/usr/include/idas/idas.h is in libsundials-serial-dev 2.5.0-3+b3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 | /*
* -----------------------------------------------------------------
* $Revision: 1.26 $
* $Date: 2010/12/01 22:15:15 $
* -----------------------------------------------------------------
* Programmer(s): Radu Serban @ LLNL
* -----------------------------------------------------------------
* Copyright (c) 2002, The Regents of the University of California
* Produced at the Lawrence Livermore National Laboratory
* All rights reserved
* For details, see the LICENSE file
* -----------------------------------------------------------------
* This is the header (include) file for the main IDAS solver.
* -----------------------------------------------------------------
*
* IDAS is used to solve numerically the initial value problem
* for the differential algebraic equation (DAE) system
* F(t,y,y') = 0,
* given initial conditions
* y(t0) = y0, y'(t0) = yp0.
* Here y and F are vectors of length N.
*
* Additionally, IDAS can perform forward or adjoint sensitivity
* analysis.
* -----------------------------------------------------------------
*/
#ifndef _IDAS_H
#define _IDAS_H
#ifdef __cplusplus /* wrapper to enable C++ usage */
extern "C" {
#endif
#include <stdio.h>
#include <sundials/sundials_nvector.h>
/* * =================================================================
* I D A S C O N S T A N T S
* =================================================================
*/
/*
* ----------------------------------------------------------------
* Inputs to:
* IDAInit, IDAReInit,
* IDASensInit, IDASensReInit,
* IDAQuadInit, IDAQuadReInit,
* IDAQuadSensInit, IDAQuadSensReInit,
* IDACalcIC, IDASolve,
* IDAAdjInit
* ----------------------------------------------------------------
*/
/* itask */
#define IDA_NORMAL 1
#define IDA_ONE_STEP 2
/* icopt */
#define IDA_YA_YDP_INIT 1
#define IDA_Y_INIT 2
/* ism */
#define IDA_SIMULTANEOUS 1
#define IDA_STAGGERED 2
/* DQtype */
#define IDA_CENTERED 1
#define IDA_FORWARD 2
/* interp */
#define IDA_HERMITE 1
#define IDA_POLYNOMIAL 2
/*
* ===============================================================
* IDAS RETURN VALUES
* ===============================================================
*/
#define IDA_SUCCESS 0
#define IDA_TSTOP_RETURN 1
#define IDA_ROOT_RETURN 2
#define IDA_WARNING 99
#define IDA_TOO_MUCH_WORK -1
#define IDA_TOO_MUCH_ACC -2
#define IDA_ERR_FAIL -3
#define IDA_CONV_FAIL -4
#define IDA_LINIT_FAIL -5
#define IDA_LSETUP_FAIL -6
#define IDA_LSOLVE_FAIL -7
#define IDA_RES_FAIL -8
#define IDA_REP_RES_ERR -9
#define IDA_RTFUNC_FAIL -10
#define IDA_CONSTR_FAIL -11
#define IDA_FIRST_RES_FAIL -12
#define IDA_LINESEARCH_FAIL -13
#define IDA_NO_RECOVERY -14
#define IDA_MEM_NULL -20
#define IDA_MEM_FAIL -21
#define IDA_ILL_INPUT -22
#define IDA_NO_MALLOC -23
#define IDA_BAD_EWT -24
#define IDA_BAD_K -25
#define IDA_BAD_T -26
#define IDA_BAD_DKY -27
#define IDA_NO_QUAD -30
#define IDA_QRHS_FAIL -31
#define IDA_FIRST_QRHS_ERR -32
#define IDA_REP_QRHS_ERR -33
#define IDA_NO_SENS -40
#define IDA_SRES_FAIL -41
#define IDA_REP_SRES_ERR -42
#define IDA_BAD_IS -43
#define IDA_NO_QUADSENS -50
#define IDA_QSRHS_FAIL -51
#define IDA_FIRST_QSRHS_ERR -52
#define IDA_REP_QSRHS_ERR -53
/*
* -----------------------------------------
* IDAA return flags
* -----------------------------------------
*/
#define IDA_NO_ADJ -101
#define IDA_NO_FWD -102
#define IDA_NO_BCK -103
#define IDA_BAD_TB0 -104
#define IDA_REIFWD_FAIL -105
#define IDA_FWD_FAIL -106
#define IDA_GETY_BADT -107
/*
* =================================================================
* F U N C T I O N T Y P E S
* =================================================================
*/
/*
* ----------------------------------------------------------------
* Type : IDAResFn
* ----------------------------------------------------------------
* The F function which defines the DAE system F(t,y,y')=0
* must have type IDAResFn.
* Symbols are as follows:
* t <-> t y <-> yy
* y' <-> yp F <-> rr
* A IDAResFn takes as input the independent variable value t,
* the dependent variable vector yy, and the derivative (with
* respect to t) of the yy vector, yp. It stores the result of
* F(t,y,y') in the vector rr. The yy, yp, and rr arguments are of
* type N_Vector. The user_data parameter is the pointer user_data
* passed by the user to the IDASetUserData routine. This user-supplied
* pointer is passed to the user's res function every time it is called,
* to provide access in res to user data.
*
* A IDAResFn res should return a value of 0 if successful, a positive
* value if a recoverable error occured (e.g. yy has an illegal value),
* or a negative value if a nonrecoverable error occured. In the latter
* case, the program halts. If a recoverable error occured, the integrator
* will attempt to correct and retry.
* ----------------------------------------------------------------
*/
typedef int (*IDAResFn)(realtype tt, N_Vector yy, N_Vector yp,
N_Vector rr, void *user_data);
/*
* -----------------------------------------------------------------
* Type : IDARootFn
* -----------------------------------------------------------------
* A function g, which defines a set of functions g_i(t,y,y') whose
* roots are sought during the integration, must have type IDARootFn.
* The function g takes as input the independent variable value t,
* the dependent variable vector y, and its t-derivative yp (= y').
* It stores the nrtfn values g_i(t,y,y') in the realtype array gout.
* (Allocation of memory for gout is handled within IDA.)
* The user_data parameter is the same as that passed by the user
* to the IDASetUserData routine. This user-supplied pointer is
* passed to the user's g function every time it is called.
*
* An IDARootFn should return 0 if successful or a non-zero value
* if an error occured (in which case the integration will be halted).
* -----------------------------------------------------------------
*/
typedef int (*IDARootFn)(realtype t, N_Vector y, N_Vector yp,
realtype *gout, void *user_data);
/*
* -----------------------------------------------------------------
* Type : IDAEwtFn
* -----------------------------------------------------------------
* A function e, which sets the error weight vector ewt, must have
* type IDAEwtFn.
* The function e takes as input the current dependent variable y.
* It must set the vector of error weights used in the WRMS norm:
*
* ||y||_WRMS = sqrt [ 1/N * sum ( ewt_i * y_i)^2 ]
*
* Typically, the vector ewt has components:
*
* ewt_i = 1 / (reltol * |y_i| + abstol_i)
*
* The user_data parameter is the same as that passed by the user
* to the IDASetUserData routine. This user-supplied pointer is
* passed to the user's e function every time it is called.
* An IDAEwtFn e must return 0 if the error weight vector has been
* successfuly set and a non-zero value otherwise.
* -----------------------------------------------------------------
*/
typedef int (*IDAEwtFn)(N_Vector y, N_Vector ewt, void *user_data);
/*
* -----------------------------------------------------------------
* Type : IDAErrHandlerFn
* -----------------------------------------------------------------
* A function eh, which handles error messages, must have type
* IDAErrHandlerFn.
* The function eh takes as input the error code, the name of the
* module reporting the error, the error message, and a pointer to
* user data, the same as that passed to IDASetUserData.
