This file is indexed.

/usr/include/shark/Models/ConvexCombination.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/*!
 * 
 *
 * \brief       Implements a Model using a linear function.
 * 
 * 
 *
 * \author      T. Glasmachers, O. Krause
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_MODELS_ConvexCombination_H
#define SHARK_MODELS_ConvexCombination_H

#include <shark/Models/AbstractModel.h>
namespace shark {


///
/// \brief Models a convex combination of inputs
///
/// For a given input vector x, the convex combination returns \f$ f_i(x) = sum_j w_{ij} x_j \f$,
/// where \f$ w_i > 0 \f$ and \f$ sum_j w_{ij} = 1\f$, that is the outputs of
/// the model are a convex combination of the inputs.
///
/// To ensure that the constraints are fulfilled, the model uses a different
/// set of weights q_i and \f$ w_{ij} = exp(q_{ij})/sum_j exp(q_{ik}) \f$. As usual, this
/// encoding is only used for the derivatives and the parameter vectors, not
/// when the weights are explicitely set. In the latter case, the user must provide
/// a set of suitable \f$ w_{ij} \f$.
class ConvexCombination : public AbstractModel<RealVector,RealVector>
{
private:
	RealMatrix m_w; ///< the convex comination weights. it holds sum(row(w_i)) = 1
public:

	/// CDefault Constructor; use setStructure later
	ConvexCombination(){
		m_features |= HAS_FIRST_PARAMETER_DERIVATIVE;
		m_features |= HAS_FIRST_INPUT_DERIVATIVE;
	}
	
	/// Constructor creating a model with given dimnsionalities and optional offset term.
	ConvexCombination(std::size_t inputs, std::size_t outputs = 1)
	: m_w(outputs,inputs,0.0){
		m_features |= HAS_FIRST_PARAMETER_DERIVATIVE;
		m_features |= HAS_FIRST_INPUT_DERIVATIVE;
	}
	
	/// Construction from matrix
	ConvexCombination(RealMatrix const& matrix):m_w(matrix){
		m_features |= HAS_FIRST_PARAMETER_DERIVATIVE;
		m_features |= HAS_FIRST_INPUT_DERIVATIVE;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "ConvexCombination"; }

	///swap
	friend void swap(ConvexCombination& model1,ConvexCombination& model2){
		swap(model1.m_w,model2.m_w);
	}

	///operator =
	ConvexCombination& operator=(ConvexCombination const& model){
		ConvexCombination tempModel(model);
		swap(*this,tempModel);
		return *this;
	}

	/// obtain the input dimension
	std::size_t inputSize() const{
		return m_w.size2();
	}

	/// obtain the output dimension
	std::size_t outputSize() const{
		return m_w.size1();
	}

	/// obtain the parameter vector
	RealVector parameterVector() const{
		RealVector ret(numberOfParameters());
		init(ret) << toVector(log(m_w));
		return ret;
	}

	/// overwrite the parameter vector
	void setParameterVector(RealVector const& newParameters)
	{
		init(newParameters) >> toVector(m_w);
		noalias(m_w) = exp(m_w);
		for(std::size_t i = 0; i != outputSize(); ++i){
			row(m_w,i) /= sum(row(m_w,i));
		}
	}

	/// return the number of parameter
	std::size_t numberOfParameters() const{
		return m_w.size1()*m_w.size2();
	}

	/// overwrite structure and parameters
	void setStructure(std::size_t inputs, std::size_t outputs = 1){
		ConvexCombination model(inputs,outputs);
		swap(*this,model);
	}
	
	RealMatrix const& weights() const{
		return m_w;
	}
	
	RealMatrix& weights(){
		return m_w;
	}
	
	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new EmptyState());
	}

	/// Evaluate the model: output = w * input
	void eval(BatchInputType const& inputs, BatchOutputType& outputs)const{
		outputs.resize(inputs.size1(),m_w.size1());
		noalias(outputs) = prod(inputs,trans(m_w));
	}
	/// Evaluate the model: output = w *input
	void eval(BatchInputType const& inputs, BatchOutputType& outputs, State& state)const{
		eval(inputs,outputs);
	}
	
	///\brief Calculates the first derivative w.r.t the parameters and summing them up over all patterns of the last computed batch 
	void weightedParameterDerivative(
		BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, RealVector& gradient
	)const{
		SIZE_CHECK(coefficients.size2()==outputSize());
		SIZE_CHECK(coefficients.size1()==patterns.size1());

		gradient.resize(numberOfParameters());
		blas::dense_matrix_adaptor<double> weightGradient = blas::adapt_matrix(outputSize(),inputSize(),gradient.storage());

		//derivative is
		//sum_i sum_j c_ij sum_k x_ik grad_q w_jk= sum_k sum_j grad_q w_jk (sum_i c_ij x_ik)
		//and we set d_jk=sum_i c_ij x_ik => d = C^TX
		RealMatrix d = prod(trans(coefficients), patterns);
		
		//use the same drivative as in the softmax model
		for(std::size_t i = 0; i != outputSize(); ++i){
			double mass=inner_prod(row(d,i),row(m_w,i));
			noalias(row(weightGradient,i)) = element_prod(
				row(d,i) - mass,
				row(m_w,i)
			);
		}
	}
	///\brief Calculates the first derivative w.r.t the inputs and summs them up over all patterns of the last computed batch 
	void weightedInputDerivative(
		BatchInputType const & patterns,
		BatchOutputType const & coefficients,
		State const& state,
		BatchInputType& derivative
	)const{
		SIZE_CHECK(coefficients.size2() == outputSize());
		SIZE_CHECK(coefficients.size1() == patterns.size1());

		derivative.resize(patterns.size1(),inputSize());
		noalias(derivative) = prod(coefficients,m_w);
	}

	/// From ISerializable
	void read(InArchive& archive){
		archive >> m_w;
	}
	/// From ISerializable
	void write(OutArchive& archive) const{
		archive << m_w;
	}
};


}
#endif