This file is indexed.

/usr/include/shark/ObjectiveFunctions/Regularizer.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//===========================================================================
/*!
 * 
 *
 * \brief       Regularizer
 * 
 * 
 *
 * \author      T. Glasmachers
 * \date        2010-2011
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
//===========================================================================
#ifndef SHARK_OBJECTIVEFUNCTIONS_REGULARIZER_H
#define SHARK_OBJECTIVEFUNCTIONS_REGULARIZER_H


#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>

namespace shark {


///
/// \brief One-norm of the input as an objective function
///
/// \par
/// The OneNormRegularizer is intended to be used together with other
/// objective functions within a CombinedObjectiveFunction, in order to
/// obtain a more smooth and more sparse solution.
///
class OneNormRegularizer : public SingleObjectiveFunction
{
public:

	/// Constructor
	OneNormRegularizer(std::size_t numVariables = 0):m_numberOfVariables(numVariables)
	{
		m_features|=HAS_FIRST_DERIVATIVE;
		m_features|=HAS_SECOND_DERIVATIVE;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "OneNormRegularizer"; }

	std::size_t numberOfVariables()const{
		return m_numberOfVariables;
	}
	
	bool hasScalableDimensionality()const{
		return true;
	}

	void setNumberOfVariables( std::size_t numberOfVariables ){
		m_numberOfVariables = numberOfVariables;
	}

	void setMask(const RealVector& mask){
		m_mask = mask;
	}
	const RealVector& mask()const{
		return m_mask;
	}
	/// Evaluates the objective function.
	double eval( RealVector const& input ) const{
		if(m_mask.empty()){
			return norm_1(input);
		}
		else
		{
			return norm_1(input * m_mask);
		}
	}

	/// Evaluates the objective function
	/// and calculates its gradient.
	double evalDerivative( RealVector const& input, FirstOrderDerivative & derivative ) const {
		std::size_t ic = input.size();
		derivative.resize(ic);
		if(m_mask.empty()){
			for (std::size_t i = 0; i != ic; i++){
				derivative(i) = boost::math::sign(input(i));
			}
		}
		else
		{
			SIZE_CHECK(m_mask.size() == input.size());
			for (std::size_t i=0; i != ic; i++){
				derivative(i) = m_mask(i)*boost::math::sign(input(i));
			}
		}
		return eval(input);
	}
	double evalDerivative( RealVector const& input, SecondOrderDerivative & derivative ) const {
		std::size_t ic = input.size();
		derivative.gradient.resize(ic);
		derivative.hessian.resize(ic,ic);
		derivative.hessian.clear();
		if(m_mask.empty()){
			for (std::size_t i=0; i != ic; i++){
				derivative.gradient(i) = boost::math::sign(input(i));
			}
		}
		else
		{
			SIZE_CHECK(m_mask.size() == input.size());
			for (std::size_t i=0; i != ic; i++){
				derivative.gradient(i) = m_mask(i)*boost::math::sign(input(i));
			}
		}
		return eval(input);
	}
private:
	RealVector m_mask;
	std::size_t m_numberOfVariables;
};


///
/// \brief Two-norm of the input as an objective function
///
/// \par
/// The TwoNormRegularizer is intended to be used together with other
/// objective functions within a CombinedObjectiveFunction, in order to
/// obtain a more smooth solution.
///
class TwoNormRegularizer : public AbstractObjectiveFunction<RealVector, double>
{
public:
	typedef RealVector SearchPointType;
 	typedef double ResultType;

	typedef AbstractObjectiveFunction<RealVector, double> super;

	/// Constructor
	TwoNormRegularizer(std::size_t numVariables = 0):m_numberOfVariables(numVariables)
	{
		m_features|=HAS_FIRST_DERIVATIVE;
		m_features|=HAS_SECOND_DERIVATIVE;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "TwoNormRegularizer"; }

	std::size_t numberOfVariables()const{
		return m_numberOfVariables;
	}
	
	bool hasScalableDimensionality()const{
		return true;
	}

	void setNumberOfVariables( std::size_t numberOfVariables ){
		m_numberOfVariables = numberOfVariables;
	}
	
	void setMask(const RealVector& mask){
		m_mask = mask;
	}
	const RealVector& mask()const{
		return m_mask;
	}

	/// Evaluates the objective function.
	virtual double eval( RealVector const& input ) const
	{ 
		if(m_mask.empty()){
			return 0.5*norm_sqr(input);
		}
		else{
			return 0.5 * sum(m_mask*sqr(input));
		}
	}

	/// Evaluates the objective function
	/// and calculates its gradient.
	virtual double evalDerivative( RealVector const& input, FirstOrderDerivative & derivative ) const {
		if(m_mask.empty()){
			derivative = input;
		}
		else{
			derivative = m_mask*input;
		}
		return eval(input);
	}

	/// Evaluates the objective function
	/// and calculates its gradient and
	/// its Hessian.
	virtual ResultType evalDerivative( const SearchPointType & input, SecondOrderDerivative & derivative )const {
		derivative.gradient = input;
		derivative.hessian = RealIdentityMatrix(input.size());
		return 0.5 * norm_sqr(input);
	}
private:
	std::size_t m_numberOfVariables;
	RealVector m_mask;
};


}
#endif // SHARK_CORE_REGULARIZER_H