*
* All error codes are negative, except IDA_WARNING which indicates
* a warning (the solver continues).
*
* An IDAErrHandlerFn has no return value.
* -----------------------------------------------------------------
*/
typedef void (*IDAErrHandlerFn)(int error_code,
const char *module, const char *function,
char *msg, void *user_data);
/*
* -----------------------------------------------------------------
* Type : IDAQuadRhsFn
* -----------------------------------------------------------------
* The rhsQ function which defines the right hand side of the
* quadrature equations yQ' = rhsQ(t,y) must have type IDAQuadRhsFn.
* rhsQ takes as input the value of the independent variable t,
* the vector of states y and y' and must store the result of rhsQ in
* rrQ. (Allocation of memory for rrQ is handled by IDAS).
*
* The user_data parameter is the same as the user_data parameter
* set by the user through the IDASetUserData routine and is
* passed to the rhsQ function every time it is called.
*
* A function of type IDAQuadRhsFn should return 0 if successful,
* a negative value if an unrecoverable error occured, and a positive
* value if a recoverable error (e.g. invalid y values) occured.
* If an unrecoverable occured, the integration is halted.
* If a recoverable error occured, then (in most cases) IDAS will
* try to correct and retry.
* -----------------------------------------------------------------
*/
typedef int (*IDAQuadRhsFn)(realtype tres,
N_Vector yy, N_Vector yp,
N_Vector rrQ,
void *user_data);
/*
* -----------------------------------------------------------------
* Type : IDASensResFn
* -----------------------------------------------------------------
* The resS function which defines the right hand side of the
* sensitivity DAE systems F_y * s + F_y' * s' + F_p = 0
* must have type IDASensResFn.
*
* resS takes as input the number of sensitivities Ns, the
* independent variable value t, the states yy and yp and the
* corresponding value of the residual in resval, and the dependent
* sensitivity vectors yyS and ypS. It stores the residual in
* resvalS. (Memory allocation for resvalS is handled within IDAS)
*
* The user_data parameter is the same as the user_data parameter
* set by the user through the IDASetUserData routine and is
* passed to the resS function every time it is called.
*
* A IDASensResFn should return 0 if successful, a negative value if
* an unrecoverable error occured, and a positive value if a
* recoverable error (e.g. invalid y, yp, yyS or ypS values)
* occured. If an unrecoverable occured, the integration is halted.
* If a recoverable error occured, then (in most cases) IDAS will
* try to correct and retry.
* -----------------------------------------------------------------
*/
typedef int (*IDASensResFn)(int Ns, realtype t,
N_Vector yy, N_Vector yp, N_Vector resval,
N_Vector *yyS, N_Vector *ypS,
N_Vector *resvalS, void *user_data,
N_Vector tmp1, N_Vector tmp2, N_Vector tmp3);
/*
* -----------------------------------------------------------------
* Type : IDAQuadSensRhsFn
* -----------------------------------------------------------------
* The rhsQS function which defines the RHS of the sensitivity DAE
* systems for quadratures must have type IDAQuadSensRhsFn.
*
* rhsQS takes as input the number of sensitivities Ns (the same as
* that passed to IDAQuadSensInit), the independent variable
* value t, the states yy, yp and the dependent sensitivity vectors
* yyS and ypS, as well as the current value of the quadrature RHS
* rrQ. It stores the result of rhsQS in rhsvalQS.
* (Allocation of memory for resvalQS is handled within IDAS)
*
* A IDAQuadSensRhsFn should return 0 if successful, a negative
* value if an unrecoverable error occured, and a positive value
* if a recoverable error (e.g. invalid yy, yp, yyS or ypS values)
* occured. If an unrecoverable occured, the integration is halted.
* If a recoverable error occured, then (in most cases) IDAS
* will try to correct and retry.
* -----------------------------------------------------------------
*/
typedef int (*IDAQuadSensRhsFn)(int Ns, realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector rrQ, N_Vector *rhsvalQS,
void *user_data,
N_Vector yytmp, N_Vector yptmp, N_Vector tmpQS);
/*
* -----------------------------------------------------------------
* Types: IDAResFnB and IDAResFnBS
* -----------------------------------------------------------------
* The resB function which defines the right hand side of the
* DAE systems to be integrated backwards must have type IDAResFnB.
* If the backward problem depends on forward sensitivities, its
* RHS function must have type IDAResFnBS.
* -----------------------------------------------------------------
* Types: IDAQuadRhsFnB and IDAQuadRhsFnBS
* -----------------------------------------------------------------
* The rhsQB function which defines the quadratures to be integrated
* backwards must have type IDAQuadRhsFnB.
* If the backward problem depends on forward sensitivities, its
* quadrature RHS function must have type IDAQuadRhsFnBS.
* -----------------------------------------------------------------
*/
typedef int (*IDAResFnB)(realtype tt,
N_Vector yy, N_Vector yp,
N_Vector yyB, N_Vector ypB,
N_Vector rrB, void *user_dataB);
typedef int (*IDAResFnBS)(realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yyB, N_Vector ypB,
N_Vector rrBS, void *user_dataB);
typedef int (*IDAQuadRhsFnB)(realtype tt,
N_Vector yy, N_Vector yp,
N_Vector yyB, N_Vector ypB,
N_Vector rhsvalBQ, void *user_dataB);
typedef int (*IDAQuadRhsFnBS)(realtype t,
N_Vector yy, N_Vector yp,
N_Vector *yyS, N_Vector *ypS,
N_Vector yyB, N_Vector ypB,
N_Vector rhsvalBQS, void *user_dataB);
/*
* ================================================================
* U S E R - C A L L A B L E R O U T I N E S
* ================================================================
*/
/*
* ----------------------------------------------------------------
* Function : IDACreate
* ----------------------------------------------------------------
* IDACreate creates an internal memory block for a problem to
* be solved by IDA.
*
* If successful, IDACreate returns a pointer to initialized
* problem memory. This pointer should be passed to IDAInit.
* If an initialization error occurs, IDACreate prints an error
* message to standard err and returns NULL.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT void *IDACreate(void);
/*
* ----------------------------------------------------------------
* Integrator optional input specification functions
* ----------------------------------------------------------------
* The following functions can be called to set optional inputs
* to values other than the defaults given below:
*
* |
* Function | Optional input / [ default value ]
* |
* ----------------------------------------------------------------
* |
* IDASetErrHandlerFn | user-provided ErrHandler function.
* | [internal]
* |
* IDASetErrFile | the file pointer for an error file
* | where all IDA warning and error
* | messages will be written if the default
* | internal error handling function is used.
* | This parameter can be stdout (standard
* | output), stderr (standard error), or a
* | file pointer (corresponding to a user
* | error file opened for writing) returned
* | by fopen.
* | If not called, then all messages will
* | be written to the standard error stream.
* | [stderr]
* |
* IDASetUserData | a pointer to user data that will be
* | passed to all user-supplied functions.
* | [NULL]
* |
* IDASetMaxOrd | maximum lmm order to be used by the
* | solver.
* | [5]
* |
* IDASetMaxNumSteps | maximum number of internal steps to be
* | taken by the solver in its attempt to
* | reach tout.
* | [500]
* |
* IDASetInitStep | initial step size.
* | [estimated by IDA]
* |
* IDASetMaxStep | maximum absolute value of step size
* | allowed.
* | [infinity]
* |
* IDASetStopTime | the independent variable value past
* | which the solution is not to proceed.
* | [infinity]
* |
* IDASetNonlinConvCoef | Newton convergence test constant
* | for use during integration.
* | [0.33]
* |
* IDASetMaxErrTestFails| Maximum number of error test failures
* | in attempting one step.
* | [10]
* |
* IDASetMaxNonlinIters | Maximum number of nonlinear solver
* | iterations at one solution.
