This file is indexed.

/usr/include/shark/Models/FFNet.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/*!
 * 
 *
 * \brief       Implements a Feef-Forward multilayer perceptron
 * 
 * 
 *
 * \author      O. Krause
 * \date        2010-2014
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_MODELS_FFNET_H
#define SHARK_MODELS_FFNET_H

#include <shark/Models/AbstractModel.h>
#include <shark/Models/Neurons.h>
#include <boost/serialization/vector.hpp>

namespace shark{
	
struct FFNetStructures{
	enum ConnectionType{
		Normal, //< Layerwise connectivity without shortcuts
		InputOutputShortcut, //< Normal with additional shortcuts from input to output neuron
		Full //< Every layer is fully connected to all neurons in the lower layer 
	};
};

//! \brief Offers the functions to create and to work with a feed-forward network.
//!
//! A feed forward network consists of several layers. every layer consists of a linear 
//! function with optional bias whose response is modified by a (nonlinear) activation function.
//! starting from the input layer, the output of every layer is the input of the next.
//! The two template arguments goveern the activation functions of the network. 
//! The activation functions are typically sigmoidal.
//! All hidden layers share one activation function, while the output layer can be chosen to use
//! a different one, for example to allow the last output to be unbounded, in which case a 
//! linear output function is used.
//! It is not possible to use arbitrary activation functions but Neurons following in the structure
//! in Models/Neurons.h Especially it holds that the derivative of the activation function
//! must have the form f'(x) = g(f(x)).
//!
//! This network class allows for several different topologies of structure. The layerwise structure
//! outlined above is the ddefault one, but the network also allows for shortcuts. most typically 
//! an input-output shotcut is used, that is a shortcut that connects the input neurons directly 
//! with the output using linear weights. But also a fully connected structure is possible, where
//! every layer is fed as input to every successive layer instead of only the next one.
template<class HiddenNeuron,class OutputNeuron>
class FFNet :public AbstractModel<RealVector,RealVector>
{
	struct InternalState: public State{
		//!  \brief Used to store the current results of the activation
		//!         function for all neurons for the last batch of patterns \f$x\f$.
		//!
		//!  There is one value for input+hidden+output units for every element of the batch.
		//!  For every value, the following holds:
		//!  Given a network with \f$M\f$ neurons, including
		//! \f$c\f$ input and \f$n\f$ output neurons the single
		//! values for \f$z\f$ are given as:
		//! <ul>
		//!     <li>\f$z_i = x_i,\ \mbox{for\ } 0 \leq i < c\f$</li>
		//!     <li>\f$z_i = g_{hidden}(x),\ \mbox{for\ } c \leq i < M - n\f$</li>
		//!     <li>\f$z_i = y_{i-M+n} = g_{output}(x),\ \mbox{for\ } M - n \leq
		//!                  i < M\f$</li>
		//! </ul>
		RealMatrix responses;
		
		void resize(std::size_t neurons, std::size_t patterns){
			responses.resize(neurons,patterns);
		}
	};
	

public:
	
	//! Creates an empty feed-forward network. After the constructor is called,
	//! one version of the #setStructure methods needs to be called
	//! to define the network topology.
	FFNet()
	:m_numberOfNeurons(0),m_inputNeurons(0),m_outputNeurons(0){
		m_features|=HAS_FIRST_PARAMETER_DERIVATIVE;
		m_features|=HAS_FIRST_INPUT_DERIVATIVE;
	}

	//! \brief From INameable: return the class name.
	std::string name() const
	{ return "FFNet"; }

	//! \brief Number of input neurons.
	std::size_t inputSize()const{
		return m_inputNeurons;
	}
	//! \brief Number of output neurons.
	std::size_t outputSize()const{
		return m_outputNeurons;
	}
	//! \brief Total number of neurons, that is inputs+hidden+outputs.
	std::size_t numberOfNeurons()const{
		return m_numberOfNeurons;
	}
	//! \brief Total number of hidden neurons.
	std::size_t numberOfHiddenNeurons()const{
		return numberOfNeurons() - inputSize() -outputSize();
	}

