This file is indexed.

/usr/include/shark/Models/Converter.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
//===========================================================================
/*!
 * 
 *
 * \brief       Format conversion models
 * 
 * \par
 * This file provides a number of parameter-free models
 * performing format conversions. The classes are intended
 * to be used in two ways: First, they can be used to convert
 * data stored in Set or Datasets objects to different formats.
 * Second, they can be appended to another model by means of
 * the ConcatenatedModel class.
 * 
 *  \par
 *  The need for converter models arises in particular for
 *  classification problems. There are at least three encodings
 *  of class labels in common use. Assume there are d classes in
 *  the problem, then it is natural to use integers
 *  \f$ 0, \dots, d-1 \f$. Neural networks usually use a one-hot
 *  encoding, with a unit vector representing the class label.
 *  This encoding has the advantage that it naturally generalizes
 *  to encoding probabilities over class labels, and thus allows
 *  for objective functions like cross-entropy for model training.
 *  The third encoding in common use, both in support vector
 *  machines and neural networks, is a thresholded real value
 *  representing one out of d=2 classes. Within Shark we
 *  consistently use the data types unsigned int for the first
 *  and RealVector for the latter two cases, such that format
 *  conversions can focus on essential differences in encoding
 *  only. The models in this file allow for the most important
 *  conversions between these three encodings.
 *
 * \author      T. Glasmachers
 * \date        2010
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================

#ifndef SHARK_ML_MODEL_CONVERTER_H
#define SHARK_ML_MODEL_CONVERTER_H

#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
namespace shark {


///
/// \brief Convertion of real-valued outputs to classes 0 or 1
///
/// \par
/// The ThresholdConverter is a parameter-free model converting its
/// real-valued input to a binary class label 0 or 1 by means of a
/// threshold operation. Values above the threshold result in class 1,
/// values equal to or below the threshold are converted to class 0.
/// Ths threshold takes a default value of zero, which is adjusted to
/// the case of a (linear or tanh) output neuron of a neural network,
/// and to a binary support vector machine.
///
class ThresholdConverter : public AbstractModel<RealVector, unsigned int>
{
public:
	SHARK_EXPORT_SYMBOL ThresholdConverter(double threshold = 0.0);

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "ThresholdConverter"; }

	SHARK_EXPORT_SYMBOL RealVector parameterVector() const;
	SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
	SHARK_EXPORT_SYMBOL std::size_t numberOfParameters() const;

	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new EmptyState());
	}
	SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs)const;
	void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const{
		eval(patterns,outputs);
	}
	using AbstractModel<RealVector,unsigned int>::eval;

protected:
	double m_threshold;
};

///
/// \brief Convertion of real-vector outputs to vectors of class labels 0 or 1
///
/// \par
/// The ThresholdVectorConverter is a parameter-free model converting its
/// real-valued inputs to binary class labels 0 or 1 by means of a
/// threshold operation. Values above the threshold result in class 1,
/// values equal to or below the threshold are converted to class 0.
/// Ths threshold takes a default value of zero, which is adjusted to
/// the case of a (linear or tanh) output neuron of a neural network,
/// and to a binary support vector machine.
///
class ThresholdVectorConverter : public AbstractModel<RealVector, RealVector>
{
public:
	SHARK_EXPORT_SYMBOL ThresholdVectorConverter(double threshold = 0.0);

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "ThresholdVectorConverter"; }

	SHARK_EXPORT_SYMBOL RealVector parameterVector() const;
	SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
	SHARK_EXPORT_SYMBOL std::size_t numberOfParameters() const;

	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new EmptyState());
	}

	SHARK_EXPORT_SYMBOL void eval(BatchInputType const& patterns, BatchOutputType& outputs)const;
	void eval(BatchInputType const& patterns, BatchOutputType& outputs, State& state)const{
		eval(patterns,outputs);
	}
	using AbstractModel<RealVector,RealVector>::eval;

protected:
	double m_threshold;
};


///
/// \brief Conversion of real-valued outputs to classes
///
/// \par
/// The ArgMaxConverter is a model converting the
/// real-valued vector output of an underlying decision function to a 
/// class label 0, ..., d-1 by means of an arg-max operation.
/// The class returns the argument of the maximal
/// input component as its output. This convertion is adjusted to
/// interpret the output of a neural network or a support vector
/// machine for multi-category classification.
///
/// In the special case that d is 1, it is assumed that the model can be represented as
/// a 2 d vector with both components having the same value but opposite sign. 
/// In this case the behavior is equivalent to the threshold converter with threshold 0.
///
/// The underlying decision function is an arbitrary model. It should
/// be default constructable and it can be accessed using decisionFunction().
/// The parameters of the ArgMaxConverter are the ones of the decision function.
template<class Model>
class ArgMaxConverter : public AbstractModel<typename Model::InputType, unsigned int>
{
private:
	typedef typename Model::BatchOutputType ModelBatchOutputType;
public:
	typedef typename Model::InputType InputType;
	typedef unsigned int OutputType;
	typedef typename Batch<InputType>::type BatchInputType;
	typedef Batch<unsigned int>::type BatchOutputType;

	ArgMaxConverter()
	{ }
	ArgMaxConverter(Model const& decisionFunction)
	: m_decisionFunction(decisionFunction)
	{ }

	std::string name() const
	{ return "ArgMaxConverter<"+m_decisionFunction.name()+">"; }
	
	RealVector parameterVector() const{
		return m_decisionFunction.parameterVector();
	}

	void setParameterVector(RealVector const& newParameters){
		m_decisionFunction.setParameterVector(newParameters);
	}

	std::size_t numberOfParameters() const{
		return m_decisionFunction.numberOfParameters();
	}
	
	/// \brief Return the decision function
	Model const& decisionFunction()const{
		return m_decisionFunction;
	}
	
	/// \brief Return the decision function
	Model& decisionFunction(){
		return m_decisionFunction;
	}
	
	void eval(BatchInputType const& input, BatchOutputType& output)const{
		
		ModelBatchOutputType modelResult;
		m_decisionFunction.eval(input,modelResult);
		std::size_t batchSize = shark::size(modelResult);
		output.resize(batchSize);
		if(modelResult.size2()== 1)
		{
			for(std::size_t i = 0; i != batchSize; ++i){
				output(i) = modelResult(i,0) > 0.0;
			}
		}
		else{
			for(std::size_t i = 0; i != batchSize; ++i){
				output(i) = static_cast<unsigned int>(arg_max(row(modelResult,i)));
			}
		}
	}
	void eval(BatchInputType const& input, BatchOutputType& output, State& state)const{
		eval(input,output);
	}
	
	void eval(InputType const & pattern, OutputType& output)const{
		typename Model::OutputType modelResult;
		m_decisionFunction.eval(pattern,modelResult);
		if(modelResult.size()== 1){
			output = modelResult(0) > 0.0;
		}
		else{
			output = static_cast<unsigned int>(arg_max(modelResult));
		}
	}
	
	/// From ISerializable
	void read(InArchive& archive){
		archive >> m_decisionFunction;
	}
	/// From ISerializable
	void write(OutArchive& archive) const{
		archive << m_decisionFunction;
	}
	
private:
	Model m_decisionFunction;
};

};
#endif