This file is indexed.

/usr/include/shark/ObjectiveFunctions/SvmLogisticInterpretation.h is in libshark-dev 3.1.3+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*!
 * 
 *
 * \brief       Maximum-likelihood model selection for binary support vector machines.
 * 
 * 
 *
 * \author      M.Tuma, T.Glasmachers
 * \date        2009-2012
 *
 *
 * \par Copyright 1995-2015 Shark Development Team
 * 
 * <BR><HR>
 * This file is part of Shark.
 * <http://image.diku.dk/shark/>
 * 
 * Shark is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published 
 * by the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * Shark is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with Shark.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef SHARK_ML_SVMLOGISTICINTERPRETATION_H
#define SHARK_ML_SVMLOGISTICINTERPRETATION_H

#include <shark/Data/CVDatasetTools.h>
#include <shark/Models/Kernels/CSvmDerivative.h>
#include <shark/Algorithms/Trainers/SigmoidFit.h>
#include <shark/Algorithms/Trainers/CSvmTrainer.h>
#include <shark/ObjectiveFunctions/AbstractObjectiveFunction.h>
#include <shark/ObjectiveFunctions/ErrorFunction.h>
#include <boost/math/special_functions/log1p.hpp>

namespace shark {

///
/// \brief Maximum-likelihood model selection score for binary support vector machines
///
/// \par
/// This class implements the maximum-likelihood based SVM model selection
/// procedure presented in the article "Glasmachers and C. Igel. Maximum
/// Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple
/// Parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010."
/// At this point, only binary C-SVMs are supported.
/// \par
/// This class implements an AbstactObjectiveFunction. In detail, it provides
/// a differentiable measure of how well a C-SVM with given hyperparameters fulfills
/// the maximum-likelihood score presented in the paper. This error measure can then
/// be optimized for externally via gradient-based optimizers. In other words, this
/// class provides a score, not an optimization method or a training algorithm. The
/// C-SVM parameters have to be optimized with regard to this measure
///
template<class InputType = RealVector>
class SvmLogisticInterpretation : public SingleObjectiveFunction {
public:
	typedef CVFolds< LabeledData<InputType, unsigned int> > FoldsType;
	typedef AbstractKernelFunction<InputType> KernelType;
protected:
	FoldsType m_folds;          ///< the underlying partitioned dataset.
	KernelType *mep_kernel;     ///< the kernel with which to run the SVM
	std::size_t m_nhp;         ///< for convenience, the Number of Hyper Parameters
	std::size_t m_nkp;         ///< for convenience, the Number of Kernel Parameters
	std::size_t m_numFolds;    ///< the number of folds to be used in cross-validation
	std::size_t m_numSamples;  ///< overall number of samples in the dataset
	std::size_t m_inputDims;   ///< input dimensionality
	bool m_svmCIsUnconstrained; ///< the SVM regularization parameter C is passed for unconstrained optimization, and the derivative should compensate for that
	QpStoppingCondition *mep_svmStoppingCondition; ///< the stopping criterion that is to be passed to the SVM trainer.
	bool m_sigmoidSlopeIsUnconstrained; ///< whether or not to use the unconstrained variant of the sigmoid. currently always true, not user-settable, existing for safety.

public:

