This file is indexed.

/usr/include/shark/LinAlg/PrecomputedMatrix.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//===========================================================================
/*!
 * 
 *
 * \brief       Precomputed version of a matrix for quadratic programming
 * 
 * 
 * \par
 * 
 * 
 *
 * \author      T. Glasmachers
 * \date        2007-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================


#ifndef SHARK_LINALG_PRECOMPUTEDMATRIX_H
#define SHARK_LINALG_PRECOMPUTEDMATRIX_H

#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>

#include <vector>
#include <cmath>


namespace shark {

///
/// \brief Precomputed version of a matrix for quadratic programming
///
/// \par
/// The PrecomputedMatrix class computes all pairs of kernel
/// evaluations in its constructor and stores them im memory.
/// This proceeding is only viable if the number of examples
/// does not exceed, say, about 10000. In this case the memory
/// demand is already \f$ 4 \cdot 10000^2 \approx 400\text{MB} \f$,
/// growing quadratically.
///
/// \par
/// Use of this class may be beneficial for certain model
/// selection strategies, in particular if the kernel is
/// fixed and the regularization parameter is varied.
///
/// \par
/// Use of this class may, in certain situations, even mean a
/// loss is speed, compared to CachedMatrix. This is the case
/// in particular if the solution of the quadratic program is
/// sparse, in which case most entries of the matrix do not
/// need to be computed at all, and the problem is "simple"
/// enough such that the solver's shrinking heuristic is not
/// mislead.
///
template <class Matrix>
class PrecomputedMatrix
{
public:
    typedef typename Matrix::QpFloatType QpFloatType;

    /// Constructor
    /// \param base  matrix to be precomputed
    PrecomputedMatrix(Matrix* base)
    : matrix(base->size(), base->size())
    {
        base->matrix(matrix);
    }
    
    /// \brief Computes the i-th row of the kernel matrix.
    ///
    ///The entries start,...,end of the i-th row are computed and stored in storage.
    ///There must be enough room for this operation preallocated.
    void row(std::size_t k, std::size_t start,std::size_t end, QpFloatType* storage) const{
        for(std::size_t j = start; j < end; j++){
            storage[j-start] = matrix(k, j);
        }
    }


    /// \brief Return a subset of a matrix row
    ///
    /// \par
    /// This method returns an array with at least
    /// the entries in the interval [begin, end[ filled in.
    ///
    /// \param k      matrix row
    /// \param begin  first column to be filled in
    /// \param end    last column to be filled in +1
    QpFloatType* row(std::size_t k, std::size_t begin, std::size_t end)
    {
        return &matrix(k, begin);
    }

    /// return a single matrix entry
    QpFloatType operator () (std::size_t i, std::size_t j) const
    { return entry(i, j); }

    /// return a single matrix entry
    QpFloatType entry(std::size_t i, std::size_t j) const
    {
        return matrix(i, j);
    }

    /// swap two variables
    void flipColumnsAndRows(std::size_t i, std::size_t j)
    {
        swap_rows(matrix,i, j);
        swap_columns(matrix,i, j);
    }

    /// return the size of the quadratic matrix
    std::size_t size() const
    { return matrix.size2(); }

    /// for compatibility with CachedMatrix
    std::size_t getMaxCacheSize()
    { return matrix.size1() * matrix.size2(); }

    /// for compatibility with CachedMatrix
    std::size_t getCacheSize() const
    { return getMaxCacheSize(); }

    /// for compatibility with CachedMatrix
    std::size_t getCacheRowSize(std::size_t k) const
    { return matrix.size2(); }
    
    /// for compatibility with CachedMatrix
    bool isCached(std::size_t){
        return true;
    }
    /// for compatibility with CachedMatrix
    void setMaxCachedIndex(std::size_t n){}
        
    /// for compatibility with CachedMatrix
    void clear()
    { }

protected:
    /// container for precomputed values
    blas::matrix<QpFloatType> matrix;
};

}
#endif