* | [4]
* |
* IDASetMaxConvFails | Maximum number of allowable conv.
* | failures in attempting one step.
* | [10]
* |
* IDASetSuppressAlg | flag to indicate whether or not to
* | suppress algebraic variables in the
* | local error tests:
* | FALSE = do not suppress;
* | TRUE = do suppress;
* | [FALSE]
* | NOTE: if suppressed algebraic variables
* | is selected, the nvector 'id' must be
* | supplied for identification of those
* | algebraic components (see IDASetId)
* |
* IDASetId | an N_Vector, which states a given
* | element to be either algebraic or
* | differential.
* | A value of 1.0 indicates a differential
* | variable while a 0.0 indicates an
* | algebraic variable. 'id' is required
* | if optional input SUPPRESSALG is set,
* | or if IDACalcIC is to be called with
* | icopt = IDA_YA_YDP_INIT.
* |
* IDASetConstraints | an N_Vector defining inequality
* | constraints for each component of the
* | solution vector y. If a given element
* | of this vector has values +2 or -2,
* | then the corresponding component of y
* | will be constrained to be > 0.0 or
* | <0.0, respectively, while if it is +1
* | or -1, the y component is constrained
* | to be >= 0.0 or <= 0.0, respectively.
* | If a component of constraints is 0.0,
* | then no constraint is imposed on the
* | corresponding component of y.
* | The presence of a non-NULL constraints
* | vector that is not 0.0 (ZERO) in all
* | components will cause constraint
* | checking to be performed.
* |
* -----------------------------------------------------------------
* |
* IDASetRootDirection | Specifies the direction of zero
* | crossings to be monitored
* | [both directions]
* |
* IDASetNoInactiveRootWarn | disable warning about possible
* | g==0 at beginning of integration
* |
* ----------------------------------------------------------------
* Return flag:
* IDA_SUCCESS if successful
* IDA_MEM_NULL if the IDAS memory is NULL
* IDA_ILL_INPUT if an argument has an illegal value
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetErrHandlerFn(void *ida_mem, IDAErrHandlerFn ehfun, void *eh_data);
SUNDIALS_EXPORT int IDASetErrFile(void *ida_mem, FILE *errfp);
SUNDIALS_EXPORT int IDASetUserData(void *ida_mem, void *user_data);
SUNDIALS_EXPORT int IDASetMaxOrd(void *ida_mem, int maxord);
SUNDIALS_EXPORT int IDASetMaxNumSteps(void *ida_mem, long int mxsteps);
SUNDIALS_EXPORT int IDASetInitStep(void *ida_mem, realtype hin);
SUNDIALS_EXPORT int IDASetMaxStep(void *ida_mem, realtype hmax);
SUNDIALS_EXPORT int IDASetStopTime(void *ida_mem, realtype tstop);
SUNDIALS_EXPORT int IDASetNonlinConvCoef(void *ida_mem, realtype epcon);
SUNDIALS_EXPORT int IDASetMaxErrTestFails(void *ida_mem, int maxnef);
SUNDIALS_EXPORT int IDASetMaxNonlinIters(void *ida_mem, int maxcor);
SUNDIALS_EXPORT int IDASetMaxConvFails(void *ida_mem, int maxncf);
SUNDIALS_EXPORT int IDASetSuppressAlg(void *ida_mem, booleantype suppressalg);
SUNDIALS_EXPORT int IDASetId(void *ida_mem, N_Vector id);
SUNDIALS_EXPORT int IDASetConstraints(void *ida_mem, N_Vector constraints);
SUNDIALS_EXPORT int IDASetRootDirection(void *ida_mem, int *rootdir);
SUNDIALS_EXPORT int IDASetNoInactiveRootWarn(void *ida_mem);
/*
* ----------------------------------------------------------------
* Function : IDAInit
* ----------------------------------------------------------------
* IDAInit allocates and initializes memory for a problem to
* to be solved by IDAS.
*
* res is the residual function F in F(t,y,y') = 0.
*
* t0 is the initial value of t, the independent variable.
*
* yy0 is the initial condition vector y(t0).
*
* yp0 is the initial condition vector y'(t0)
*
* IDA_SUCCESS if successful
* IDA_MEM_NULL if the IDAS memory was NULL
* IDA_MEM_FAIL if a memory allocation failed
* IDA_ILL_INPUT f an argument has an illegal value.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAInit(void *ida_mem, IDAResFn res,
realtype t0, N_Vector yy0, N_Vector yp0);
/*
* ----------------------------------------------------------------
* Function : IDAReInit
* ----------------------------------------------------------------
* IDAReInit re-initializes IDAS for the solution of a problem,
* where a prior call to IDAInit has been made.
* IDAReInit performs the same input checking and initializations
* that IDAInit does.
* But it does no memory allocation, assuming that the existing
* internal memory is sufficient for the new problem.
*
* The use of IDAReInit requires that the maximum method order,
* maxord, is no larger for the new problem than for the problem
* specified in the last call to IDAInit. This condition is
* automatically fulfilled if the default value for maxord is
* specified.
*
* Following the call to IDAReInit, a call to the linear solver
* specification routine is necessary if a different linear solver
* is chosen, but may not be otherwise. If the same linear solver
* is chosen, and there are no changes in its input parameters,
* then no call to that routine is needed.
*
* The first argument to IDAReInit is:
*
* ida_mem = pointer to IDA memory returned by IDACreate.
*
* All the remaining arguments to IDAReInit have names and
* meanings identical to those of IDAInit.
*
* The return value of IDAReInit is equal to SUCCESS = 0 if there
* were no errors; otherwise it is a negative int equal to:
* IDA_MEM_NULL indicating ida_mem was NULL, or
* IDA_NO_MALLOC indicating that ida_mem was not allocated.
* IDA_ILL_INPUT indicating an input argument was illegal
* (including an attempt to increase maxord).
* In case of an error return, an error message is also printed.
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAReInit(void *ida_mem,
realtype t0, N_Vector yy0, N_Vector yp0);
/*
* -----------------------------------------------------------------
* Functions : IDASStolerances
* IDASVtolerances
* IDAWFtolerances
* -----------------------------------------------------------------
*
* These functions specify the integration tolerances. One of them
* MUST be called before the first call to IDA.
*
* IDASStolerances specifies scalar relative and absolute tolerances.
* IDASVtolerances specifies scalar relative tolerance and a vector
* absolute tolerance (a potentially different absolute tolerance
* for each vector component).
* IDAWFtolerances specifies a user-provides function (of type IDAEwtFn)
* which will be called to set the error weight vector.
*
* The tolerances reltol and abstol define a vector of error weights,
* ewt, with components
* ewt[i] = 1/(reltol*abs(y[i]) + abstol) (in the SS case), or
* ewt[i] = 1/(reltol*abs(y[i]) + abstol[i]) (in the SV case).
* This vector is used in all error and convergence tests, which
* use a weighted RMS norm on all error-like vectors v:
* WRMSnorm(v) = sqrt( (1/N) sum(i=1..N) (v[i]*ewt[i])^2 ),
* where N is the problem dimension.
*
* The return value of these functions is equal to IDA_SUCCESS = 0 if
* there were no errors; otherwise it is a negative int equal to:
* IDa_MEM_NULL indicating ida_mem was NULL (i.e.,
* IDACreate has not been called).
* IDA_NO_MALLOC indicating that ida_mem has not been
* allocated (i.e., IDAInit has not been
* called).
* IDA_ILL_INPUT indicating an input argument was illegal
* (e.g. a negative tolerance)
* In case of an error return, an error message is also printed.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASStolerances(void *ida_mem, realtype reltol, realtype abstol);
SUNDIALS_EXPORT int IDASVtolerances(void *ida_mem, realtype reltol, N_Vector abstol);
SUNDIALS_EXPORT int IDAWFtolerances(void *ida_mem, IDAEwtFn efun);
/* ----------------------------------------------------------------
* Initial Conditions optional input specification functions
* ----------------------------------------------------------------
* The following functions can be called to set optional inputs
* to control the initial conditions calculations.
