/usr/include/shark/LinAlg/PrecomputedMatrix.h is in libshark-dev 3.1.3+ds1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | //===========================================================================
/*!
*
*
* \brief Precomputed version of a matrix for quadratic programming
*
*
* \par
*
*
*
* \author T. Glasmachers
* \date 2007-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_LINALG_PRECOMPUTEDMATRIX_H
#define SHARK_LINALG_PRECOMPUTEDMATRIX_H
#include <shark/Data/Dataset.h>
#include <shark/LinAlg/Base.h>
#include <vector>
#include <cmath>
namespace shark {
///
/// \brief Precomputed version of a matrix for quadratic programming
///
/// \par
/// The PrecomputedMatrix class computes all pairs of kernel
/// evaluations in its constructor and stores them im memory.
/// This proceeding is only viable if the number of examples
/// does not exceed, say, about 10000. In this case the memory
/// demand is already \f$ 4 \cdot 10000^2 \approx 400\text{MB} \f$,
/// growing quadratically.
///
/// \par
/// Use of this class may be beneficial for certain model
/// selection strategies, in particular if the kernel is
/// fixed and the regularization parameter is varied.
///
/// \par
/// Use of this class may, in certain situations, even mean a
/// loss is speed, compared to CachedMatrix. This is the case
/// in particular if the solution of the quadratic program is
/// sparse, in which case most entries of the matrix do not
/// need to be computed at all, and the problem is "simple"
/// enough such that the solver's shrinking heuristic is not
/// mislead.
///
template <class Matrix>
class PrecomputedMatrix
{
public:
typedef typename Matrix::QpFloatType QpFloatType;
/// Constructor
/// \param base matrix to be precomputed
PrecomputedMatrix(Matrix* base)
: matrix(base->size(), base->size())
{
base->matrix(matrix);
}
/// \brief Computes the i-th row of the kernel matrix.
///
///The entries start,...,end of the i-th row are computed and stored in storage.
///There must be enough room for this operation preallocated.
void row(std::size_t k, std::size_t start,std::size_t end, QpFloatType* storage) const{
for(std::size_t j = start; j < end; j++){
storage[j-start] = matrix(k, j);
}
}
/// \brief Return a subset of a matrix row
///
/// \par
/// This method returns an array with at least
/// the entries in the interval [begin, end[ filled in.
///
/// \param k matrix row
/// \param begin first column to be filled in
/// \param end last column to be filled in +1
QpFloatType* row(std::size_t k, std::size_t begin, std::size_t end)
{
return &matrix(k, begin);
}
/// return a single matrix entry
QpFloatType operator () (std::size_t i, std::size_t j) const
{ return entry(i, j); }
/// return a single matrix entry
QpFloatType entry(std::size_t i, std::size_t j) const
{
return matrix(i, j);
}
/// swap two variables
void flipColumnsAndRows(std::size_t i, std::size_t j)
{
swap_rows(matrix,i, j);
swap_columns(matrix,i, j);
}
/// return the size of the quadratic matrix
std::size_t size() const
{ return matrix.size2(); }
/// for compatibility with CachedMatrix
std::size_t getMaxCacheSize()
{ return matrix.size1() * matrix.size2(); }
/// for compatibility with CachedMatrix
std::size_t getCacheSize() const
{ return getMaxCacheSize(); }
/// for compatibility with CachedMatrix
std::size_t getCacheRowSize(std::size_t k) const
{ return matrix.size2(); }
/// for compatibility with CachedMatrix
bool isCached(std::size_t){
return true;
}
/// for compatibility with CachedMatrix
void setMaxCachedIndex(std::size_t n){}
/// for compatibility with CachedMatrix
void clear()
{ }
protected:
/// container for precomputed values
blas::matrix<QpFloatType> matrix;
};
}
#endif
|