	//! constructor.
	//! \param folds an already partitioned dataset (i.e., a CVFolds object)
	//! \param kernel pointer to the kernel to be used within the SVMs.
	//! \param unconstrained whether or not the C-parameter of/for the C-SVM is passed for unconstrained optimization mode.
	//! \param stop_cond the stopping conditions which are to be passed to the
	SvmLogisticInterpretation(
		FoldsType const &folds, KernelType *kernel,
	        bool unconstrained = true, QpStoppingCondition *stop_cond = NULL
	)
	: mep_kernel(kernel)
	,  m_nhp(kernel->parameterVector().size()+1)
	,  m_nkp(kernel->parameterVector().size())
	,  m_numFolds(folds.size())  //gets number of folds!
	,  m_numSamples(folds.dataset().numberOfElements())
	,  m_inputDims(inputDimension(folds.dataset()))
	,  m_svmCIsUnconstrained(unconstrained)
	,  mep_svmStoppingCondition(stop_cond)
	,  m_sigmoidSlopeIsUnconstrained(true)
	{
		SHARK_CHECK(kernel != NULL, "[SvmLogisticInterpretation::SvmLogisticInterpretation] kernel is not allowed to be NULL");  //mtq: necessary despite indirect check via call in initialization list?
		SHARK_CHECK(m_numFolds > 1, "[SvmLogisticInterpretation::SvmLogisticInterpretation] please provide a meaningful number of folds for cross validation");
		if (!m_svmCIsUnconstrained)   //mtq: important: we additionally need to deal with kernel feasibility indicators! important!
			m_features|=IS_CONSTRAINED_FEATURE;
		m_features|=HAS_VALUE;
		if (mep_kernel->hasFirstParameterDerivative())
			m_features|=HAS_FIRST_DERIVATIVE;
		m_folds = folds;
	}

	/// \brief From INameable: return the class name.
	std::string name() const
	{ return "SvmLogisticInterpretation"; }

	//! checks whether the search point provided is feasible
	//! \param input the point to test for feasibility
	bool isFeasible(const SearchPointType &input) const {
		SHARK_ASSERT(input.size() == m_nhp);
		//throw SHARKEXCEPTION("[SvmLogisticInterpretation::isFeasible] Please first clarify how the kernel parameter feasibility should be dealt with. Afterwards, please write a test for this method. Thanks.");
		if (input(0) <= 0.0 && !m_svmCIsUnconstrained) {
			return false;
		}
		return true;
	}

	std::size_t numberOfVariables()const{
		return m_nhp;
	}

	//! train a number of SVMs in a cross-validation setting using the hyperparameters passed to this method.
	//! the output scores from all validations sets are then concatenated. together with the true labels, these
	//! scores can then be used to fit a sigmoid such that it becomes as good as possible a model for the
	//! class membership probabilities given the SVM output scores. This method returns the negative likelihood
	//! of the best fitting sigmoid, given a set of SVM hyperparameters.
	//! \param parameters the SVM hyperparameters to use for all C-SVMs
	double eval(SearchPointType const &parameters) const {
		SHARK_CHECK(m_nhp == parameters.size(), "[SvmLogisticInterpretation::eval] wrong number of parameters");
		// initialize, copy parameters
		double C_reg = (m_svmCIsUnconstrained ? std::exp(parameters(m_nkp)) : parameters(m_nkp));   //set up regularization parameter
		mep_kernel->setParameterVector(subrange(parameters, 0, m_nkp));   //set up kernel parameters
		// these two will be filled in order corresp. to all CV validation partitions stacked
		// behind one another, and then used to create datasets with
		std::vector< unsigned int > tmp_helper_labels(m_numSamples);
		std::vector< RealVector > tmp_helper_preds(m_numSamples);
		unsigned int next_label = 0; //helper index counter to monitor the next position to be filled in the above vectors

		// for each fold, train an svm and get predictions on the validation data
		for (std::size_t i=0; i<m_numFolds; i++) {
			// get current train/validation partitions as well as corresponding labels
			ClassificationDataset cur_train_data = m_folds.training(i);
			ClassificationDataset cur_valid_data = m_folds.validation(i);
			std::size_t cur_vsize = cur_valid_data.numberOfElements();
			Data< unsigned int > cur_vlabels = cur_valid_data.labels(); //validation labels of this fold
			Data< RealVector > cur_vscores; //will hold SVM output scores for current validation partition
			// init SVM
			KernelClassifier<InputType> svm;
			CSvmTrainer<InputType, double> csvm_trainer(mep_kernel, C_reg, true, m_svmCIsUnconstrained);   //the trainer
			csvm_trainer.sparsify() = false;
			if (mep_svmStoppingCondition != NULL) {
				csvm_trainer.stoppingCondition() = *mep_svmStoppingCondition;
			} else {
				csvm_trainer.stoppingCondition().minAccuracy = 1e-3; //mtq: is this necessary? i think it could be set via long chain of default ctors..
				csvm_trainer.stoppingCondition().maxIterations = 200 * m_inputDims; //mtq: need good/better heuristics to determine a good value for this
			}