*
* |
* Function | Optional input / [ default value ]
* |
* --------------------------------------------------------------
* |
* IDASetNonlinConvCoefIC | positive coeficient in the Newton
* | convergence test. This test uses a
* | weighted RMS norm (with weights
* | defined by the tolerances, as in
* | IDASolve). For new initial value
* | vectors y and y' to be accepted, the
* | norm of J-inverse F(t0,y,y') is
* | required to be less than epiccon,
* | where J is the system Jacobian.
* | [0.01 * 0.33]
* |
* IDASetMaxNumStepsIC | maximum number of values of h allowed
* | when icopt = IDA_YA_YDP_INIT, where
* | h appears in the system Jacobian,
* | J = dF/dy + (1/h)dF/dy'.
* | [5]
* |
* IDASetMaxNumJacsIC | maximum number of values of the
* | approximate Jacobian or preconditioner
* | allowed, when the Newton iterations
* | appear to be slowly converging.
* | [4]
* |
* IDASetMaxNumItersIC | maximum number of Newton iterations
* | allowed in any one attempt to solve
* | the IC problem.
* | [10]
* |
* IDASetLineSearchOffIC | a boolean flag to turn off the
* | linesearch algorithm.
* | [FALSE]
* |
* IDASetStepToleranceIC | positive lower bound on the norm of
* | a Newton step.
* | [(unit roundoff)^(2/3)
*
* ----------------------------------------------------------------
* Return flag:
* IDA_SUCCESS if successful
* IDA_MEM_NULL if the IDAS memory is NULL
* IDA_ILL_INPUT if an argument has an illegal value
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetNonlinConvCoefIC(void *ida_mem, realtype epiccon);
SUNDIALS_EXPORT int IDASetMaxNumStepsIC(void *ida_mem, int maxnh);
SUNDIALS_EXPORT int IDASetMaxNumJacsIC(void *ida_mem, int maxnj);
SUNDIALS_EXPORT int IDASetMaxNumItersIC(void *ida_mem, int maxnit);
SUNDIALS_EXPORT int IDASetLineSearchOffIC(void *ida_mem, booleantype lsoff);
SUNDIALS_EXPORT int IDASetStepToleranceIC(void *ida_mem, realtype steptol);
/*
* -----------------------------------------------------------------
* Function : IDARootInit
* -----------------------------------------------------------------
* IDARootInit initializes a rootfinding problem to be solved
* during the integration of the DAE system. It must be called
* after IDACreate, and before IDASolve. The arguments are:
*
* ida_mem = pointer to IDA memory returned by IDACreate.
*
* nrtfn = number of functions g_i, an int >= 0.
*
* g = name of user-supplied function, of type IDARootFn,
* defining the functions g_i whose roots are sought.
*
* If a new problem is to be solved with a call to IDAReInit,
* where the new problem has no root functions but the prior one
* did, then call IDARootInit with nrtfn = 0.
*
* The return value of IDARootInit is IDA_SUCCESS = 0 if there were
* no errors; otherwise it is a negative int equal to:
* IDA_MEM_NULL indicating ida_mem was NULL, or
* IDA_MEM_FAIL indicating a memory allocation failed.
* (including an attempt to increase maxord).
* IDA_ILL_INPUT indicating nrtfn > 0 but g = NULL.
* In case of an error return, an error message is also printed.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDARootInit(void *ida_mem, int nrtfn, IDARootFn g);
/*
* -----------------------------------------------------------------
* Quadrature optional input specification functions
* -----------------------------------------------------------------
* The following function can be called to set optional inputs
* to values other than the defaults given below:
*
* Function | Optional input / [ default value ]
* --------------------------------------------------------------
* |
* IDASetQuadErrCon | are quadrature variables considered in
* | the error control?
* | If yes, set tolerances for quadrature
* | integration.
* | [errconQ = FALSE]
* |
* -----------------------------------------------------------------
* If successful, the function return IDA_SUCCESS. If an argument
* has an illegal value, they print an error message to the
* file specified by errfp and return one of the error flags
* defined for the IDASet* routines.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetQuadErrCon(void *ida_mem, booleantype errconQ);
/*
* ----------------------------------------------------------------
* Function : IDAQuadInit and IDAQuadReInit
* ----------------------------------------------------------------
* IDAQuadInit allocates and initializes memory related to
* quadrature integration.
*
* IDAQuadReInit re-initializes IDAS's quadrature related
* memory for a problem, assuming it has already been allocated
* in prior calls to IDAInit and IDAQuadInit.
*
* ida_mem is a pointer to IDAS memory returned by IDACreate
*
* rhsQ is the user-provided integrand routine.
*
* yQ0 is a pointer to a vector specification structure
* for N_Vectors containing quadrature variables.
*
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAQuadInit(void *ida_mem, IDAQuadRhsFn rhsQ, N_Vector yQ0);
SUNDIALS_EXPORT int IDAQuadReInit(void *ida_mem, N_Vector yQ0);
/*
* -----------------------------------------------------------------
* Functions : IDAQuadSStolerances
* IDAQuadSVtolerances
* -----------------------------------------------------------------
*
* These functions specify the integration tolerances for quadrature
* variables. One of them MUST be called before the first call to
* IDA IF error control on the quadrature variables is enabled
* (see IDASetQuadErrCon).
*
* IDASStolerances specifies scalar relative and absolute tolerances.
* IDASVtolerances specifies scalar relative tolerance and a vector
* absolute tolerance (a potentially different absolute tolerance
* for each vector component).
*
* Return values:
* IDA_SUCCESS if successful
* IDA_MEM_NULL if the solver memory was NULL
* IDA_NO_QUAD if quadratures were not initialized
* IDA_ILL_INPUT if an input argument was illegal
* (e.g. a negative tolerance)
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAQuadSStolerances(void *ida_mem, realtype reltolQ, realtype abstolQ);
SUNDIALS_EXPORT int IDAQuadSVtolerances(void *ida_mem, realtype reltolQ, N_Vector abstolQ);
/*
* ----------------------------------------------------------------
* Forward sensitivity optional input specification functions
* ----------------------------------------------------------------
* The following functions can be called to set optional inputs
* to other values than the defaults given below:
*
* Function | Optional input / [ default value ]
* |
* --------------------------------------------------------------
* |
* IDASetSensDQMethod | controls the selection of finite
* | difference schemes used in evaluating
* | the sensitivity right hand sides:
* | (centered vs. forward and
* | simultaneous vs. separate)
* | [DQtype=IDA_CENTERED]
* | [DQrhomax=0.0]
* |
* IDASetSensParams | parameter information:
* | p: pointer to problem parameters
* | plist: list of parameters with respect
* | to which sensitivities are to be
* | computed.
* | pbar: order of magnitude info.
* | Typically, if p[plist[i]] is nonzero,
* | pbar[i]=p[plist[i]].
* | [p=NULL]
* | [plist=NULL]
* | [pbar=NULL]
* |
* IDASetSensErrCon | are sensitivity variables considered in
* | the error control?
* | [TRUE]
* |
* IDASetSensMaxNonlinIters | Maximum number of nonlinear solver
* | iterations for sensitivity systems
* | (staggered)
* | [4]
* |
* --------------------------------------------------------------
* If successful, these functions return IDA_SUCCESS. If an argument
* has an illegal value, they return one of the error flags
* defined for the IDASet* routines.
