/usr/include/slvs.h is in libslvs1-dev 2.3+repack1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 | /*-----------------------------------------------------------------------------
* Data structures and prototypes for slvs.lib, a geometric constraint solver.
*
* See the comments in this file, the accompanying sample code that uses
* this library, and the accompanying documentation (DOC.txt).
*
* Copyright 2009-2013 Jonathan Westhues.
*---------------------------------------------------------------------------*/
#ifndef __SLVS_H
#define __SLVS_H
#ifdef WIN32
# ifdef EXPORT_DLL
# define DLL __declspec( dllexport )
# else
# define DLL __declspec( dllimport )
# endif
#else
# define DLL
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifdef _MSC_VER
typedef unsigned __int32 uint32_t;
#else
#include <stdint.h>
#endif
typedef uint32_t Slvs_hParam;
typedef uint32_t Slvs_hEntity;
typedef uint32_t Slvs_hConstraint;
typedef uint32_t Slvs_hGroup;
/* To obtain the 3d (not projected into a workplane) of a constraint or
* an entity, specify this instead of the workplane. */
#define SLVS_FREE_IN_3D 0
typedef struct {
Slvs_hParam h;
Slvs_hGroup group;
double val;
} Slvs_Param;
#define SLVS_E_POINT_IN_3D 50000
#define SLVS_E_POINT_IN_2D 50001
#define SLVS_E_NORMAL_IN_3D 60000
#define SLVS_E_NORMAL_IN_2D 60001
#define SLVS_E_DISTANCE 70000
/* The special point, normal, and distance types used for parametric step
* and repeat, extrude, and assembly are currently not exposed. Please
* contact us if you are interested in using these. */
#define SLVS_E_WORKPLANE 80000
#define SLVS_E_LINE_SEGMENT 80001
#define SLVS_E_CUBIC 80002
#define SLVS_E_CIRCLE 80003
#define SLVS_E_ARC_OF_CIRCLE 80004
typedef struct {
Slvs_hEntity h;
Slvs_hGroup group;
int type;
Slvs_hEntity wrkpl;
Slvs_hEntity point[4];
Slvs_hEntity normal;
Slvs_hEntity distance;
Slvs_hParam param[4];
} Slvs_Entity;
#define SLVS_C_POINTS_COINCIDENT 100000
#define SLVS_C_PT_PT_DISTANCE 100001
#define SLVS_C_PT_PLANE_DISTANCE 100002
#define SLVS_C_PT_LINE_DISTANCE 100003
#define SLVS_C_PT_FACE_DISTANCE 100004
#define SLVS_C_PT_IN_PLANE 100005
#define SLVS_C_PT_ON_LINE 100006
#define SLVS_C_PT_ON_FACE 100007
#define SLVS_C_EQUAL_LENGTH_LINES 100008
#define SLVS_C_LENGTH_RATIO 100009
#define SLVS_C_EQ_LEN_PT_LINE_D 100010
#define SLVS_C_EQ_PT_LN_DISTANCES 100011
#define SLVS_C_EQUAL_ANGLE 100012
#define SLVS_C_EQUAL_LINE_ARC_LEN 100013
#define SLVS_C_SYMMETRIC 100014
#define SLVS_C_SYMMETRIC_HORIZ 100015
#define SLVS_C_SYMMETRIC_VERT 100016
#define SLVS_C_SYMMETRIC_LINE 100017
#define SLVS_C_AT_MIDPOINT 100018
#define SLVS_C_HORIZONTAL 100019
#define SLVS_C_VERTICAL 100020
#define SLVS_C_DIAMETER 100021
#define SLVS_C_PT_ON_CIRCLE 100022
#define SLVS_C_SAME_ORIENTATION 100023
#define SLVS_C_ANGLE 100024
#define SLVS_C_PARALLEL 100025
#define SLVS_C_PERPENDICULAR 100026
#define SLVS_C_ARC_LINE_TANGENT 100027
#define SLVS_C_CUBIC_LINE_TANGENT 100028
#define SLVS_C_EQUAL_RADIUS 100029
#define SLVS_C_PROJ_PT_DISTANCE 100030
#define SLVS_C_WHERE_DRAGGED 100031
#define SLVS_C_CURVE_CURVE_TANGENT 100032
#define SLVS_C_LENGTH_DIFFERENCE 100033
typedef struct {
Slvs_hConstraint h;
Slvs_hGroup group;
int type;
Slvs_hEntity wrkpl;
double valA;
Slvs_hEntity ptA;
Slvs_hEntity ptB;
Slvs_hEntity entityA;
Slvs_hEntity entityB;
Slvs_hEntity entityC;
Slvs_hEntity entityD;
int other;
int other2;
} Slvs_Constraint;
typedef struct {
/*** INPUT VARIABLES
*
* Here, we specify the parameters and their initial values, the entities,
* and the constraints. For example, param[] points to the array of
* parameters, which has length params, so that the last valid element
* is param[params-1].
*
* param[] is actually an in/out variable; if the solver is successful,
* then the new values (that satisfy the constraints) are written to it. */
Slvs_Param *param;
int params;
Slvs_Entity *entity;
int entities;
Slvs_Constraint *constraint;
int constraints;
/* If a parameter corresponds to a point (distance, normal, etc.) being
* dragged, then specify it here. This will cause the solver to favor
* that parameter, and attempt to change it as little as possible even
* if that requires it to change other parameters more.
*
* Unused members of this array should be set to zero. */
Slvs_hParam dragged[4];
/* If the solver fails, then it can determine which constraints are
* causing the problem. But this is a relatively slow process (for
* a system with n constraints, about n times as long as just solving).
