/usr/include/shark/ObjectiveFunctions/SvmLogisticInterpretation.h is in libshark-dev 3.1.3+ds1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | /*!
*
*
* \brief Maximum-likelihood model selection for binary support vector machines.
*
*
*
* \author M.Tuma, T.Glasmachers
* \date 2009-2012
*
*
* \par Copyright 1995-2015 Shark Development Team
*
* <BR><HR>
* This file is part of Shark.
* <http://image.diku.dk/shark/>
*
* Shark is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Shark is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Shark. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef SHARK_ML_SVMLOGISTICINTERPRETATION_H
#define SHARK_ML_SVMLOGISTICINTERPRETATION_H
#include <shark/Data/CVDatasetTools.h>
#include <shark/Models/Kernels/CSvmDerivative.h>
#include <shark/Algorithms/Trainers/SigmoidFit.h>
#include <shark/Algorithms/Trainers/CSvmTrainer.h>
#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/ObjectiveFunctions/ErrorFunction.h>
#include <boost/math/special_functions/log1p.hpp>
namespace shark {
///
/// \brief Maximum-likelihood model selection score for binary support vector machines
///
/// \par
/// This class implements the maximum-likelihood based SVM model selection
/// procedure presented in the article "Glasmachers and C. Igel. Maximum
/// Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple
/// Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010."
/// At this point, only binary C-SVMs are supported.
/// \par
/// This class implements an AbstactObjectiveFunction. In detail, it provides
/// a differentiable measure of how well a C-SVM with given hyperparameters fulfills
/// the maximum-likelihood score presented in the paper. This error measure can then
/// be optimized for externally via gradient-based optimizers. In other words, this
/// class provides a score, not an optimization method or a training algorithm. The
/// C-SVM parameters have to be optimized with regard to this measure
///
template<class InputType = RealVector>
class SvmLogisticInterpretation : public SingleObjectiveFunction {
public:
typedef CVFolds< LabeledData<InputType, unsigned int> > FoldsType;
typedef AbstractKernelFunction<InputType> KernelType;
protected:
FoldsType m_folds; ///< the underlying partitioned dataset.
KernelType *mep_kernel; ///< the kernel with which to run the SVM
std::size_t m_nhp; ///< for convenience, the Number of Hyper Parameters
std::size_t m_nkp; ///< for convenience, the Number of Kernel Parameters
std::size_t m_numFolds; ///< the number of folds to be used in cross-validation
std::size_t m_numSamples; ///< overall number of samples in the dataset
std::size_t m_inputDims; ///< input dimensionality
bool m_svmCIsUnconstrained; ///< the SVM regularization parameter C is passed for unconstrained optimization, and the derivative should compensate for that
QpStoppingCondition *mep_svmStoppingCondition; ///< the stopping criterion that is to be passed to the SVM trainer.
bool m_sigmoidSlopeIsUnconstrained; ///< whether or not to use the unconstrained variant of the sigmoid. currently always true, not user-settable, existing for safety.
public:
//! constructor.
//! \param folds an already partitioned dataset (i.e., a CVFolds object)
//! \param kernel pointer to the kernel to be used within the SVMs.
//! \param unconstrained whether or not the C-parameter of/for the C-SVM is passed for unconstrained optimization mode.
//! \param stop_cond the stopping conditions which are to be passed to the
SvmLogisticInterpretation(
FoldsType const &folds, KernelType *kernel,
bool unconstrained = true, QpStoppingCondition *stop_cond = NULL
)
: mep_kernel(kernel)
, m_nhp(kernel->parameterVector().size()+1)
, m_nkp(kernel->parameterVector().size())
, m_numFolds(folds.size()) //gets number of folds!
, m_numSamples(folds.dataset().numberOfElements())
, m_inputDims(inputDimension(folds.dataset()))
, m_svmCIsUnconstrained(unconstrained)
, mep_svmStoppingCondition(stop_cond)
, m_sigmoidSlopeIsUnconstrained(true)
{
SHARK_CHECK(kernel != NULL, "[SvmLogisticInterpretation::SvmLogisticInterpretation] kernel is not allowed to be NULL"); //mtq: necessary despite indirect check via call in initialization list?
SHARK_CHECK(m_numFolds > 1, "[SvmLogisticInterpretation::SvmLogisticInterpretation] please provide a meaningful number of folds for cross validation");
if (!m_svmCIsUnconstrained) //mtq: important: we additionally need to deal with kernel feasibility indicators! important!
m_features|=IS_CONSTRAINED_FEATURE;
m_features|=HAS_VALUE;
if (mep_kernel->hasFirstParameterDerivative())
m_features|=HAS_FIRST_DERIVATIVE;
m_folds = folds;
}
/// \brief From INameable: return the class name.
std::string name() const
{ return "SvmLogisticInterpretation"; }
//! checks whether the search point provided is feasible
//! \param input the point to test for feasibility
bool isFeasible(const SearchPointType &input) const {
SHARK_ASSERT(input.size() == m_nhp);
//throw SHARKEXCEPTION("[SvmLogisticInterpretation::isFeasible] Please first clarify how the kernel parameter feasibility should be dealt with. Afterwards, please write a test for this method. Thanks.");
if (input(0) <= 0.0 && !m_svmCIsUnconstrained) {
return false;
}
return true;
}
std::size_t numberOfVariables()const{
return m_nhp;
}
//! train a number of SVMs in a cross-validation setting using the hyperparameters passed to this method.