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetSensDQMethod(void *ida_mem, int DQtype, realtype DQrhomax);
SUNDIALS_EXPORT int IDASetSensParams(void *ida_mem, realtype *p, realtype *pbar, int *plist);
SUNDIALS_EXPORT int IDASetSensErrCon(void *ida_mem, booleantype errconS);
SUNDIALS_EXPORT int IDASetSensMaxNonlinIters(void *ida_mem, int maxcorS);
/*
* ----------------------------------------------------------------
* Function : IDASensInit
* ----------------------------------------------------------------
* IDASensInit allocates and initializes memory related to
* sensitivity computations.
*
* ida_mem is a pointer to IDAS memory returned by IDACreate.
*
* Ns is the number of sensitivities to be computed.
*
* ism is the type of corrector used in sensitivity
* analysis. The legal values are: SIMULTANEOUS
* and STAGGERED (see previous description)
*
* yS0 is the array of initial condition vectors for
* sensitivity variables.
*
* ypS0 is the array of initial condition vectors for
* sensitivity derivatives.
*
* If successful, IDASensInit returns SUCCESS. If an
* initialization error occurs, IDASensInit returns one of
* the error flags defined above.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASensInit(void *ida_mem, int Ns, int ism,
IDASensResFn resS,
N_Vector *yS0, N_Vector *ypS0);
/*
* ----------------------------------------------------------------
* Function : IDASensReInit
* ----------------------------------------------------------------
* IDASensReInit re-initializes the IDAS sensitivity related
* memory for a problem, assuming it has already been allocated
* in prior calls to IDAInit and IDASensInit.
*
* All problem specification inputs are checked for errors.
* The number of sensitivities Ns is assumed to be unchanged
* since the previous call to IDASensInit.
* If any error occurs during initialization, it is reported to
* the file whose file pointer is errfp.
*
* IDASensReInit potentially does some minimal memory allocation
* (for the sensitivity absolute tolerance).
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASensReInit(void *ida_mem, int ism, N_Vector *yS0, N_Vector *ypS0);
/*
* -----------------------------------------------------------------
* Function : IDASensToggleOff
* -----------------------------------------------------------------
* IDASensToggleOff deactivates sensitivity calculations.
* It does NOT deallocate sensitivity-related memory so that
* sensitivity computations can be later toggled ON (through
* IDASensReInit).
*
*
* The return value is equal to IDA_SUCCESS = 0 if there were no
* errors or IDA_MEM_NULL if ida_mem was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASensToggleOff(void *ida_mem);
/*
* -----------------------------------------------------------------
* Functions : IDASensSStolerances
* IDASensSVtolerances
* IDASensEEtolerances
* -----------------------------------------------------------------
*
* These functions specify the integration tolerances for sensitivity
* variables. One of them MUST be called before the first call to IDASolve.
*
* IDASensSStolerances specifies scalar relative and absolute tolerances.
* IDASensSVtolerances specifies scalar relative tolerance and a vector
* absolute tolerance for each sensitivity vector (a potentially different
* absolute tolerance for each vector component).
* IDASensEEtolerances specifies that tolerances for sensitivity variables
* should be estimated from those provided for the state variables.
*
* The return value is equal to IDA_SUCCESS = 0 if there were no
* errors; otherwise it is a negative int equal to:
* IDA_MEM_NULL indicating ida_mem was NULL, or
* IDA_NO_SENS indicating there was not a prior call to
* IDASensInit.
* IDA_ILL_INPUT indicating an input argument was illegal
* (e.g. negative tolerances)
* In case of an error return, an error message is also printed.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASensSStolerances(void *ida_mem, realtype reltolS, realtype *abstolS);
SUNDIALS_EXPORT int IDASensSVtolerances(void *ida_mem, realtype reltolS, N_Vector *abstolS);
SUNDIALS_EXPORT int IDASensEEtolerances(void *ida_mem);
/*
* -----------------------------------------------------------------
* Function : IDAQuadSensInit and IDAQuadSensReInit
* -----------------------------------------------------------------
* IDAQuadSensInit allocates and initializes memory related to
* quadrature integration.
*
* IDAQuadSensReInit re-initializes IDAS' sensitivity quadrature
* related memory for a problem, assuming it has already been
* allocated in prior calls to IDAInit and IDAQuadSensInit.
* The number of quadratures Ns is assumed to be unchanged
* since the previous call to IDAQuadInit.
*
* ida_mem is a pointer to IDAS memory returned by IDACreate
*
* resQS is the sensitivity righ-hand side function
* (pass NULL to use the internal DQ approximation)
*
* yQS is an N_Vector with initial values for sensitivities
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAQuadSensInit(void *ida_mem, IDAQuadSensRhsFn resQS, N_Vector *yQS0);
SUNDIALS_EXPORT int IDAQuadSensReInit(void *ida_mem, N_Vector *yQS0);
/*
* -----------------------------------------------------------------
* Functions : IDAQuadSensSStolerances
* IDAQuadSensSVtolerances
* IDAQuadSensEEtolerances
* -----------------------------------------------------------------
*
* These functions specify the integration tolerances for quadrature
* sensitivity variables. One of them MUST be called before the first
* call to IDAS IF these variables are included in the error test.
*
* IDAQuadSensSStolerances specifies scalar relative and absolute tolerances.
* IDAQuadSensSVtolerances specifies scalar relative tolerance and a vector
* absolute tolerance for each quadrature sensitivity vector (a potentially
* different absolute tolerance for each vector component).
* IDAQuadSensEEtolerances specifies that tolerances for sensitivity variables
* should be estimated from those provided for the quadrature variables.
* In this case, tolerances for the quadrature variables must be
* specified through a call to one of IDAQuad**tolerances.
*
* The return value is equal to IDA_SUCCESS = 0 if there were no
* errors; otherwise it is a negative int equal to:
* IDA_MEM_NULL if ida_mem was NULL, or
* IDA_NO_QUADSENS if there was not a prior call to
* IDAQuadSensInit.
* IDA_ILL_INPUT if an input argument was illegal
* (e.g. negative tolerances)
* In case of an error return, an error message is also printed.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAQuadSensSStolerances(void *ida_mem, realtype reltolQS, realtype *abstolQS);
SUNDIALS_EXPORT int IDAQuadSensSVtolerances(void *ida_mem, realtype reltolQS, N_Vector *abstolQS);
SUNDIALS_EXPORT int IDAQuadSensEEtolerances(void *ida_mem);
/*
* -----------------------------------------------------------------
* Function: IDASetQuadSensErrCon
* -----------------------------------------------------------------
* IDASetQuadSensErrCon specifies if quadrature sensitivity variables
* are considered or not in the error control.
*
* If yes, tolerances for quadrature sensitivity variables are
* required. The function is optional, by default IDAS does not
* quadrature sensitivities in error control.
*
* The return value is equal to IDA_SUCCESS = 0 if there were no
* errors or IDA_MEM_NULL if ida_mem was NULL
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetQuadSensErrCon(void *ida_mem, booleantype errconQS);
/*
* ----------------------------------------------------------------
* Function : IDACalcIC
* ----------------------------------------------------------------
* IDACalcIC calculates corrected initial conditions for the DAE
* system for a class of index-one problems of semi-implicit form.
* It uses Newton iteration combined with a Linesearch algorithm.
* Calling IDACalcIC is optional. It is only necessary when the
* initial conditions do not solve the given system. I.e., if
* y0 and yp0 are known to satisfy F(t0, y0, yp0) = 0, then
* a call to IDACalcIC is NOT necessary (for index-one problems).
*
* A call to IDACalcIC must be preceded by a successful call to
* IDAInit or IDAReInit for the given DAE problem, and by a
* successful call to the linear system solver specification
* routine.
*
* The call to IDACalcIC should precede the call(s) to IDASolve
* for the given problem.