	//! \brief Returns the matrices for every layer used by eval.
	std::vector<RealMatrix> const& layerMatrices()const{
		return m_layerMatrix;
	}
	
	//! \brief Returns the weight matrix of the i-th layer.
	RealMatrix const& layerMatrix(std::size_t layer)const{
		return m_layerMatrix[layer];
	}
	
	void setLayer(std::size_t layerNumber, RealMatrix const& m, RealVector const& bias){
		SIZE_CHECK(m.size1() == bias.size());
		SIZE_CHECK(m.size1() == m_layerMatrix[layerNumber].size1());
		SIZE_CHECK(m.size2() == m_layerMatrix[layerNumber].size2());
		m_layerMatrix[layerNumber] = m;
		std::size_t start = 0;
		for(std::size_t i = 0; i != layerNumber; ++i){
			start += m_layerMatrix[i].size1();
		}
		noalias(subrange(m_bias,start,start+bias.size())) = bias;
		//set backprop matrices
		setParameterVector(parameterVector());
	}

	//! \brief Returns the matrices for every layer used by backpropagation.
	std::vector<RealMatrix> const& backpropMatrices()const{
		return m_backpropMatrix;
	}
	
	//! \brief Returns the direct shortcuts between input and output neurons.
	//!
	//! This does not necessarily exist.
	RealMatrix const& inputOutputShortcut() const{
		return m_inputOutputShortcut;
	}
	
	/// \brief Returns the activation function of the hidden units.
	HiddenNeuron const& hiddenActivationFunction()const{
		return m_hiddenNeuron;
	}
	/// \brief Returns the activation function of the output units.
	OutputNeuron const& outputActivationFunction()const{
		return m_outputNeuron;
	}
	
	/// \brief Returns the activation function of the hidden units.
	HiddenNeuron& hiddenActivationFunction(){
		return m_hiddenNeuron;
	}
	/// \brief Returns the activation function of the output units.
	OutputNeuron& outputActivationFunction(){
		return m_outputNeuron;
	}

	//! \brief Returns the bias values for hidden and output units.
	//!
	//! This is either empty or a vector of size numberOfNeurons()-inputSize().
	//! the first entry is the value of the first hidden unit while the last outputSize() units
	//! are the values of the output units.
	const RealVector& bias()const{
		return m_bias;
	}
	
	///\brief Returns the portion of the bias vector of the i-th layer.
	RealVector bias(std::size_t layer)const{
		std::size_t start = 0;
		for(std::size_t i = 0; i != layer; ++i){
			start +=layerMatrices()[i].size1();
		}
		return subrange(m_bias,start,start+layerMatrices()[layer].size1());
	}
	
	//! \brief Returns the total number of parameters of the network. 
	std::size_t numberOfParameters()const{
		std::size_t numParams = m_inputOutputShortcut.size1()*m_inputOutputShortcut.size2();
		numParams += bias().size();
		for(std::size_t i = 0; i != layerMatrices().size(); ++i){
			numParams += layerMatrices()[i].size1()*layerMatrices()[i].size2();
		}
		return numParams;
	}

	//! returns the vector of used parameters inside the weight matrix
	RealVector parameterVector() const{
		RealVector parameters(numberOfParameters());
		init(parameters) << matrixSet(m_layerMatrix),m_bias,toVector(m_inputOutputShortcut);
		return parameters;
	}
	//! uses the values inside the parametervector to set the used values inside the weight matrix
	void setParameterVector(RealVector const& newParameters){
		//set the normal forward propagation weights
		init(newParameters) >> matrixSet(m_layerMatrix),m_bias,toVector(m_inputOutputShortcut);
		
		//we also have to update the backpropagation weights
		//this is more or less an inversion. for all connections of a neuron i with a neuron j, i->j
		//the backpropagation matrix has an entry j->i.
		
