/usr/include/shark/Models/MeanModel.h is in libshark-dev 3.1.3+ds1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 | //===========================================================================
/*!
*
*
* \brief Implements the Mean Model that can be used for ensemble classifiers
*
*
*
* \author Kang Li, O. Krause
* \date 2014
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
//===========================================================================
#ifndef SHARK_MODELS_MEANMODEL_H
#define SHARK_MODELS_MEANMODEL_H
namespace shark {
///
/// \brief Calculates the weighted mean of a set of models
///
template<class ModelType>
class MeanModel : public AbstractModel<typename ModelType::InputType, typename ModelType::OutputType>
{
private:
typedef AbstractModel<typename ModelType::InputType, typename ModelType::OutputType> base_type;
public:
/// Constructor
MeanModel():m_weightSum(0){}
std::string name() const
{ return "MeanModel"; }
using base_type::eval;
void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs)const{
m_models[0].eval(patterns,outputs);
outputs *=m_weight[0];
for(std::size_t i = 1; i != m_models.size(); i++)
noalias(outputs) += m_weight[i] * m_models[i](patterns);
outputs /= m_weightSum;
}
void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs, State& state)const{
eval(patterns,outputs);
}
/// This model does not have any parameters.
RealVector parameterVector() const {
return RealVector();
}
/// This model does not have any parameters
void setParameterVector(const RealVector& param) {
SHARK_ASSERT(param.size() == 0);
}
void read(InArchive& archive){
archive >> m_models;
archive >> m_weight;
archive >> m_weightSum;
}
void write(OutArchive& archive)const{
archive << m_models;
archive << m_weight;
archive << m_weightSum;
}
/// \brief Removes all models from the ensemble
void clearModels(){
m_models.clear();
m_weight.clear();
m_weightSum = 0.0;
}
/// \brief Adds a new model to the ensemble.
///
/// \param model the new model
/// \param weight weight of the model. must be > 0
void addModel(ModelType const& model, double weight = 1.0){
SHARK_CHECK(weight > 0, "Weights must be positive");
m_models.push_back(model);
m_weight.push_back(weight);
m_weightSum+=weight;
}
/// \brief Returns the weight of the i-th model
double const& weight(std::size_t i)const{
return m_weight[i];
}
/// \brief sets the weight of the i-th model
void setWeight(std::size_t i, double newWeight){
m_weightSum=newWeight - m_weight[i];
m_weight[i] = newWeight;
}
/// \brief Returns the number of models.
std::size_t numberOfModels()const{
return m_models.size();
}
protected:
/// collection of models.
std::vector<ModelType> m_models;
/// Weight of the mean.
std::vector<double> m_weight;
/// Total sum of weights.
double m_weightSum;
};
}
#endif // SHARK_MODELS_MEANMODEL_H
|