			// train SVM on current fold
			csvm_trainer.train(svm, cur_train_data);
			cur_vscores = svm.decisionFunction()(cur_valid_data.inputs());   //will result in a dataset of RealVector as output
			// copy the scores and corresponding labels to the dataset-wide storage
			for (std::size_t j=0; j<cur_vsize; j++) {
				tmp_helper_labels[next_label] = cur_vlabels.element(j);
				tmp_helper_preds[next_label] = cur_vscores.element(j);
				++next_label;
			}
		}
		Data< unsigned int > all_validation_labels = createDataFromRange(tmp_helper_labels);
		Data< RealVector > all_validation_predictions = createDataFromRange(tmp_helper_preds);

		// now we got it all: the predictions across the validation folds, plus the correct corresponding
		// labels. so we go ahead and fit a sigmoid to be as good as possible a model between the two:
		SigmoidModel sigmoid_model(m_sigmoidSlopeIsUnconstrained);   //use the unconstrained variant?
		SigmoidFitRpropNLL sigmoid_trainer(100);   //number of rprop iterations
		ClassificationDataset validation_dataset(all_validation_predictions, all_validation_labels);
		sigmoid_trainer.train(sigmoid_model, validation_dataset);
		// we're basically done. now only get the final cost value of the best fit, and return it:
		Data< RealVector > sigmoid_predictions = sigmoid_model(all_validation_predictions);
		
		double error = 0;
		for (std::size_t i=0; i<m_numSamples; i++) {
			double p = sigmoid_predictions.element(i)(0);
			if (all_validation_labels.element(i) == 1){   //positive class
				error -= std::log(p);
			}
			else{ //negative class
				error -= boost::math::log1p(-p);
			}
		}
		
		return error/m_numSamples;
	}

	//! the derivative of the error() function above w.r.t. the parameters.
	//! \param parameters the SVM hyperparameters to use for all C-SVMs
	//! \param derivative will store the computed derivative w.r.t. the current hyperparameters
	// mtq: should this also follow the first-call-error()-then-call-deriv() paradigm?
	double evalDerivative(SearchPointType const &parameters, FirstOrderDerivative &derivative) const {
		SHARK_CHECK(m_nhp == parameters.size(), "[SvmLogisticInterpretation::evalDerivative] wrong number of parameters");
		// initialize, copy parameters
		double C_reg = (m_svmCIsUnconstrained ? std::exp(parameters(m_nkp)) : parameters(m_nkp));   //set up regularization parameter
		mep_kernel->setParameterVector(subrange(parameters, 0, m_nkp));   //set up kernel parameters
		// these two will be filled in order corresp. to all CV validation partitions stacked
		// behind one another, and then used to create datasets with
		std::vector< unsigned int > tmp_helper_labels(m_numSamples);
		std::vector< RealVector > tmp_helper_preds(m_numSamples);

		unsigned int next_label = 0; //helper index counter to monitor the next position to be filled in the above vectors
		// init variables especially for derivative
		RealMatrix all_validation_predict_derivs(m_numSamples, m_nhp);   //will hold derivatives of all output scores w.r.t. all hyperparameters
		RealVector der; //temporary helper for derivative calls