*
* The arguments to IDACalcIC are as follows:
*
* ida_mem is the pointer to IDA memory returned by IDACreate.
*
* icopt is the option of IDACalcIC to be used.
* icopt = IDA_YA_YDP_INIT directs IDACalcIC to compute
* the algebraic components of y and differential
* components of y', given the differential
* components of y. This option requires that the
* N_Vector id was set through a call to IDASetId
* specifying the differential and algebraic
* components.
* icopt = IDA_Y_INIT directs IDACalcIC to compute all
* components of y, given y'. id is not required.
*
* tout1 is the first value of t at which a soluton will be
* requested (from IDASolve). (This is needed here to
* determine the direction of integration and rough scale
* in the independent variable t.)
*
*
* IDACalcIC returns an int flag. Its symbolic values and their
* meanings are as follows. (The numerical return values are set
* above in this file.) All unsuccessful returns give a negative
* return value. If IFACalcIC failed, y0 and yp0 contain
* (possibly) altered values, computed during the attempt.
*
* IDA_SUCCESS IDACalcIC was successful. The corrected
* initial value vectors were stored internally.
*
* IDA_MEM_NULL The argument ida_mem was NULL.
*
* IDA_ILL_INPUT One of the input arguments was illegal.
* See printed message.
*
* IDA_LINIT_FAIL The linear solver's init routine failed.
*
* IDA_BAD_EWT Some component of the error weight vector
* is zero (illegal), either for the input
* value of y0 or a corrected value.
*
* IDA_RES_FAIL The user's residual routine returned
* a non-recoverable error flag.
*
* IDA_FIRST_RES_FAIL The user's residual routine returned
* a recoverable error flag on the first call,
* but IDACalcIC was unable to recover.
*
* IDA_LSETUP_FAIL The linear solver's setup routine had a
* non-recoverable error.
*
* IDA_LSOLVE_FAIL The linear solver's solve routine had a
* non-recoverable error.
*
* IDA_NO_RECOVERY The user's residual routine, or the linear
* solver's setup or solve routine had a
* recoverable error, but IDACalcIC was
* unable to recover.
*
* IDA_CONSTR_FAIL IDACalcIC was unable to find a solution
* satisfying the inequality constraints.
*
* IDA_LINESEARCH_FAIL The Linesearch algorithm failed to find a
* solution with a step larger than steptol
* in weighted RMS norm.
*
* IDA_CONV_FAIL IDACalcIC failed to get convergence of the
* Newton iterations.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDACalcIC(void *ida_mem, int icopt, realtype tout1);
/*
* ----------------------------------------------------------------
* Function : IDASolve
* ----------------------------------------------------------------
* IDASolve integrates the DAE over an interval in t, the
* independent variable. If itask is IDA_NORMAL, then the solver
* integrates from its current internal t value to a point at or
* beyond tout, then interpolates to t = tout and returns y(tret)
* in the user-allocated vector yret. In general, tret = tout.
* If itask is IDA_ONE_STEP, then the solver takes one internal
* step of the independent variable and returns in yret the value
* of y at the new internal independent variable value. In this
* case, tout is used only during the first call to IDASolve to
* determine the direction of integration and the rough scale of
* the problem. If tstop is enabled (through a call to IDASetStopTime),
* then IDASolve returns the solution at tstop. Once the integrator
* returns at a tstop time, any future testing for tstop is disabled
* (and can be reenabled only though a new call to IDASetStopTime).
* The time reached by the solver is placed in (*tret). The
* user is responsible for allocating the memory for this value.
*
* ida_mem is the pointer (void) to IDA memory returned by
* IDACreate.
*
* tout is the next independent variable value at which a
* computed solution is desired.
*
* tret is a pointer to a real location. IDASolve sets (*tret)
* to the actual t value reached, corresponding to the
* solution vector yret. In IDA_NORMAL mode, with no
* errors and no roots found, (*tret) = tout.
*
* yret is the computed solution vector. With no errors,
* yret = y(tret).
*
* ypret is the derivative of the computed solution at t = tret.
*
* Note: yret and ypret may be the same N_Vectors as y0 and yp0
* in the call to IDAInit or IDAReInit.
*
* itask is IDA_NORMAL or IDA_ONE_STEP. These two modes are described above.
*
*
* The return values for IDASolve are described below.
* (The numerical return values are defined above in this file.)
* All unsuccessful returns give a negative return value.
*
* IDA_SUCCESS
* IDASolve succeeded and no roots were found.
*
* IDA_ROOT_RETURN: IDASolve succeeded, and found one or more roots.
* If nrtfn > 1, call IDAGetRootInfo to see which g_i were found
* to have a root at (*tret).
*
* IDA_TSTOP_RETURN:
* IDASolve returns computed results for the independent variable
* value tstop. That is, tstop was reached.
*
* IDA_MEM_NULL:
* The ida_mem argument was NULL.
*
* IDA_ILL_INPUT:
* One of the inputs to IDASolve is illegal. This includes the
* situation when a component of the error weight vectors
* becomes < 0 during internal stepping. It also includes the
* situation where a root of one of the root functions was found
* both at t0 and very near t0. The ILL_INPUT flag
* will also be returned if the linear solver function IDA---
* (called by the user after calling IDACreate) failed to set one
* of the linear solver-related fields in ida_mem or if the linear
* solver's init routine failed. In any case, the user should see
* the printed error message for more details.
*
* IDA_TOO_MUCH_WORK:
* The solver took mxstep internal steps but could not reach tout.
* The default value for mxstep is MXSTEP_DEFAULT = 500.
*
* IDA_TOO_MUCH_ACC:
* The solver could not satisfy the accuracy demanded by the user
* for some internal step.
*
* IDA_ERR_FAIL:
* Error test failures occurred too many times (=MXETF = 10) during
* one internal step.
*
* IDA_CONV_FAIL:
* Convergence test failures occurred too many times (= MXNCF = 10)
* during one internal step.
*
* IDA_LSETUP_FAIL:
* The linear solver's setup routine failed
* in an unrecoverable manner.
*
* IDA_LSOLVE_FAIL:
* The linear solver's solve routine failed
* in an unrecoverable manner.
*
* IDA_CONSTR_FAIL:
* The inequality constraints were violated,
* and the solver was unable to recover.
*
* IDA_REP_RES_ERR:
* The user's residual function repeatedly returned a recoverable
* error flag, but the solver was unable to recover.
*
* IDA_RES_FAIL:
* The user's residual function returned a nonrecoverable error
* flag.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASolve(void *ida_mem, realtype tout, realtype *tret,
N_Vector yret, N_Vector ypret, int itask);
/*
* ----------------------------------------------------------------
* Function: IDAGetDky
* ----------------------------------------------------------------
*
* This routine computes the k-th derivative of the interpolating
* polynomial at the time t and stores the result in the vector dky.
*
* The return values are:
* IDA_SUCCESS: succeess.
* IDA_BAD_T: t is not in the interval [tn-hu,tn].
* IDA_MEM_NULL: The ida_mem argument was NULL.
* IDA_BAD_DKY if the dky vector is NULL.
* IDA_BAD_K if the requested k is not in the range 0,1,...,order used
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetDky(void *ida_mem, realtype t, int k, N_Vector dky);
/* ----------------------------------------------------------------
* Integrator optional output extraction functions
* ----------------------------------------------------------------
*
* The following functions can be called to get optional outputs
* and statistics related to the main integrator.