		// we start with all neurons in layer i, looking at all layers j > i and checking whether 
		// they are connected, in this case we transpose the part of the matrix which is connecting
		// layer j with layer i and copying it into the backprop matrix.
		// we assume here, that either all neurons in layer j are connected to all neurons in layer i
		// or that there are no connections at all beetween the layers.
		std::size_t layeriStart = 0;
		for(std::size_t layeri = 0; layeri != m_layerMatrix.size(); ++layeri){
			std::size_t columni = 0;
			std::size_t neuronsi = inputSize();
			if(layeri > 0)
				neuronsi = m_layerMatrix[layeri-1].size1();
			
			std::size_t layerjStart = layeriStart + neuronsi;
			for(std::size_t layerj = layeri; layerj != m_layerMatrix.size(); ++layerj){
				std::size_t neuronsj = m_layerMatrix[layerj].size1();
				//only process, if layer j has connections with layer i
				if(layerjStart-m_layerMatrix[layerj].size2() <= layeriStart){
					
					//Start of the weight columns to layer i in layer j.
					//parantheses are important to protect against underflow
					std::size_t weightStartj = layeriStart -(layerjStart - m_layerMatrix[layerj].size2());
					noalias(columns(m_backpropMatrix[layeri],columni,columni+neuronsj)) 
					= trans(columns(m_layerMatrix[layerj],weightStartj,weightStartj+neuronsi)); 
				}
				columni += neuronsj;
				layerjStart += neuronsj; 
			}
			layeriStart += neuronsi;
		}
	}

	//! \brief Returns the output of all neurons after the last call of eval
	//!
	//!     \param  state last result of eval
	//!     \return Output value of the neurons.
	RealMatrix const& neuronResponses(State const& state)const{
		InternalState const& s = state.toState<InternalState>();
		return s.responses;
	}
	
	boost::shared_ptr<State> createState()const{
		return boost::shared_ptr<State>(new InternalState());
	}

	///\brief Returns the response of the i-th layer given the input of that layer.
	///
	/// this is usfull if only a portion of the network needs to be evaluated
	/// be aware that this only works without shortcuts in the network
	void evalLayer(std::size_t layer,RealMatrix const& patterns,RealMatrix& outputs)const{
		std::size_t numPatterns = patterns.size1();
		std::size_t numOutputs = m_layerMatrix[layer].size1();
		outputs.resize(numPatterns,numOutputs);
		outputs.clear();

		//calculate activation. first compute the linear part and the optional bias and then apply
		// the non-linearity
		noalias(outputs) = prod(patterns,trans(layerMatrix(layer)));
		if(!bias().empty()){
			noalias(outputs) += repeat(bias(layer),numPatterns);
		}
		// if this is the last layer, use output neuron response
		if(layer < m_layerMatrix.size()-1) {
			noalias(outputs) = m_hiddenNeuron(outputs);
		}
		else {
			noalias(outputs) = m_outputNeuron(outputs);
		}
	}
	
	///\brief Returns the response of the i-th layer given the input of that layer.
	///
	/// this is usfull if only a portion of the network needs to be evaluated
	/// be aware that this only works without shortcuts in the network
	Data<RealVector> evalLayer(std::size_t layer, Data<RealVector> const& patterns)const{
		int batches = (int) patterns.numberOfBatches();
		Data<RealVector> result(batches);
		SHARK_PARALLEL_FOR(int i = 0; i < batches; ++i){
			evalLayer(layer,patterns.batch(i),result.batch(i));
		}
		return result;
	}
	
	void eval(RealMatrix const& patterns,RealMatrix& output, State& state)const{
		InternalState& s = state.toState<InternalState>();
		std::size_t numPatterns = patterns.size1();
		//initialize the input layer using the patterns.
		s.resize(numberOfNeurons(),numPatterns);
		s.responses.clear();
		noalias(rows(s.responses,0,m_inputNeurons)) = trans(patterns);
		std::size_t beginNeuron = m_inputNeurons;
		
		for(std::size_t layer = 0; layer != m_layerMatrix.size();++layer){
			const RealMatrix& weights = m_layerMatrix[layer];
			//number of rows of the layer is also the number of neurons
			std::size_t endNeuron = beginNeuron + weights.size1();
			//some subranges of vectors
			//inputs are the last n neurons, where n is the number of columns of the matrix
			RealSubMatrix const input = rows(s.responses,beginNeuron - weights.size2(),beginNeuron);
			//the neurons responses
			RealSubMatrix responses = rows(s.responses,beginNeuron,endNeuron);

