This file is indexed.

/usr/include/shark/LinAlg/BlockMatrix2x2.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
//===========================================================================
/*!
 * 
 *
 * \brief       Precomputed version of a matrix for quadratic programming
 * 
 * 
 * \par
 * 
 * 
 *
 * \author      T. Glasmachers
 * \date        2007-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================


#ifndef SHARK_LINALG_BLOCKMATRIX2X2_H
#define SHARK_LINALG_BLOCKMATRIX2X2_H

#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>

#include <vector>
#include <cmath>


namespace shark {


///
/// \brief SVM regression matrix
///
/// \par
/// The BlockMatrix2x2 class is a \f$ 2n \times 2n \f$ block matrix of the form<br>
/// &nbsp;&nbsp;&nbsp; \f$ \left( \begin{array}{lr} M & M \\ M & M \end{array} \right) \f$ <br>
/// where M is an \f$ n \times n \f$ matrix.
/// This matrix form is needed in SVM regression problems.
///
template <class Matrix>
class BlockMatrix2x2
{
public:
    typedef typename Matrix::QpFloatType QpFloatType;

    /// Constructor.
    /// \param base  underlying matrix M, see class description of BlockMatrix2x2.
    BlockMatrix2x2(Matrix* base)
    {
        m_base = base;

        m_mapping.resize(size());

        std::size_t ic = m_base->size();
        for (std::size_t i = 0; i < ic; i++)
        {
            m_mapping[i] = i;
            m_mapping[i + ic] = i;
        }
    }


    /// return a single matrix entry
    QpFloatType operator () (std::size_t i, std::size_t j) const
    { return entry(i, j); }

    /// return a single matrix entry
    QpFloatType entry(std::size_t i, std::size_t j) const
    {
        return m_base->entry(m_mapping[i], m_mapping[j]);
    }
    
    /// \brief Computes the i-th row of the kernel matrix.
    ///
    ///The entries start,...,end of the i-th row are computed and stored in storage.
    ///There must be enough room for this operation preallocated.
    void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const{
        for(std::size_t j = start; j < end; j++){
            storage[j-start] = m_base->entry(m_mapping[i], m_mapping[j]);
        }
    }
    
    /// \brief Computes the kernel-matrix
    template<class M>
    void matrix(
        blas::matrix_expression<M> & storage
    ) const{
        for(std::size_t i = 0; i != size(); ++i){
            for(std::size_t j = 0; j != size(); ++j){
                storage()(i,j) = entry(i,j);
            }
        }
    }

    /// swap two variables
    void flipColumnsAndRows(std::size_t i, std::size_t j)
    {
        std::swap(m_mapping[i], m_mapping[j]);
    }

    /// return the size of the quadratic matrix
    std::size_t size() const
    { return 2 * m_base->size(); }

protected:
    /// underlying KernelMatrix object
    Matrix* m_base;

    /// coordinate permutation
    std::vector<std::size_t> m_mapping;
};

}
#endif