/usr/include/simbody/simmath/Optimizer.h is in libsimbody-dev 3.5.4+dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 | #ifndef SimTK_SIMMATH_OPTIMIZER_H_
#define SimTK_SIMMATH_OPTIMIZER_H_
/* -------------------------------------------------------------------------- *
* Simbody(tm): SimTKmath *
* -------------------------------------------------------------------------- *
* This is part of the SimTK biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org/home/simbody. *
* *
* Portions copyright (c) 2006-13 Stanford University and the Authors. *
* Authors: Jack Middleton *
* Contributors: Michael Sherman *
* *
* Licensed under the Apache License, Version 2.0 (the "License"); you may *
* not use this file except in compliance with the License. You may obtain a *
* copy of the License at http://www.apache.org/licenses/LICENSE-2.0. *
* *
* Unless required by applicable law or agreed to in writing, software *
* distributed under the License is distributed on an "AS IS" BASIS, *
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *
* See the License for the specific language governing permissions and *
* limitations under the License. *
* -------------------------------------------------------------------------- */
#include "SimTKcommon.h"
#include "simmath/internal/common.h"
#include "simmath/Differentiator.h"
namespace SimTK {
/**
* The available Optimizer algorithms.
* Gradient descent algorithms seek to find a local minimum, and are not
* guaranteed to find the global minimum. See the description of Optimizer for
* specific information about how to use the algorithms.
*/
enum OptimizerAlgorithm {
/// Simmath will select best Optimizer based on problem type.
BestAvailable = 0,
/// IpOpt algorithm (https://projects.coin-or.org/ipopt);
/// gradient descent.
InteriorPoint = 1,
/// Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm;
/// gradient descent.
LBFGS = 2,
/// LBFGS with simple bound constraints;
/// gradient descent.
LBFGSB = 3,
/// C implementation of sequential quadratic programming
/// (requires external library:
/// ftp://frcatel.fri.uniza.sk/pub/soft/math/matprog/doc/fsqp.html);
/// gradient descent.
CFSQP = 4,
/// Covariance matrix adaptation, evolution strategy
/// (https://github.com/cma-es/c-cmaes);
/// this is a randomized algorithm that attempts to find a global minimum.
CMAES = 5,
UnknownOptimizerAlgorithm = 6, // the default impl. of getAlgorithm.
/// An algorithm that is implemented outside of Simmath.
UserSuppliedOptimizerAlgorithm = 7
};
/**
* Abstract class which defines an objective/cost function which is optimized by
* and Optimizer object. The OptimizerSystem also defines any constraints which
* must be satisfied.
*/
class SimTK_SIMMATH_EXPORT OptimizerSystem {
public:
OptimizerSystem() : numParameters(0),
numEqualityConstraints(0),
numInequalityConstraints(0),
numLinearEqualityConstraints(0),
numLinearInequalityConstraints(0),
useLimits( false ),
lowerLimits(0),
upperLimits(0) {
}
explicit OptimizerSystem(int nParameters ) {
new (this) OptimizerSystem(); // call the above constructor
setNumParameters(nParameters);
}
virtual ~OptimizerSystem() {
if( useLimits ) {
delete lowerLimits;
delete upperLimits;
}
}
/// Objective/cost function which is to be optimized; return 0 when successful.
/// The value of f upon entry into the function is undefined.
/// This method must be supplied by concrete class.
virtual int objectiveFunc ( const Vector& parameters,
bool new_parameters, Real& f ) const {
SimTK_THROW2(SimTK::Exception::UnimplementedVirtualMethod , "OptimizerSystem", "objectiveFunc" );
return -1; }
/// Computes the gradient of the objective function; return 0 when successful.
/// This method does not have to be supplied if a numerical gradient is used.
virtual int gradientFunc ( const Vector ¶meters,
bool new_parameters, Vector &gradient ) const {
SimTK_THROW2(SimTK::Exception::UnimplementedVirtualMethod , "OptimizerSystem", "gradientFunc" );
return -1; }
/// Computes the value of the constraints; return 0 when successful.