//! the output scores from all validations sets are then concatenated. together with the true labels, these
//! scores can then be used to fit a sigmoid such that it becomes as good as possible a model for the
//! class membership probabilities given the SVM output scores. This method returns the negative likelihood
//! of the best fitting sigmoid, given a set of SVM hyperparameters.
//! \param parameters the SVM hyperparameters to use for all C-SVMs
double eval(SearchPointType const ¶meters) const {
SHARK_CHECK(m_nhp == parameters.size(), "[SvmLogisticInterpretation::eval] wrong number of parameters");
// initialize, copy parameters
double C_reg = (m_svmCIsUnconstrained ? std::exp(parameters(m_nkp)) : parameters(m_nkp)); //set up regularization parameter
mep_kernel->setParameterVector(subrange(parameters, 0, m_nkp)); //set up kernel parameters
// these two will be filled in order corresp. to all CV validation partitions stacked
// behind one another, and then used to create datasets with
std::vector< unsigned int > tmp_helper_labels(m_numSamples);
std::vector< RealVector > tmp_helper_preds(m_numSamples);
unsigned int next_label = 0; //helper index counter to monitor the next position to be filled in the above vectors
// for each fold, train an svm and get predictions on the validation data
for (std::size_t i=0; i<m_numFolds; i++) {
// get current train/validation partitions as well as corresponding labels
ClassificationDataset cur_train_data = m_folds.training(i);
ClassificationDataset cur_valid_data = m_folds.validation(i);
std::size_t cur_vsize = cur_valid_data.numberOfElements();
Data< unsigned int > cur_vlabels = cur_valid_data.labels(); //validation labels of this fold
Data< RealVector > cur_vscores; //will hold SVM output scores for current validation partition
// init SVM
KernelClassifier<InputType> svm;
CSvmTrainer<InputType, double> csvm_trainer(mep_kernel, C_reg, true, m_svmCIsUnconstrained); //the trainer
csvm_trainer.sparsify() = false;
if (mep_svmStoppingCondition != NULL) {
csvm_trainer.stoppingCondition() = *mep_svmStoppingCondition;
} else {
csvm_trainer.stoppingCondition().minAccuracy = 1e-3; //mtq: is this necessary? i think it could be set via long chain of default ctors..
csvm_trainer.stoppingCondition().maxIterations = 200 * m_inputDims; //mtq: need good/better heuristics to determine a good value for this
}
// train SVM on current fold
csvm_trainer.train(svm, cur_train_data);
cur_vscores = svm.decisionFunction()(cur_valid_data.inputs()); //will result in a dataset of RealVector as output
// copy the scores and corresponding labels to the dataset-wide storage
for (std::size_t j=0; j<cur_vsize; j++) {
tmp_helper_labels[next_label] = cur_vlabels.element(j);
tmp_helper_preds[next_label] = cur_vscores.element(j);
++next_label;
}
}
Data< unsigned int > all_validation_labels = createDataFromRange(tmp_helper_labels);
Data< RealVector > all_validation_predictions = createDataFromRange(tmp_helper_preds);
// now we got it all: the predictions across the validation folds, plus the correct corresponding
// labels. so we go ahead and fit a sigmoid to be as good as possible a model between the two:
SigmoidModel sigmoid_model(m_sigmoidSlopeIsUnconstrained); //use the unconstrained variant?
SigmoidFitRpropNLL sigmoid_trainer(100); //number of rprop iterations
ClassificationDataset validation_dataset(all_validation_predictions, all_validation_labels);
sigmoid_trainer.train(sigmoid_model, validation_dataset);
// we're basically done. now only get the final cost value of the best fit, and return it:
Data< RealVector > sigmoid_predictions = sigmoid_model(all_validation_predictions);
double error = 0;
for (std::size_t i=0; i<m_numSamples; i++) {
double p = sigmoid_predictions.element(i)(0);
if (all_validation_labels.element(i) == 1){ //positive class
error -= std::log(p);
}
else{ //negative class
error -= boost::math::log1p(-p);
}
}
return error/m_numSamples;
}
//! the derivative of the error() function above w.r.t. the parameters.
