This file is indexed.

/usr/include/shark/ObjectiveFunctions/CombinedObjectiveFunction.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
//===========================================================================
/*!
 * 
 *
 * \brief       CombinedObjectiveFunction
 * 
 * 
 *
 * \author      T.Voss, T. Glasmachers, O.Krause
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_COMBINEDOBJECTIVEFUNCTION_H
#define SHARK_OBJECTIVEFUNCTIONS_COMBINEDOBJECTIVEFUNCTION_H


#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>

namespace shark {


///
/// \brief Linear combination of objective functions
///
/// \par
/// The CombinedObjectiveFunction is a linear combination of
/// objective functions. It assumed that the result type is
/// capable of forming linear combinations with real coefficients.
///
template <typename SearchSpaceType, typename ResultT>
class CombinedObjectiveFunction : public AbstractObjectiveFunction<SearchSpaceType, ResultT>
{
public:

	typedef AbstractObjectiveFunction<SearchSpaceType, ResultT> super;
	typedef AbstractObjectiveFunction<SearchSpaceType, ResultT> element;

	/// Constructor
	CombinedObjectiveFunction(){
		this->m_features|=super::HAS_FIRST_DERIVATIVE;
		this->m_features|=super::HAS_SECOND_DERIVATIVE;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "CombinedObjectiveFunction"; }


	/// Adds a new objective function with a
	/// weight of one to the linear combination.
	void add(element const& e){
		add(1.0, e);
	}

	/// Adds a new objective function with
	/// a weight to the linear combination.
	void add(double weight, element const& e)
	{
		SHARK_CHECK(weight >= 0.0, "[CombinedObjectiveFunction::add] weight must be non-negative");

		m_weight.push_back(weight);
		m_elements.push_back(&e);

		if (e.features().test(element::IS_CONSTRAINED_FEATURE)) this->m_features.set(super::IS_CONSTRAINED_FEATURE);
		if (! e.features().test(element::HAS_FIRST_DERIVATIVE)) this->m_features.reset(super::HAS_FIRST_DERIVATIVE);
		if (! e.features().test(element::HAS_SECOND_DERIVATIVE)) this->m_features.reset(super::HAS_SECOND_DERIVATIVE);
	}

	/// Tests whether a point in SearchSpace is feasible,
	/// e.g., whether the constraints are fulfilled.
	bool isFeasible( const typename super::SearchPointType & input) const {
		std::size_t ic = m_elements.size();
		for ( std::size_t i=0; i<ic; i++)
			if (! m_elements[i]->isFeasible(input))
				return false;
		return true;
	}
	
	std::size_t numberOfVariables()const{
		//todo sthis will fail if SarchPointType != Vectorspace
		return m_elements.size() == 0? 0: m_elements[0]->numberOfVariables();
	}

	/// Evaluates the objective function.
	typename super::ResultType eval( const typename super::SearchPointType & input ) const
	{
		++this->m_evaluationCounter;
		std::size_t ic = m_elements.size();
		typename super::ResultType ret = m_weight[0] * m_elements[0]->eval(input);
		for (std::size_t i=1; i<ic; i++)
			ret += m_weight[i] * m_elements[i]->eval(input);
		return ret;
	}

	/// Evaluates the objective function
	/// and calculates its gradient.
	typename super::ResultType evalDerivative( const typename super::SearchPointType & input, typename super::FirstOrderDerivative & derivative ) const {
		++this->m_evaluationCounter;
		SHARK_CHECK(this->m_features.test(super::HAS_FIRST_DERIVATIVE), "[CombinedObjectiveFunction::evalDerivative] At least one of the objective functions combined is not differentiable");
		typename super::FirstOrderDerivative der;
		std::size_t ic = m_elements.size();
		typename super::ResultType ret = m_weight[0] * m_elements[0]->evalDerivative(input, der);
		derivative = m_weight[0] * der;
		for (std::size_t i=1; i != ic; i++)
		{
			ret += m_weight[i] * m_elements[i]->evalDerivative(input, der);
			derivative += m_weight[i] * der;
		}
		return ret;
	}

	/// Evaluates the objective function
	/// and calculates its gradient and
	/// its Hessian.
	typename super::ResultType evalDerivative( const typename super::SearchPointType & input, typename super::SecondOrderDerivative & derivative )const {
		SHARK_CHECK(this->m_features.test(super::HAS_SECOND_DERIVATIVE), "[CombinedObjectiveFunction::evalDerivative] At least one of the objective functions combined is not twice differentiable");
		typename super::SecondOrderDerivative der;
		std::size_t ic = m_elements.size();
		typename super::ResultType ret = m_weight[0] * m_elements[0]->evalDerivative(input, der);
		derivative.gradient = m_weight[0] * der.gradient;
		derivative.hessian = m_weight[0] * der.hessian;
		for (std::size_t i=1; i<ic; i++)
		{
			ret += m_weight[i] * m_elements[i]->evalDerivative(input, der);
			derivative.gradient += m_weight[i] * der.gradient;
			derivative.hessian += m_weight[i] * der.hessian;
		}
		return ret;
	}

protected:
	/// list of weights
	std::vector<double> m_weight;

	/// list of "base" objective functions
	std::vector<const element*> m_elements;
};


}
#endif // SHARK_CORE_COBINEDOBJECTIVEFUNCTION_H