/// This method must be supplied if the objective function has constraints.
virtual int constraintFunc ( const Vector & parameters,
bool new_parameters, Vector & constraints ) const {
SimTK_THROW2(SimTK::Exception::UnimplementedVirtualMethod , "OptimizerSystem", "constraintFunc" );
return -1; }
/// Computes Jacobian of the constraints; return 0 when successful.
/// This method does not have to be supplied if a numerical jacobian is used.
virtual int constraintJacobian ( const Vector& parameters,
bool new_parameters, Matrix& jac ) const {
SimTK_THROW2(SimTK::Exception::UnimplementedVirtualMethod , "OptimizerSystem", "constraintJacobian" );
return -1; }
/// Computes Hessian of the objective function; return 0 when successful.
/// This method does not have to be supplied if limited memory is used.
virtual int hessian ( const Vector ¶meters,
bool new_parameters, Vector &gradient) const {
SimTK_THROW2(SimTK::Exception::UnimplementedVirtualMethod , "OptimizerSystem", "hessian" );
return -1; }
/// Sets the number of parameters in the objective function.
void setNumParameters( const int nParameters ) {
if( nParameters < 1 ) {
const char* where = " OptimizerSystem Constructor";
const char* szName = "number of parameters";
SimTK_THROW5(SimTK::Exception::ValueOutOfRange, szName, 1, nParameters, INT_MAX, where);
} else {
numParameters = nParameters;
}
}
/// Sets the number of equality constraints.
void setNumEqualityConstraints( const int n ) {
if( n < 0 ) {
const char* where = " OptimizerSystem setNumEqualityConstraints";
const char* szName = "number of equality constraints";
SimTK_THROW3(SimTK::Exception::SizeWasNegative, szName, n, where);
} else {
numEqualityConstraints = n;
}
}
/// Sets the number of inequality constraints.
void setNumInequalityConstraints( const int n ) {
if( n < 0 ) {
const char* where = " OptimizerSystem setNumInequalityConstraints";
const char* szName = "number of inequality constraints";
SimTK_THROW3(SimTK::Exception::SizeWasNegative, szName, n, where);
} else {
numInequalityConstraints = n;
}
}
/// Sets the number of lineaer equality constraints.
void setNumLinearEqualityConstraints( const int n ) {
if( n < 0 || n > numEqualityConstraints ) {
const char* where = " OptimizerSystem setNumLinearEqualityConstraints";
const char* szName = "number of linear equality constraints";
SimTK_THROW4(SimTK::Exception::SizeOutOfRange, szName, n, numEqualityConstraints, where);
} else {
numLinearEqualityConstraints = n;
}
}
/// Sets the number of lineaer inequality constraints.
void setNumLinearInequalityConstraints( const int n ) {
if( n < 0 || n > numInequalityConstraints ) {
const char* where = " OptimizerSystem setNumLinearInequalityConstraints";
const char* szName = "number of linear inequality constraints";
SimTK_THROW4(SimTK::Exception::SizeOutOfRange, szName, n, numInequalityConstraints, where);
} else {
numLinearInequalityConstraints = n;
}
}
/// Set the upper and lower bounds on the paramters.
void setParameterLimits( const Vector& lower, const Vector& upper ) {
if( upper.size() != numParameters && upper.size() != 0) {
const char* where = " OptimizerSystem setParamtersLimits";
const char* szName = "upper limits length";
SimTK_THROW5(Exception::IncorrectArrayLength, szName, upper.size(), "numParameters", numParameters, where);
}
if( lower.size() != numParameters && lower.size() != 0 ) {
const char* where = " OptimizerSystem setParamtersLimits";
const char* szName = "lower limits length";
SimTK_THROW5(Exception::IncorrectArrayLength, szName, lower.size(), "numParameters", numParameters, where);
}
// set the upper and lower limits
if( useLimits ) {
delete lowerLimits;
delete upperLimits;
}
if( upper.size() == 0 ) {
useLimits = false;
} else {
lowerLimits = new Vector( lower );
upperLimits = new Vector( upper );
useLimits = true;
}
}
/// Returns the number of parameters, that is, the number of variables that
/// the Optimizer may adjust while searching for a solution.
