This file is indexed.

/usr/include/shark/LinAlg/GaussianKernelMatrix.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
//===========================================================================
/*!
 * 
 *
 * \brief       Efficient special case if the kernel is gaussian and the inputs are sparse vectors
 * 
 * 
 * \par
 * 
 * 
 *
 * \author      T. Glasmachers
 * \date        2007-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================


#ifndef SHARK_LINALG_GAUSSIANKERNELMATRIX_H
#define SHARK_LINALG_GAUSSIANKERNELMATRIX_H

#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>

#include <vector>
#include <cmath>


namespace shark {


///\brief Efficient special case if the kernel is Gaussian and the inputs are sparse vectors
template <class T, class CacheType>
class GaussianKernelMatrix
{
public:

    typedef CacheType QpFloatType;
    typedef T InputType;

    /// Constructor
    /// \param gamma   bandwidth parameter of Gaussian kernel
    /// \param data    data evaluated by the kernel function
    GaussianKernelMatrix(
        double gamma,
        Data<InputType> const& data
    )
    : m_squaredNorms(data.numberOfElements())
    , m_gamma(gamma)
    , m_accessCounter( 0 )
    {
        std::size_t elements = data.numberOfElements();
        x.resize(elements);
        PointerType iter=data.elements().begin();
        for(std::size_t i = 0; i != elements; ++i,++iter){
            x[i]=iter;
            m_squaredNorms(i) =inner_prod(*x[i],*x[i]);//precompute the norms
        }
    }

    /// return a single matrix entry
    QpFloatType operator () (std::size_t i, std::size_t j) const
    { return entry(i, j); }

    /// return a single matrix entry
    QpFloatType entry(std::size_t i, std::size_t j) const
    {
        ++m_accessCounter;
        double distance = m_squaredNorms(i)-2*inner_prod(*x[i], *x[j])+m_squaredNorms(j);
        return (QpFloatType)std::exp(- m_gamma * distance);
    }
    
    /// \brief Computes the i-th row of the kernel matrix.
    ///
    ///The entries start,...,end of the i-th row are computed and stored in storage.
    ///There must be enough room for this operation preallocated.
    void row(std::size_t i, std::size_t start,std::size_t end, QpFloatType* storage) const
    {
        typename ConstProxyReference<T>::type xi = *x[i];
        m_accessCounter +=end-start;
        SHARK_PARALLEL_FOR(int j = start; j < (int) end; j++)
        {
            double distance = m_squaredNorms(i)-2*inner_prod(xi, *x[j])+m_squaredNorms(j);
            storage[j-start] = std::exp(- m_gamma * distance);
        }
    }
    
    /// \brief Computes the kernel-matrix
    template<class M>
    void matrix(
        blas::matrix_expression<M> & storage
    ) const{
        for(std::size_t i = 0; i != size(); ++i){
            row(i,0,size(),&storage()(i,0));
        }
    }

    /// swap two variables
    void flipColumnsAndRows(std::size_t i, std::size_t j){
        using std::swap;
        swap(x[i],x[j]);
        swap(m_squaredNorms[i],m_squaredNorms[j]);
    }

    /// return the size of the quadratic matrix
    std::size_t size() const
    { return x.size(); }

    /// query the kernel access counter
    unsigned long long getAccessCount() const
    { return m_accessCounter; }

    /// reset the kernel access counter
    void resetAccessCount()
    { m_accessCounter = 0; }

protected:

    //~ typedef blas::sparse_vector_adaptor<typename T::value_type const,std::size_t> PointerType;
    typedef typename Data<InputType>::const_element_range::iterator PointerType;
    /// Array of data pointers for kernel evaluations
    std::vector<PointerType> x;
    
    RealVector m_squaredNorms;

    double m_gamma;

    /// counter for the kernel accesses
    mutable unsigned long long m_accessCounter;
};

}
#endif