			//calculate activation. first compute the linear part and the optional bias and then apply
			// the non-linearity
			noalias(responses) = prod(weights,input);
			if(!bias().empty()){
				//the bias of the layer is shifted as input units can not have bias.
				ConstRealVectorRange bias = subrange(m_bias,beginNeuron-inputSize(),endNeuron-inputSize());
				noalias(responses) += trans(repeat(bias,numPatterns));
			}
			SHARK_CRITICAL_REGION{//beware Dropout Neurons!
				// if this is the last layer, use output neuron response instead
				if(layer < m_layerMatrix.size()-1) {
					noalias(responses) = m_hiddenNeuron(responses);
				}
				else {
					//add shortcuts if necessary
					if(m_inputOutputShortcut.size1() != 0){
						noalias(responses) += prod(m_inputOutputShortcut,trans(patterns));
					}
					noalias(responses) = m_outputNeuron(responses);
				}
			}
			//go to the next layer
			beginNeuron = endNeuron;
		}
		//Sanity check
		SIZE_CHECK(beginNeuron == m_numberOfNeurons);

		//copy output layer into output
		output.resize(numPatterns,m_outputNeurons);
		noalias(output) = trans(rows(s.responses,m_numberOfNeurons-outputSize(),m_numberOfNeurons));
	}
	using AbstractModel<RealVector,RealVector>::eval;

	void weightedParameterDerivative(
		BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, RealVector& gradient
	)const{
		SIZE_CHECK(coefficients.size2() == m_outputNeurons);
		SIZE_CHECK(coefficients.size1() == patterns.size1());
		std::size_t numPatterns=patterns.size1();
		
		//initialize delta using coefficients and clear the rest. also don't compute the delta for
		// the input nurons as they are not needed.
		RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
		RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
		noalias(outputDelta) = trans(coefficients);

		computeDelta(delta,state,false);
		computeParameterDerivative(delta,state,gradient);
		
	}
	
	void weightedInputDerivative(
		BatchInputType const& patterns, RealMatrix const& coefficients, State const& state, BatchInputType& inputDerivative
	)const{
		SIZE_CHECK(coefficients.size2() == m_outputNeurons);
		SIZE_CHECK(coefficients.size1() == patterns.size1());
		std::size_t numPatterns=patterns.size1();
		
		//initialize delta using coefficients and clear the rest
		//we compute the full set of delta values here. the delta values of the inputs are the inputDerivative
		RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
		RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
		noalias(outputDelta) = trans(coefficients);

		computeDelta(delta,state,true);
		inputDerivative.resize(numPatterns,inputSize());
		noalias(inputDerivative) = trans(rows(delta,0,inputSize()));
	}
	
	virtual void weightedDerivatives(
		BatchInputType const & patterns,
		BatchOutputType const & coefficients,
		State const& state,
		RealVector& parameterDerivative,
		BatchInputType& inputDerivative
	)const{
		SIZE_CHECK(coefficients.size2() == m_outputNeurons);
		SIZE_CHECK(coefficients.size1() == patterns.size1());
		std::size_t numPatterns = patterns.size1();
		
		
		//compute full delta and thus the input derivative
		RealMatrix delta(numberOfNeurons(),numPatterns,0.0);
		RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
		noalias(outputDelta) = trans(coefficients);
		
		computeDelta(delta,state,true);
		inputDerivative.resize(numPatterns,inputSize());
		noalias(inputDerivative) = trans(rows(delta,0,inputSize()));
		
		//reuse delta to compute the parameter derivative
		computeParameterDerivative(delta,state,parameterDerivative);
	}
	