int getNumParameters() const {return numParameters;}
/// Returns the total number of constraints.
int getNumConstraints() const {return numEqualityConstraints+numInequalityConstraints;}
/// Returns the number of equality constraints.
int getNumEqualityConstraints() const {return numEqualityConstraints;}
/// Returns the number of inequality constraints.
int getNumInequalityConstraints() const {return numInequalityConstraints;}
/// Returns the number of linear equality constraints.
int getNumLinearEqualityConstraints() const {return numLinearEqualityConstraints;}
/// Returns the number of nonlinear equality constraints.
int getNumNonlinearEqualityConstraints() const {return numEqualityConstraints-numLinearEqualityConstraints;}
/// Returns the number of linear inequality constraints.
int getNumLinearInequalityConstraints() const {return numLinearInequalityConstraints;}
/// Returns the number of linear inequality constraints.
int getNumNonlinearInequalityConstraints() const {return numInequalityConstraints-numLinearInequalityConstraints;}
/// Returns true if there are limits on the parameters.
bool getHasLimits() const { return useLimits; }
/// Returns the limits on the allowed values of each parameter, as
/// an array of lower bounds and an array of upper bounds, with
/// assumed lengths matching the number of parameters.
void getParameterLimits( Real **lower, Real **upper ) const {
*lower = &(*lowerLimits)[0];
*upper = &(*upperLimits)[0];
}
private:
int numParameters;
int numEqualityConstraints;
int numInequalityConstraints;
int numLinearEqualityConstraints;
int numLinearInequalityConstraints;
bool useLimits;
Vector* lowerLimits;
Vector* upperLimits;
}; // class OptimizerSystem
/**
* API for SimTK Simmath's optimizers.
* An optimizer finds a minimum to an objective function. Usually, this minimum
* is a local minimum. Some algorithms, like CMAES, are designed to find the
* global minumum. The optimizer can be constrained to search for a minimum
* within a feasible region. The feasible region is defined in two ways: via
* limits on the parameters of the objective function; and, for algorithms
* other than CMAES, by supplying constraint functions that must be satisfied.
* The optimizer starts searching for a minimum beginning at a user supplied
* initial value for the set of parameters.
*
* The objective function and constraints are specified by supplying the
* Optimizer with a concrete implemenation of an OptimizerSystem class.
* The OptimizerSystem can be passed to the Optimizer either through the
* Optimizer constructor or by calling the Optimizer::setOptimizerSystem
* method. The Optimizer class will select the best optimization algorithm to
* solve the problem based on the constraints supplied by the OptimizerSystem.
* A user can also override the optimization algorithm selected by the
* Optimizer by specifying the optimization algorithm.
*
* <h3> Optimization algorithms and advanced options </h3>
*
* See OptimizerAlgorithm for a brief description of the available algorithms.
* Most of these algorithms have options that are specific to the algorithm.
* These options are set via methods like Optimizer::setAdvancedStrOption. If
* you want to get going quickly, you can just use the default values of these
* options and ignore this section. As an example, an int option
* <b>popsize</b> would be set via:
*
* @code
* opt.setAdvancedIntOption("popsize", 5);
* @endcode
*
* For now, we only have detailed documentation for the CMAES algorithm.
*
* <h4> CMAES </h4>
*
* This is the c-cmaes algorithm written by Niko Hansen
* (https://github.com/cma-es/c-cmaes).
*
* Some notes:
* - This algorithm obeys parameter limits.
* - This is a derivative-free optimization algorithm, so methods like the
* following have no effect:
* - Optimizer::useNumericalGradient
* - Optimizer::setDifferentiatorMethod
* - Optimizer::setLimitedMemoryHistory
* - OptimizerSystem::gradientFunc
* - OptimizerSystem::hessian
* - This algorithm does not obey constraint functions, so methods like the
* following have no effect:
* - Optimizer::setConstraintTolerance
* - Optimizer::useNumericalJacobian
* - OptimizerSystem::constraintFunc
* - OptimizerSystem::constraintJacobian
* - OptimizerSystem::setNumEqualityConstraints
* - OptimizerSystem::setNumInequalityConstraints
* - OptimizerSystem::setNumLinearEqualityConstraints
* - OptimizerSystem::setNumLinearInequalityConstraints
* - The effect of the diagnostics level is as follows:
* - 0: minimal output to console (warnings, errors), some files are
* written to the current directory (errcmaes.err error log).