* ----------------------------------------------------------------
*
* IDAGetWorkSpace returns the IDA real and integer workspace sizes
* IDAGetNumSteps returns the cumulative number of internal
* steps taken by the solver
* IDAGetNumResEvals returns the number of calls to the user's
* res function
* IDAGetNumLinSolvSetups returns the number of calls made to
* the linear solver's setup routine
* IDAGetNumErrTestFails returns the number of local error test
* failures that have occured
* IDAGetNumBacktrackOps returns the number of backtrack
* operations done in the linesearch algorithm in IDACalcIC
* IDAGetConsistentIC returns the consistent initial conditions
* computed by IDACalcIC
* IDAGetLastOrder returns the order used during the last
* internal step
* IDAGetCurentOrder returns the order to be used on the next
* internal step
* IDAGetActualInitStep returns the actual initial step size
* used by IDA
* IDAGetLastStep returns the step size for the last internal
* step (if from IDASolve), or the last value of the
* artificial step size h (if from IDACalcIC)
* IDAGetCurrentStep returns the step size to be attempted on the
* next internal step
* IDAGetCurrentTime returns the current internal time reached
* by the solver
* IDAGetTolScaleFactor returns a suggested factor by which the
* user's tolerances should be scaled when too much
* accuracy has been requested for some internal step
* IDAGetErrWeights returns the current state error weight vector.
* The user must allocate space for eweight.
* IDAGetEstLocalErrors returns the estimated local errors. The user
* must allocate space for the vector ele.
* IDAGetNumGEvals returns the number of calls to the user's
* g function (for rootfinding)
* IDAGetRootInfo returns the indices for which g_i was found to
* have a root. The user must allocate space for rootsfound.
* For i = 0 ... nrtfn-1, rootsfound[i] = 1 if g_i has a root,
* and rootsfound[i]= 0 if not.
*
* IDAGet* return values:
* IDA_SUCCESS if succesful
* IDA_MEM_NULL if the IDAS memory was NULL
* IDA_ILL_INPUT if some input is illegal
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetWorkSpace(void *ida_mem, long int *lenrw, long int *leniw);
SUNDIALS_EXPORT int IDAGetNumSteps(void *ida_mem, long int *nsteps);
SUNDIALS_EXPORT int IDAGetNumResEvals(void *ida_mem, long int *nrevals);
SUNDIALS_EXPORT int IDAGetNumLinSolvSetups(void *ida_mem, long int *nlinsetups);
SUNDIALS_EXPORT int IDAGetNumErrTestFails(void *ida_mem, long int *netfails);
SUNDIALS_EXPORT int IDAGetNumBacktrackOps(void *ida_mem, long int *nbacktr);
SUNDIALS_EXPORT int IDAGetConsistentIC(void *ida_mem, N_Vector yy0_mod, N_Vector yp0_mod);
SUNDIALS_EXPORT int IDAGetLastOrder(void *ida_mem, int *klast);
SUNDIALS_EXPORT int IDAGetCurrentOrder(void *ida_mem, int *kcur);
SUNDIALS_EXPORT int IDAGetActualInitStep(void *ida_mem, realtype *hinused);
SUNDIALS_EXPORT int IDAGetLastStep(void *ida_mem, realtype *hlast);
SUNDIALS_EXPORT int IDAGetCurrentStep(void *ida_mem, realtype *hcur);
SUNDIALS_EXPORT int IDAGetCurrentTime(void *ida_mem, realtype *tcur);
SUNDIALS_EXPORT int IDAGetTolScaleFactor(void *ida_mem, realtype *tolsfact);
SUNDIALS_EXPORT int IDAGetErrWeights(void *ida_mem, N_Vector eweight);
SUNDIALS_EXPORT int IDAGetEstLocalErrors(void *ida_mem, N_Vector ele);
SUNDIALS_EXPORT int IDAGetNumGEvals(void *ida_mem, long int *ngevals);
SUNDIALS_EXPORT int IDAGetRootInfo(void *ida_mem, int *rootsfound);
/*
* ----------------------------------------------------------------
* As a convenience, the following function provides the
* optional outputs in a group.
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetIntegratorStats(void *ida_mem, long int *nsteps,
long int *nrevals, long int *nlinsetups,
long int *netfails, int *qlast, int *qcur,
realtype *hinused, realtype *hlast, realtype *hcur,
realtype *tcur);
/*
* ----------------------------------------------------------------
* Nonlinear solver optional output extraction functions
* ----------------------------------------------------------------
*
* The following functions can be called to get optional outputs
* and statistics related to the nonlinear solver.
* --------------------------------------------------------------
*
* IDAGetNumNonlinSolvIters returns the number of nonlinear
* solver iterations performed.
* IDAGetNumNonlinSolvConvFails returns the number of nonlinear
* convergence failures.
*
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetNumNonlinSolvIters(void *ida_mem, long int *nniters);
SUNDIALS_EXPORT int IDAGetNumNonlinSolvConvFails(void *ida_mem, long int *nncfails);
/*
* ----------------------------------------------------------------
* As a convenience, the following function provides the
* nonlinear solver optional outputs in a group.
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetNonlinSolvStats(void *ida_mem, long int *nniters,
long int *nncfails);
/*
* -----------------------------------------------------------------
* Quadrature integration solution extraction routines
* -----------------------------------------------------------------
* The following function can be called to obtain the quadrature
* variables after a successful integration step.
* If quadratures were not computed, it returns IDA_NO_QUAD.
*
* IDAGetQuad returns the quadrature variables at the same time
* as that at which IDASolve returned the solution.
*
* IDAGetQuadDky returns the quadrature variables (or their
* derivatives up to the current method order) at any time within
* the last integration step (dense output).
*
* The output vectors yQout and dky must be allocated by the user.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuad(void *ida_mem, realtype *t, N_Vector yQout);
SUNDIALS_EXPORT int IDAGetQuadDky(void *ida_mem, realtype t, int k, N_Vector dky);
/*
* -----------------------------------------------------------------
* Quadrature integration optional output extraction routines
* -----------------------------------------------------------------
* The following functions can be called to get optional outputs
* and statistics related to the integration of quadratures.
* -----------------------------------------------------------------
* IDAGetQuadNumRhsEvals returns the number of calls to the
* user function rhsQ defining the right hand
* side of the quadrature variables.
* IDAGetQuadNumErrTestFails returns the number of local error
* test failures for quadrature variables.
* IDAGetQuadErrWeights returns the vector of error weights for
* the quadrature variables. The user must
* allocate space for ewtQ.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuadNumRhsEvals(void *ida_mem, long int *nrhsQevals);
SUNDIALS_EXPORT int IDAGetQuadNumErrTestFails(void *ida_mem, long int *nQetfails);
SUNDIALS_EXPORT int IDAGetQuadErrWeights(void *ida_mem, N_Vector eQweight);
/*
* -----------------------------------------------------------------
* As a convenience, the following function provides the
* optional outputs in a group.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuadStats(void *ida_mem,
long int *nrhsQevals, long int *nQetfails);
/*
* -----------------------------------------------------------------
* Sensitivity solution extraction routines
* -----------------------------------------------------------------
* The following functions can be called to obtain the sensitivity
* variables after a successful integration step.
*
* IDAGetSens and IDAGetSens1 return all the sensitivity vectors
* or only one of them, respectively, at the same time as that at
* which IDASolve returned the solution.
* The array of output vectors or output vector ySout must be
* allocated by the user.
*
* IDAGetSensDky1 computes the kth derivative of the is-th
* sensitivity (is=1, 2, ..., Ns) of the y function at time t,
* where tn-hu <= t <= tn, tn denotes the current internal time
* reached, and hu is the last internal step size successfully
* used by the solver. The user may request k=0, 1, ..., qu,
* where qu is the current order.
* The is-th sensitivity derivative vector is returned in dky.
* This vector must be allocated by the caller. It is only legal
* to call this function after a successful return from IDASolve
* with sensitivity computations enabled.
* Arguments have the same meaning as in IDADGetky.