	//! \brief Calculates the derivative for the special case, when error terms for all neurons of the network exist.
	//!
	//! This is usefull when the hidden neurons need to meet additional requirements.
	//! The value of delta is changed during computation and holds the results of the backpropagation steps.
	//! The format is such that the rows of delta are the neurons and the columns the patterns.
	void weightedParameterDerivativeFullDelta(
		RealMatrix const& patterns, RealMatrix& delta, State const& state, RealVector& gradient
	)const{
		InternalState const& s = state.toState<InternalState>();
		SIZE_CHECK(delta.size1() == m_numberOfNeurons);
		SIZE_CHECK(delta.size2() == patterns.size1());
		SIZE_CHECK(s.responses.size2() == patterns.size1());
		
		computeDelta(delta,state,false);
		//now compute the parameter derivative from the delta values
		computeParameterDerivative(delta,state,gradient);
	}

	//!  \brief Creates a connection matrix for a network.
	//!
	//! Automatically creates a network with several layers, with
	//! the numbers of neurons for each layer defined by \em layers.
	//! layers must be at least size 2, which will result in a network with no hidden layers.
	//! the first and last values correspond to the number of inputs and outputs respectively.
	//!
	//! The network supports three different tpes of connection models:
	//! FFNetStructures::Normal corresponds to a layerwise connection between consecutive
	//! layers. FFNetStructures::InputOutputShortcut additionally adds a shortcut between
	//! input and output neurons. FFNetStructures::Full connects every layer to every following
	//! layer, this includes also the shortcuts for input and output neurons. Additionally
	//! a bias term an be used.
	//!
	//! While Normal and Full only use the layer matrices, inputOutputShortcut also uses
	//! the corresponding matrix variable (be aware that in the case of only one hidden layer,
	//! the shortcut between input and output leads to the same network as the Full - in that case
	//! the Full topology is chosen for optimization reasons)
	//!
	//! \param  layers contains the numbers of neurons for each layer of the network.
	//! \param  connectivity type of connection used between layers
	//! \param  biasNeuron if set to \em true, connections from
	//!                    all neurons (except the input neurons)
	//!                    to the bias will be set.
	void setStructure(
		std::vector<size_t> const& layers,
		FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
		bool biasNeuron = true
	){
		SIZE_CHECK(layers.size() >= 2);
		m_layerMatrix.resize(layers.size()-1);//we don't model the input layer
		m_backpropMatrix.resize(layers.size()-1);//we don't model the output layer
		
		//small optimization for ntworks with only 3 layers
		//in this case, we don't need an explicit shortcut as we can integrate it into
		//the big matrices
		if(connectivity == FFNetStructures::InputOutputShortcut && layers.size() ==3)
			connectivity = FFNetStructures::Full;
		
		
		m_inputNeurons = layers.front();
		m_outputNeurons = layers.back();
		m_numberOfNeurons = 0;
		for(std::size_t i = 0; i != layers.size(); ++i){
			m_numberOfNeurons += layers[i];
		}
		if(biasNeuron){
			m_bias.resize(m_numberOfNeurons - m_inputNeurons);
		}
		
		if(connectivity == FFNetStructures::Full){
			//connect to all previous layers.
			std::size_t numNeurons = layers[0];
			for(std::size_t i = 0; i != m_layerMatrix.size(); ++i){
				m_layerMatrix[i].resize(layers[i+1],numNeurons);
				m_backpropMatrix[i].resize(layers[i],m_numberOfNeurons-numNeurons);
				numNeurons += layers[i+1];
				
			}
			m_inputOutputShortcut.resize(0,0);
		}else{
			//only connect with the previous layer
			for(std::size_t i = 0; i != m_layerMatrix.size(); ++i){
				m_layerMatrix[i].resize(layers[i+1],layers[i]);
				m_backpropMatrix[i].resize(layers[i],layers[i+1]);
			}
			
			//create a shortcut from input to output when desired
			if(connectivity == FFNetStructures::InputOutputShortcut){
				m_inputOutputShortcut.resize(m_outputNeurons,m_inputNeurons);
			}
		}
	}
	