* If calculateFaileds is true, then the solver will do so, otherwise
* not. */
int calculateFaileds;
/*** OUTPUT VARIABLES
*
* If the solver fails, then it can report which constraints are causing
* the problem. The caller should allocate the array failed[], and pass
* its size in faileds.
*
* The solver will set faileds equal to the number of problematic
* constraints, and write their Slvs_hConstraints into failed[]. To
* ensure that there is sufficient space for any possible set of
* failing constraints, faileds should be greater than or equal to
* constraints. */
Slvs_hConstraint *failed;
int faileds;
/* The solver indicates the number of unconstrained degrees of freedom. */
int dof;
/* The solver indicates whether the solution succeeded. */
#define SLVS_RESULT_OKAY 0
#define SLVS_RESULT_INCONSISTENT 1
#define SLVS_RESULT_DIDNT_CONVERGE 2
#define SLVS_RESULT_TOO_MANY_UNKNOWNS 3
int result;
} Slvs_System;
DLL void Slvs_Solve(Slvs_System *sys, Slvs_hGroup hg);
/* Our base coordinate system has basis vectors
* (1, 0, 0) (0, 1, 0) (0, 0, 1)
* A unit quaternion defines a rotation to a new coordinate system with
* basis vectors
* U V N
* which these functions compute from the quaternion. */
DLL void Slvs_QuaternionU(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
DLL void Slvs_QuaternionV(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
DLL void Slvs_QuaternionN(double qw, double qx, double qy, double qz,
double *x, double *y, double *z);
/* Similarly, compute a unit quaternion in terms of two basis vectors. */
DLL void Slvs_MakeQuaternion(double ux, double uy, double uz,
double vx, double vy, double vz,
double *qw, double *qx, double *qy, double *qz);
/*-------------------------------------
* These are just convenience functions, to save you the trouble of filling
* out the structures by hand. The code is included in the header file to
* let the compiler inline them if possible. */
static inline Slvs_Param Slvs_MakeParam(Slvs_hParam h, Slvs_hGroup group, double val)
{
Slvs_Param r;
r.h = h;
r.group = group;
r.val = val;
return r;
}
static inline Slvs_Entity Slvs_MakePoint2d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hParam u, Slvs_hParam v)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_POINT_IN_2D;
r.wrkpl = wrkpl;
r.param[0] = u;
r.param[1] = v;
return r;
}
static inline Slvs_Entity Slvs_MakePoint3d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hParam x, Slvs_hParam y, Slvs_hParam z)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_POINT_IN_3D;
r.wrkpl = SLVS_FREE_IN_3D;
r.param[0] = x;
r.param[1] = y;
r.param[2] = z;
return r;
}
static inline Slvs_Entity Slvs_MakeNormal3d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hParam qw, Slvs_hParam qx,
Slvs_hParam qy, Slvs_hParam qz)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_NORMAL_IN_3D;
r.wrkpl = SLVS_FREE_IN_3D;
r.param[0] = qw;
r.param[1] = qx;
r.param[2] = qy;
r.param[3] = qz;
return r;
}
static inline Slvs_Entity Slvs_MakeNormal2d(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_NORMAL_IN_2D;
r.wrkpl = wrkpl;
return r;
}
static inline Slvs_Entity Slvs_MakeDistance(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl, Slvs_hParam d)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_DISTANCE;
r.wrkpl = wrkpl;
r.param[0] = d;
return r;
}
static inline Slvs_Entity Slvs_MakeLineSegment(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity ptA, Slvs_hEntity ptB)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_LINE_SEGMENT;
r.wrkpl = wrkpl;
r.point[0] = ptA;
r.point[1] = ptB;
return r;
}
static inline Slvs_Entity Slvs_MakeCubic(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity pt0, Slvs_hEntity pt1,
Slvs_hEntity pt2, Slvs_hEntity pt3)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_CUBIC;
r.wrkpl = wrkpl;
r.point[0] = pt0;
r.point[1] = pt1;
r.point[2] = pt2;
r.point[3] = pt3;
return r;
}
static inline Slvs_Entity Slvs_MakeArcOfCircle(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity normal,
Slvs_hEntity center,
Slvs_hEntity start, Slvs_hEntity end)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_ARC_OF_CIRCLE;
r.wrkpl = wrkpl;
r.normal = normal;
r.point[0] = center;
r.point[1] = start;
r.point[2] = end;
return r;
}
static inline Slvs_Entity Slvs_MakeCircle(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity wrkpl,
Slvs_hEntity center,
Slvs_hEntity normal, Slvs_hEntity radius)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_CIRCLE;
r.wrkpl = wrkpl;
r.point[0] = center;
r.normal = normal;
r.distance = radius;
return r;
}
static inline Slvs_Entity Slvs_MakeWorkplane(Slvs_hEntity h, Slvs_hGroup group,
Slvs_hEntity origin, Slvs_hEntity normal)
{
Slvs_Entity r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = SLVS_E_WORKPLANE;
r.wrkpl = SLVS_FREE_IN_3D;
r.point[0] = origin;
r.normal = normal;
return r;
}
static inline Slvs_Constraint Slvs_MakeConstraint(Slvs_hConstraint h,
Slvs_hGroup group,
int type,
Slvs_hEntity wrkpl,
double valA,
Slvs_hEntity ptA,
Slvs_hEntity ptB,
Slvs_hEntity entityA,
Slvs_hEntity entityB)
{
Slvs_Constraint r;
memset(&r, 0, sizeof(r));
r.h = h;
r.group = group;
r.type = type;
r.wrkpl = wrkpl;
r.valA = valA;
r.ptA = ptA;
r.ptB = ptB;
r.entityA = entityA;
r.entityB = entityB;
return r;
}
#ifdef __cplusplus
}
#endif
#endif
|