/usr/include/shark/Models/SigmoidModel.h is in libshark-dev 3.1.3+ds1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 | /*!
* \brief Implements a simple sigmoidal model for sigmoidal fitting in a 2-d problem
*
* \author
* \date
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_MODEL_ML_SIGMOIDMODEL_H
#define SHARK_MODEL_ML_SIGMOIDMODEL_H
#include <shark/Core/DLLSupport.h>
#include <shark/Models/AbstractModel.h>
namespace shark {
//! \brief Standard sigmoid function.
//!
//! \par
//! This model maps a real-valued input to the unit interval by the sigmoid function
//! \f$ f(x) = \frac{1}{1 + \exp(-Ax+B))} \f$,
//! where the real-valued model parameter A controls the slope, and the real-valued
//! offset model parameter B controls the position of the symmetry point.
//! This is a special case of a feed forward neural network consisting of
//! a single sigmoid layer.
//! Note that the parameter A is expected to be non-negative
//! (and hence does not incorporate the minus sign in the sigmoid's equation).
//! Also, the offset parameter can be disabled using the setOffsetActivity()
//! member function.
//!
//! \sa TanhSigmoidModel SimpleSigmoidModel
class SigmoidModel : public AbstractModel<RealVector,RealVector>
{
private:
struct InternalState:public State{
RealVector result;
void resize(std::size_t patterns){
result.resize(patterns);
}
};
public:
//! default ctor
//! \param transform_for_unconstrained when a new paramVector is set, should the exponent of the first parameter be used as the sigmoid's slope?
SHARK_EXPORT_SYMBOL SigmoidModel( bool transform_for_unconstrained = true );
/// \brief From INameable: return the class name.
std::string name() const
{ return "SigmoidModel"; }
SHARK_EXPORT_SYMBOL RealVector parameterVector() const;
//! note that the parameters are not expected to incorporate the minus sign in the sigmoid's equation
//! \param newParameters the new parameter vector A and offset B concatenated
SHARK_EXPORT_SYMBOL void setParameterVector(RealVector const& newParameters);
std::size_t numberOfParameters() const {
return 2; //we always return 2, even if the offset is hard-clamped to zero.
}
// \brief whether to use the offset, or clamp it to zero. offset is active by default.
SHARK_EXPORT_SYMBOL void setOffsetActivity( bool enable_offset );
bool hasOffset()const{
return m_useOffset;
}
bool slopeIsExpEncoded()const{
return m_transformForUnconstrained;
}
/*!
* \brief activation function \f$g_{output}(x)\f$
*/
SHARK_EXPORT_SYMBOL virtual double sigmoid(double x)const;
/*!
* \brief Computes the derivative of the activation function
* \f$g_{output}(x)\f$ for the output given the
* last response of the model gx=g(x)
*/
virtual double sigmoidDerivative(double gx)const;
boost::shared_ptr<State> createState()const{
return boost::shared_ptr<State>(new InternalState());
}
SHARK_EXPORT_SYMBOL void eval(BatchInputType const&pattern, BatchOutputType& output, State& state)const;
SHARK_EXPORT_SYMBOL void eval(BatchInputType const&pattern, BatchOutputType& output)const;
using AbstractModel<RealVector,RealVector>::eval;
SHARK_EXPORT_SYMBOL void weightedParameterDerivative(
BatchInputType const& pattern, BatchOutputType const& coefficients, State const& state, RealVector& gradient
)const;
SHARK_EXPORT_SYMBOL void weightedInputDerivative(
BatchInputType const& pattern, BatchOutputType const& coefficients, State const& state, BatchInputType& derivative
)const;
std::size_t inputSize()const{
return 1;
}
std::size_t outputSize()const{
return 1;
}
//! set the minimum log value that should be returned as log-encoded slope if the true slope is actually zero. default in ctor sets -230.
//! param logvalue the new minimum log value
void setMinLogValue( double logvalue = -230.0 );
/// From ISerializable, reads a model from an archive
void read( InArchive & archive );
/// From ISerializable, writes a model to an archive
void write( OutArchive & archive ) const;
protected:
RealVector m_parameters; ///< the parameter vector
bool m_useOffset; ///< whether or not to allow non-zero offset values
bool m_transformForUnconstrained; ///< flag for encoding variant
double m_minLogValue; ///< what value should be returned as log-encoded slope if the true slope is actually zero
};
//! \brief Simple sigmoid function
//!
//! \par
//! This model maps the reals to the unit interval by the sigmoid function
//! \f$ f(x) = \frac{1}{2} \frac{st}{1+|<A,x>+b|} + \frac{1}{2} \f$.
class SimpleSigmoidModel : public SigmoidModel
{
public:
SHARK_EXPORT_SYMBOL SimpleSigmoidModel( bool transform_for_unconstrained = true );
SHARK_EXPORT_SYMBOL double sigmoid(double a)const;
SHARK_EXPORT_SYMBOL double sigmoidDerivative(double ga)const;
/// \brief From INameable: return the class name.
std::string name() const
{ return "SimpleSigmoidModel"; }
};
//! \brief scaled Tanh sigmoid function
//!
//! \par
//! This model maps the reals to the unit interval by the sigmoid function
//! \f$ f(x) = \frac{1}{2} \tanh(<A,x>+b) + \frac{1}{2} \f$.
class TanhSigmoidModel : public SigmoidModel
{
public:
SHARK_EXPORT_SYMBOL TanhSigmoidModel( bool transform_for_unconstrained = true );
SHARK_EXPORT_SYMBOL double sigmoid(double a)const;
SHARK_EXPORT_SYMBOL double sigmoidDerivative(double ga)const;
/// \brief From INameable: return the class name.
std::string name() const
{ return "TanhSigmoidModel"; }
};
}
#endif
|