	//!  \brief Creates a connection matrix for a network with a
	//!         single hidden layer
	//!
	//!  Automatically creates a network with
	//!  three different layers: An input layer with \em in input neurons,
	//!  an output layer with \em out output neurons and one hidden layer
	//!  with \em hidden neurons, respectively.
	//!
	//!  \param  in         number of input neurons.
	//!  \param  hidden    number of neurons of the second hidden layer.
	//!  \param  out        number of output neurons.
	//!  \param  connectivity  Type of connectivity between the layers
	//!  \param  bias       if set to \em true, connections from
	//!                     all neurons (except the input neurons)
	//!                     to the bias will be set.
	void setStructure(
		std::size_t in,
		std::size_t hidden,
		std::size_t out,
		FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
		bool bias      = true
	){
		std::vector<size_t> layer(3);
		layer[0] = in;
		layer[1] = hidden;
		layer[2] = out;
		setStructure(layer, connectivity, bias);
	}
	
	//!  \brief Creates a connection matrix for a network with two
	//!         hidden layers.
	//!
	//!  Automatically creates a network with
	//!  four different layers: An input layer with \em in input neurons,
	//!  an output layer with \em out output neurons and two hidden layers
	//!  with \em hidden1 and \em hidden2 hidden neurons, respectively.
	//!
	//!  \param  in         number of input neurons.
	//!  \param  hidden1    number of neurons of the first hidden layer.
	//!  \param  hidden2    number of neurons of the second hidden layer.
	//!  \param  out        number of output neurons.
	//!  \param  connectivity  Type of connectivity between the layers
	//!  \param  bias       if set to \em true, connections from
	//!                     all neurons (except the input neurons)
	//!                     to the bias will be set.
	void setStructure(
		std::size_t in,
		std::size_t hidden1,
		std::size_t hidden2,
		std::size_t out,
		FFNetStructures::ConnectionType connectivity = FFNetStructures::Normal,
		bool bias      = true
	){
		std::vector<size_t> layer(4);
		layer[0] = in;
		layer[1] = hidden1;
		layer[2] = hidden2;
		layer[3] = out;
		setStructure(layer, connectivity, bias);
	}

	//! From ISerializable, reads a model from an archive
	void read( InArchive & archive ){
		archive>>m_inputNeurons;
		archive>>m_outputNeurons;
		archive>>m_numberOfNeurons;
		archive>>m_layerMatrix;
		archive>>m_backpropMatrix;
		archive>>m_inputOutputShortcut;
		archive>>m_bias;
	}

	//! From ISerializable, writes a model to an archive
	void write( OutArchive & archive ) const{
		archive<<m_inputNeurons;
		archive<<m_outputNeurons;
		archive<<m_numberOfNeurons;
		archive<<m_layerMatrix;
		archive<<m_backpropMatrix;
		archive<<m_inputOutputShortcut;
		archive<<m_bias;
	}


private:
	
	void computeDelta(
		RealMatrix& delta, State const& state, bool computeInputDelta
	)const{
		SIZE_CHECK(delta.size1() == numberOfNeurons());
		InternalState const& s = state.toState<InternalState>();

		//initialize output neurons using coefficients
		RealSubMatrix outputDelta = rows(delta,delta.size1()-outputSize(),delta.size1());
		ConstRealSubMatrix outputResponse = rows(s.responses,delta.size1()-outputSize(),delta.size1());
		noalias(outputDelta) *= m_outputNeuron.derivative(outputResponse);

		//iterate backwards using the backprop matrix and propagate the errors to get the needed delta values
		//we stop until we have filled all delta values. Thus we might not necessarily compute all layers.
		
		//last neuron of the current layer that we need to compute
		//we don't need (or can not) compute the values of the output neurons as they are given from the outside
		std::size_t endNeuron = delta.size1()-outputSize();
		std::size_t layer = m_backpropMatrix.size()-1;
		std::size_t endIndex = computeInputDelta? 0: inputSize();
		while(endNeuron > endIndex){
			
