<DatasetType> const& view){
return inputDimension(view.dataset());
}
/// Return the label dimensionality of the labeled dataset represented by the view
template <class DatasetType>
std::size_t labelDimension(DataView<DatasetType> const& view){
return labelDimension(view.dataset());
}
/// Return the dimensionality of the dataset represented by the view
template <class DatasetType>
std::size_t dataDimension(DataView<DatasetType> const& view){
return dataDimension(view.dataset());
}
/** @*/
}
#endif
|