* - 1: additional output to console.
* - 2: all files are written to the current directory.
* - 3: output to console, and all files are written to the current
*
* Advanced options:
*
* The default values for options whose name begins with "stop" are specified
* at https://github.com/CMA-ES/c-cmaes/blob/master/cmaes_initials.par
*
* - <b>popsize</b> (int; default: depends on number of parameters) The
* population size (also known as lambda).
* - <b>init_stepsize</b> (real; default: 0.3) Initial step size; same for all
* parameters (also known as sigma). A warning is emitted if this is not set.
* - <b>seed</b> (int; default: 0, which uses clock time) Seed for the random
* number generator that is used to sample the population from a normal
* distribution. See note below.
* - <b>maxTimeFractionForEigendecomposition</b> (real; default: 0.2)
* Controls the amount of time spent generating eigensystem
* decompositions.
* - <b>stopMaxFunEvals</b> (int) Stop optimization after this
* number of evaluations of the objective function.
* - <b>stopFitness</b> (real) Stop if function value is smaller than
* stopFitness.
* - <b>stopTolFunHist</b> (real) Stop if function value differences of best
* values are smaller than stopTolFunHist.
* - <b>stopTolX</b> (real) Stop if step sizes are smaller than stopTolX.
* - <b>stopTolUpXFactor</b> (real) Stop if standard deviation increases
* by more than stopTolUpXFactor.
* - <b>parallel</b> (str) To run the optimization with multiple threads, set
* this to "multithreading". Only use this if your OptimizerSystem is
* threadsafe: you can't reliably modify any mutable variables in your
* OptimizerSystem::objectiveFun().
* - <b>nthreads</b> (int) If the <b>parallel</b> option is set to
* "multithreading", this is the number of threads to use (by default, this
* is the number of processors/threads on the machine).
*
* If you want to generate identical results with repeated optimizations for,
* you can set the <b>seed</b> option. In addtion, you *must* set the
* <b>maxTimeFractionForEigendecomposition</b> option to be greater or
* equal to 1.0.
*
* @code
* opt.setAdvancedIntOption("seed", 42);
* opt.setAdvancedRealOption("maxTimeFractionForEigendecomposition", 1);
* @endcode
*
*/
class SimTK_SIMMATH_EXPORT Optimizer {
public:
Optimizer();
Optimizer( const OptimizerSystem& sys);
Optimizer( const OptimizerSystem& sys, OptimizerAlgorithm algorithm);
~Optimizer();
/// BestAvailable, UnknownAlgorithm, and UserSuppliedAlgorithm
/// are treated as never available.
static bool isAlgorithmAvailable(OptimizerAlgorithm algorithm);
/// Sets the relative accuracy used determine if the problem has converged.
void setConvergenceTolerance(Real accuracy );
/// Sets the absolute tolerance used to determine whether constraint
/// violation is acceptable.
void setConstraintTolerance(Real tolerance);
/// Set the maximum number of iterations allowed of the optimization
/// method's outer stepping loop. Most optimizers also have an inner loop
/// ("line search") which is also iterative but is not affected by this
/// setting. Inner loop convergence is typically prescribed by theory, and
/// failure there is often an indication of an ill-formed problem.
void setMaxIterations( int iter );
/// Set the maximum number of previous hessians used in a limited memory
/// hessian approximation.
void setLimitedMemoryHistory( int history );
/// Set the level of debugging info displayed.
void setDiagnosticsLevel( int level );
void setOptimizerSystem( const OptimizerSystem& sys );
void setOptimizerSystem( const OptimizerSystem& sys, OptimizerAlgorithm algorithm );
/// Set the value of an advanced option specified by a string.
bool setAdvancedStrOption( const char *option, const char *value );
/// Set the value of an advanced option specified by a real value.
bool setAdvancedRealOption( const char *option, const Real value );
/// Set the value of an advanced option specified by an integer value.
bool setAdvancedIntOption( const char *option, const int value );
/// Set the value of an advanced option specified by an boolean value.
bool setAdvancedBoolOption( const char *option, const bool value );
/// Set which numerical differentiation algorithm is to be used for the next
/// useNumericalGradient() or useNumericalJacobian() call. Choices are
/// Differentiator::ForwardDifference (first order) or
/// Differentiator::CentralDifference (second order) with central the
/// default.