		// for each fold, train an svm and get predictions on the validation data
		for (std::size_t i=0; i<m_numFolds; i++) {
			// get current train/validation partitions as well as corresponding labels
			ClassificationDataset cur_train_data = m_folds.training(i);
			ClassificationDataset cur_valid_data = m_folds.validation(i);
			std::size_t cur_vsize = cur_valid_data.numberOfElements();
			Data< unsigned int > cur_vlabels = cur_valid_data.labels(); //validation labels of this fold
			Data< RealVector > cur_vinputs = cur_valid_data.inputs(); //validation inputs of this fold
			Data< RealVector > cur_vscores; //will hold SVM output scores for current validation partition
			// init SVM
			KernelClassifier<InputType> svm;   //the SVM
			CSvmTrainer<InputType, double> csvm_trainer(mep_kernel, C_reg, true, m_svmCIsUnconstrained);   //the trainer
			csvm_trainer.sparsify() = false;
			if (mep_svmStoppingCondition != NULL) {
				csvm_trainer.stoppingCondition() = *mep_svmStoppingCondition;
			} else {
				csvm_trainer.stoppingCondition().maxIterations = 200 * m_inputDims; //mtq: need good/better heuristics to determine a good value for this
			}
			// train SVM on current fold
			csvm_trainer.train(svm, cur_train_data);
			CSvmDerivative<InputType> svm_deriv(&svm, &csvm_trainer);
			cur_vscores = svm.decisionFunction()(cur_valid_data.inputs());   //will result in a dataset of RealVector as output
			// copy the scores and corresponding labels to the dataset-wide storage
			for (std::size_t j=0; j<cur_vsize; j++) {
				// copy label and prediction score
				tmp_helper_labels[next_label] = cur_vlabels.element(j);
				tmp_helper_preds[next_label] = cur_vscores.element(j);
				// get and store the derivative of the score w.r.t. the hyperparameters
				svm_deriv.modelCSvmParameterDerivative(cur_vinputs.element(j), der);
				noalias(row(all_validation_predict_derivs, next_label)) = der;   //fast assignment of the derivative to the correct matrix row
				++next_label;
			}
		}
		Data< unsigned int > all_validation_labels = createDataFromRange(tmp_helper_labels);
		Data< RealVector > all_validation_predictions = createDataFromRange(tmp_helper_preds);

		// now we got it all: the predictions across the validation folds, plus the correct corresponding
		// labels. so we go ahead and fit a sigmoid to be as good as possible a model between the two:
		SigmoidModel sigmoid_model(m_sigmoidSlopeIsUnconstrained);   //use the unconstrained variant?
		SigmoidFitRpropNLL sigmoid_trainer(100);   //number of rprop iterations
		ClassificationDataset validation_dataset(all_validation_predictions, all_validation_labels);
		sigmoid_trainer.train(sigmoid_model, validation_dataset);
		// we're basically done. now only get the final cost value of the best fit, and return it:
		Data< RealVector > sigmoid_predictions = sigmoid_model(all_validation_predictions);

		// finally compute the derivative of the sigmoid model predictions:
		// (we're here a bit un-shark-ish in that we do some of the derivative calculations by hand where they
		//  would also and more consistently be offered by their respective classes. one reason we're doing it
		//  like this might be the missing batch processing for the evalDerivatives)
		derivative.resize(m_nhp);
		derivative.clear();

		double ss = (m_sigmoidSlopeIsUnconstrained ? std::exp(sigmoid_model.parameterVector()(0)) : sigmoid_model.parameterVector()(0));
		double error = 0;
		for (std::size_t i=0; i<m_numSamples; i++) {
			double p = sigmoid_predictions.element(i)(0);
			// compute derivative of the negative log likelihood
			double dL_dsp; //derivative of likelihood wrt sigmoid predictions
			if (all_validation_labels.element(i) == 1){   //positive class
				error -= std::log(p);
				dL_dsp = -1.0/p;
			}
			else{ //negative class
				error -= boost::math::log1p(-p);
				dL_dsp = 1.0/(1.0-p);
			}
			// compute derivative of the sigmoid
			// derivative of sigmoid predictions wrt svm predictions
			double dsp_dsvmp = ss * p * (1.0-p); //severe sign confusion potential: p(1-p) is deriv. w.r.t. t in 1/(1+e**(-t))!
			for (std::size_t j=0; j<m_nhp; j++) {
				derivative(j) += dL_dsp * dsp_dsvmp * all_validation_predict_derivs(i,j);
			}
		}
		derivative /= m_numSamples;
		return error / m_numSamples;
	}
};


}
#endif