//! \param parameters the SVM hyperparameters to use for all C-SVMs
//! \param derivative will store the computed derivative w.r.t. the current hyperparameters
// mtq: should this also follow the first-call-error()-then-call-deriv() paradigm?
double evalDerivative(SearchPointType const ¶meters, FirstOrderDerivative &derivative) const {
SHARK_CHECK(m_nhp == parameters.size(), "[SvmLogisticInterpretation::evalDerivative] wrong number of parameters");
// initialize, copy parameters
double C_reg = (m_svmCIsUnconstrained ? std::exp(parameters(m_nkp)) : parameters(m_nkp)); //set up regularization parameter
mep_kernel->setParameterVector(subrange(parameters, 0, m_nkp)); //set up kernel parameters
// these two will be filled in order corresp. to all CV validation partitions stacked
// behind one another, and then used to create datasets with
std::vector< unsigned int > tmp_helper_labels(m_numSamples);
std::vector< RealVector > tmp_helper_preds(m_numSamples);
unsigned int next_label = 0; //helper index counter to monitor the next position to be filled in the above vectors
// init variables especially for derivative
RealMatrix all_validation_predict_derivs(m_numSamples, m_nhp); //will hold derivatives of all output scores w.r.t. all hyperparameters
RealVector der; //temporary helper for derivative calls
// for each fold, train an svm and get predictions on the validation data
for (std::size_t i=0; i<m_numFolds; i++) {
// get current train/validation partitions as well as corresponding labels
ClassificationDataset cur_train_data = m_folds.training(i);
ClassificationDataset cur_valid_data = m_folds.validation(i);
std::size_t cur_vsize = cur_valid_data.numberOfElements();
Data< unsigned int > cur_vlabels = cur_valid_data.labels(); //validation labels of this fold
Data< RealVector > cur_vinputs = cur_valid_data.inputs(); //validation inputs of this fold
Data< RealVector > cur_vscores; //will hold SVM output scores for current validation partition
// init SVM
KernelClassifier<InputType> svm; //the SVM
CSvmTrainer<InputType, double> csvm_trainer(mep_kernel, C_reg, true, m_svmCIsUnconstrained); //the trainer
csvm_trainer.sparsify() = false;
if (mep_svmStoppingCondition != NULL) {
csvm_trainer.stoppingCondition() = *mep_svmStoppingCondition;
} else {
csvm_trainer.stoppingCondition().maxIterations = 200 * m_inputDims; //mtq: need good/better heuristics to determine a good value for this
}
// train SVM on current fold
csvm_trainer.train(svm, cur_train_data);
CSvmDerivative<InputType> svm_deriv(&svm, &csvm_trainer);
cur_vscores = svm.decisionFunction()(cur_valid_data.inputs()); //will result in a dataset of RealVector as output
// copy the scores and corresponding labels to the dataset-wide storage
for (std::size_t j=0; j<cur_vsize; j++) {
// copy label and prediction score
tmp_helper_labels[next_label] = cur_vlabels.element(j);
tmp_helper_preds[next_label] = cur_vscores.element(j);
// get and store the derivative of the score w.r.t. the hyperparameters
svm_deriv.modelCSvmParameterDerivative(cur_vinputs.element(j), der);
noalias(row(all_validation_predict_derivs, next_label)) = der; //fast assignment of the derivative to the correct matrix row
++next_label;
}
}
Data< unsigned int > all_validation_labels = createDataFromRange(tmp_helper_labels);
Data< RealVector > all_validation_predictions = createDataFromRange(tmp_helper_preds);
// now we got it all: the predictions across the validation folds, plus the correct corresponding
// labels. so we go ahead and fit a sigmoid to be as good as possible a model between the two:
SigmoidModel sigmoid_model(m_sigmoidSlopeIsUnconstrained); //use the unconstrained variant?
SigmoidFitRpropNLL sigmoid_trainer(100); //number of rprop iterations
ClassificationDataset validation_dataset(all_validation_predictions, all_validation_labels);
sigmoid_trainer.train(sigmoid_model, validation_dataset);
// we're basically done. now only get the final cost value of the best fit, and return it:
Data< RealVector > sigmoid_predictions = sigmoid_model(all_validation_predictions);
// finally compute the derivative of the sigmoid model predictions:
// (we're here a bit un-shark-ish in that we do some of the derivative calculations by hand where they
// would also and more consistently be offered by their respective classes. one reason we're doing it
// like this might be the missing batch processing for the evalDerivatives)
derivative.resize(m_nhp);
derivative.clear();
double ss = (m_sigmoidSlopeIsUnconstrained ? std::exp(sigmoid_model.parameterVector()(0)) : sigmoid_model.parameterVector()(0));
double error = 0;
for (std::size_t i=0; i<m_numSamples; i++) {
double p = sigmoid_predictions.element(i)(0);
// compute derivative of the negative log likelihood
double dL_dsp; //derivative of likelihood wrt sigmoid predictions
if (all_validation_labels.element(i) == 1){ //positive class
error -= std::log(p);
dL_dsp = -1.0/p;
}
else{ //negative class
error -= boost::math::log1p(-p);
dL_dsp = 1.0/(1.0-p);
}
// compute derivative of the sigmoid
// derivative of sigmoid predictions wrt svm predictions
double dsp_dsvmp = ss * p * (1.0-p); //severe sign confusion potential: p(1-p) is deriv. w.r.t. t in 1/(1+e**(-t))!
for (std::size_t j=0; j<m_nhp; j++) {
derivative(j) += dL_dsp * dsp_dsvmp * all_validation_predict_derivs(i,j);
}
}
derivative /= m_numSamples;
return error / m_numSamples;
}
};
}
#endif
|