/// @warning This has no effect if you have already called
/// useNumericalGradient() or useNumericalJacobian(). Those must be called
/// \e after setDifferentiatorMethod().
/// @see SimTK::Differentiator
void setDifferentiatorMethod(Differentiator::Method method);
/// Return the differentiation method last supplied in a call to
/// setDifferentiatorMethod(), \e not necessarily the method currently
/// in use. See setDifferentiatorMethod() for more information.
/// @see SimTK::Differentiator
Differentiator::Method getDifferentiatorMethod() const;
/// Return the algorithm used for the optimization. You may be interested
/// in this value if you didn't specify an algorithm, or specified for
/// Simbody to choose the BestAvailable algorithm. This method won't return
/// BestAvailable, even if it's the 'algorithm' that you chose.
OptimizerAlgorithm getAlgorithm() const;
/// Enable numerical calculation of gradient, with optional estimation of
/// the accuracy to which the objective function is calculated. For example,
/// if you are calculate about 6 significant digits, supply the estimated
/// accuracy as 1e-6. Providing the estimated accuracy improves the quality
/// of the calculated derivative. If no accuracy is provided we'll assume
/// the objective is calculated to near machine precision. The method used
/// for calculating the derivative will be whatever was \e previously
/// supplied in a call to setDifferentiatorMethod(), or the default which
/// is to use central differencing (two function evaluations per
/// gradient entry). See SimTK::Differentiator for more information.
/// @see setDifferentiatorMethod(), SimTK::Differentiator
void useNumericalGradient(bool flag,
Real estimatedAccuracyOfObjective = SignificantReal);
/// Enable numerical calculation of the constraint Jacobian, with optional
/// estimation of the accuracy to which the constraint functions are
/// calculated. For example, if you are calculating about 6 significant
/// digits, supply the estimated accuracy as 1e-6. Providing the estimated
/// accuracy improves the quality of the calculated derivative. If no
/// accuracy is provided we'll assume the constraints are calculated to near
/// machine precision. The method used for calculating the derivative will
/// be whatever was \e previously supplied in a call to
/// setDifferentiatorMethod(), or the default which is to use central
/// differencing (two function evaluations per Jacobian column. See
/// SimTK::Differentiator for more information.
/// @see setDifferentiatorMethod(), SimTK::Differentiator
void useNumericalJacobian(bool flag,
Real estimatedAccuracyOfConstraints = SignificantReal);
/// Compute optimization.
Real optimize(Vector&);
/// Return a reference to the OptimizerSystem currently associated with this Optimizer.
const OptimizerSystem& getOptimizerSystem() const;
/// Indicate whether the Optimizer is currently set to use a numerical gradient.
bool isUsingNumericalGradient() const;
/// Indicate whether the Optimizer is currently set to use a numerical Jacobian.
bool isUsingNumericalJacobian() const;
/// Return the estimated accuracy last specified in useNumericalGradient().
Real getEstimatedAccuracyOfObjective() const;
/// Return the estimated accuracy last specified in useNumericalJacobian().
Real getEstimatedAccuracyOfConstraints() const;
// This is a local class.
class OptimizerRep;
private:
Optimizer( const Optimizer& c );
Optimizer& operator=(const Optimizer& rhs);
OptimizerRep* constructOptimizerRep(const OptimizerSystem&, OptimizerAlgorithm);
const OptimizerRep& getRep() const {assert(rep); return *rep;}
OptimizerRep& updRep() {assert(rep); return *rep;}
// Hidden implementation to preserve binary compatibility.
OptimizerRep* rep;
friend class OptimizerRep;
}; // class Optimizer
} // namespace SimTK
#endif //SimTK_SIMMATH_OPTIMIZER_H_
|