			RealMatrix const& weights = m_backpropMatrix[layer];
			std::size_t beginNeuron = endNeuron - weights.size1();//first neuron of the current layer
			//get the delta and response values of this layer
			RealSubMatrix layerDelta = rows(delta,beginNeuron,endNeuron);
			RealSubMatrix layerDeltaInput = rows(delta,endNeuron,endNeuron+weights.size2());
			ConstRealSubMatrix layerResponse = rows(s.responses,beginNeuron,endNeuron);

			noalias(layerDelta) += prod(weights,layerDeltaInput);//add the values to the maybe non-empty delta part
			if(layer != 0){
				noalias(layerDelta) *= m_hiddenNeuron.derivative(layerResponse);
			}
			//go a layer backwards
			endNeuron=beginNeuron;
			--layer;
		}
		
		//add the shortcut deltas if necessary
		if(inputOutputShortcut().size1() != 0)
			noalias(rows(delta,0,inputSize())) += prod(trans(inputOutputShortcut()),outputDelta);
	}
	
	void computeParameterDerivative(RealMatrix const& delta, State const& state, RealVector& gradient)const{
		SIZE_CHECK(delta.size1() == numberOfNeurons());
		InternalState const& s = state.toState<InternalState>();
		// calculate error gradient
		//todo: take network structure into account to prevent checking all possible weights...
		gradient.resize(numberOfParameters());
		std::size_t pos = 0;
		std::size_t layerStart = inputSize();
		for(std::size_t layer = 0; layer != layerMatrices().size(); ++layer){
			std::size_t layerRows =  layerMatrices()[layer].size1();
			std::size_t layerColumns =  layerMatrices()[layer].size2();
			std::size_t params = layerRows*layerColumns;
			axpy_prod(
				rows(delta,layerStart,layerStart+layerRows),
				trans(rows(s.responses,layerStart-layerColumns,layerStart)),
				//interpret part of the gradient as the weights of the layer
				to_matrix(subrange(gradient,pos,pos+params),layerRows,layerColumns)
			);
			pos += params;
			layerStart += layerRows;
		}
		//check whether we need the bias derivative
		if(!bias().empty()){
			//calculate bias derivative
			for (std::size_t neuron = m_inputNeurons; neuron < m_numberOfNeurons; neuron++){
				gradient(pos) = sum(row(delta,neuron));
				pos++;
			}
		}
		//compute shortcut derivative
		if(inputOutputShortcut().size1() != 0){
			std::size_t params = inputSize()*outputSize();
			axpy_prod(
				rows(delta,delta.size1()-outputSize(),delta.size1()),
				trans(rows(s.responses,0,inputSize())),
				to_matrix(subrange(gradient,pos,pos+params),outputSize(),inputSize())
			);
		}
		
	}
	

	//! \brief Number of all network neurons.
	//!
	//! This is the total number of neurons in the network, i.e.
	//! input, hidden and output neurons.
	std::size_t m_numberOfNeurons;
	std::size_t m_inputNeurons;
	std::size_t m_outputNeurons;

	//! \brief represents the connection matrix using a layered structure for forward propagation
	//!
	//! a layer is made of neurons with consecutive indizes which are not
	//! connected with each other. In other words, if there exists a k i<k<j such
	//! that C(i,k) = 1 or C(k,j) = 1 or C(j,i) = 1 than the neurons i,j are not in the same layer.
	//! This is the forward view, meaning that the layers holds the weights which are used to calculate
	//! the activation of the neurons of the layer.
	std::vector<RealMatrix> m_layerMatrix;
	
	//! \brief optional matrix directly connecting input to output
	//!
	//! This is only filled when the ntworkhas an input-output shortcut but not a full layer connection.
	RealMatrix m_inputOutputShortcut;
	
	//!\brief represents the backwards view of the network as layered structure.
	//!
	//! This is the backward view of the Network which is used for the backpropagation step. So every
	//! Matrix contains the weights of the neurons which are activatived by the layer.
	std::vector<RealMatrix> m_backpropMatrix;

	//! bias weights of the neurons
	RealVector m_bias;

	//!Type of hidden neuron. See Models/Neurons.h for a few choices
	HiddenNeuron m_hiddenNeuron;
	//! Type of output neuron. See Models/Neurons.h for a few choices
	OutputNeuron m_outputNeuron;
};


}
#endif