*
* IDAGetSensDky computes the k-th derivative of all
* sensitivities of the y function at time t. It repeatedly calls
* IDAGetSensDky. The argument dkyS must be a pointer to
* N_Vector and must be allocated by the user to hold at least Ns
* vectors.
*
* Return values are similar to those of IDAGetDky. Additionally,
* these functions can return IDA_NO_SENS if sensitivities were
* not computed and IDA_BAD_IS if is < 0 or is >= Ns.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetSens(void *ida_mem, realtype *tret, N_Vector *yySout);
SUNDIALS_EXPORT int IDAGetSens1(void *ida_mem, realtype *tret, int is, N_Vector yySret);
SUNDIALS_EXPORT int IDAGetSensDky(void *ida_mem, realtype t, int k, N_Vector *dkyS);
SUNDIALS_EXPORT int IDAGetSensDky1(void *ida_mem, realtype t, int k, int is, N_Vector dkyS);
/*
* -----------------------------------------------------------------
* Consistent sensitivity IC calculation optional outputs
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetSensConsistentIC(void *ida_mem, N_Vector *yyS0, N_Vector *ypS0);
/*
* -----------------------------------------------------------------
* Forward sensitivity optional output extraction routines
* -----------------------------------------------------------------
* The following functions can be called to get optional outputs
* and statistics related to the integration of sensitivities.
* -----------------------------------------------------------------
* IDAGetSensNumResEvals returns the number of calls to the
* sensitivity residual function.
* IDAGetNumResEvalsSens returns the number of calls to the
* user res routine due to finite difference
* evaluations of the sensitivity equations.
* IDAGetSensNumErrTestFails returns the number of local error
* test failures for sensitivity variables.
* IDAGetSensNumLinSolvSetups returns the number of calls made
* to the linear solver's setup routine
* due to sensitivity computations.
* IDAGetSensErrWeights returns the sensitivity error weight
* vectors. The user need not allocate space
* for ewtS.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetSensNumResEvals(void *ida_mem, long int *nresSevals);
SUNDIALS_EXPORT int IDAGetNumResEvalsSens(void *ida_mem, long int *nresevalsS);
SUNDIALS_EXPORT int IDAGetSensNumErrTestFails(void *ida_mem, long int *nSetfails);
SUNDIALS_EXPORT int IDAGetSensNumLinSolvSetups(void *ida_mem, long int *nlinsetupsS);
SUNDIALS_EXPORT int IDAGetSensErrWeights(void *ida_mem, N_Vector_S eSweight);
/*
* -----------------------------------------------------------------
* As a convenience, the following function provides the
* optional outputs in a group.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetSensStats(void *ida_mem, long int *nresSevals,
long int *nresevalsS,
long int *nSetfails,
long int *nlinsetupsS);
/*
* ----------------------------------------------------------------
* Sensitivity nonlinear solver optional output extraction functions
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetSensNumNonlinSolvIters(void *ida_mem, long int *nSniters);
SUNDIALS_EXPORT int IDAGetSensNumNonlinSolvConvFails(void *ida_mem,
long int *nSncfails);
SUNDIALS_EXPORT int IDAGetSensNonlinSolvStats(void *ida_mem,
long int *nSniters,
long int *nSncfails);
/*
* -----------------------------------------------------------------
* Quadrature sensitivity optional output extraction routines
* -----------------------------------------------------------------
* The following functions can be called to get optional outputs and
* statistics related to the integration of quadrature sensitivitiess.
* -----------------------------------------------------------------
* IDAGetQuadSensNumRhsEvals returns the number of calls to the
* user function fQS defining the right hand side of the
* quadrature sensitivity equations.
* IDAGetQuadSensNumErrTestFails returns the number of local error
* test failures for quadrature sensitivity variables.
* IDAGetQuadSensErrWeights returns the vector of error weights
* for the quadrature sensitivity variables. The user must
* allocate space for ewtQS.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuadSensNumRhsEvals(void *ida_mem, long int *nrhsQSevals);
SUNDIALS_EXPORT int IDAGetQuadSensNumErrTestFails(void *ida_mem, long int *nQSetfails);
SUNDIALS_EXPORT int IDAGetQuadSensErrWeights(void *ida_mem, N_Vector *eQSweight);
/*
* -----------------------------------------------------------------
* As a convenience, the following function provides the above
* optional outputs in a group.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuadSensStats(void *ida_mem,
long int *nrhsQSevals,
long int *nQSetfails);
/*
* -----------------------------------------------------------------
* Quadrature Sensitivity solution extraction routines
* -----------------------------------------------------------------
* The following functions can be called to obtain the sensitivity
* variables after a successful integration step.
*
* IDAGetQuadSens and IDAGetQuadSens1 return all the sensitivity
* vectors or only one of them, respectively, at the same time
* as that at which IDASolve returned the solution.
* The array of output vectors or output vector yQSout must be
* allocated by the user.
*
* IDAGetQuadSensDky1 computes the kth derivative of the is-th
* sensitivity (is=1, 2, ..., Ns) of the quadrature function at
* time t, where tn - hu <= t <= tn, tn denotes the current
* internal time reached and hu is the last internal
* successfully step size. The user may request k=0,..., qu,
* where qu is the current order.
*
* The is-th sensitivity derivative vector is returned in dky.
* This vector must be allocated by the caller. It is only legal
* to call this function after a successful return from IDASolve
* with sensitivity computations enabled.
* Arguments have the same meaning as in IDADGetky.
*
* IDAGetQuadSensDky computes the k-th derivative of all
* sensitivities of the y function at time t. It repeatedly calls
* IDAGetQuadSensDky. The argument dkyS must be a pointer to
* N_Vector and must be allocated by the user to hold at least Ns
* vectors.
*
* Return values are similar to those of IDAGetDky. Additionally,
* these functions can return IDA_NO_SENS if sensitivities were
* not computed and IDA_BAD_IS if is < 0 or is >= Ns.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetQuadSens(void *ida_mem, realtype *tret, N_Vector *yyQSout);
SUNDIALS_EXPORT int IDAGetQuadSens1(void *ida_mem, realtype *tret, int is, N_Vector yyQSret);
SUNDIALS_EXPORT int IDAGetQuadSensDky(void *ida_mem, realtype t, int k, N_Vector *dkyQS);
SUNDIALS_EXPORT int IDAGetQuadSensDky1(void *ida_mem, realtype t, int k, int is, N_Vector dkyQS);
/*
* -----------------------------------------------------------------
* The following function returns the name of the constant
* associated with an IDAS return flag
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT char *IDAGetReturnFlagName(long int flag);
/*
* ----------------------------------------------------------------
* Function : IDAFree
* ----------------------------------------------------------------
* IDAFree frees the problem memory IDA_mem allocated by
* IDAInit. Its only argument is the pointer idamem
* returned by IDAInit.
* ----------------------------------------------------------------
*/
SUNDIALS_EXPORT void IDAFree(void **ida_mem);
/*
* -----------------------------------------------------------------
* Function : IDAQuadFree
* -----------------------------------------------------------------
* IDAQuadFree frees the problem memory in ida_mem allocated
* for quadrature integration. Its only argument is the pointer
* ida_mem returned by IDACreate.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT void IDAQuadFree(void *ida_mem);
/*
* -----------------------------------------------------------------
* Function : IDASensFree
* -----------------------------------------------------------------
* IDASensFree frees the problem memory in ida_mem allocated
* for sensitivity analysis. Its only argument is the pointer
* ida_mem returned by IDACreate.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT void IDASensFree(void *ida_mem);
/*
* -----------------------------------------------------------------
* Function : IDAQuadSensFree
* -----------------------------------------------------------------
* IDAQuadSensFree frees the problem memory in ida_mem allocated
* for quadrature sensitivity analysis. Its only argument is the
* pointer ida_mem returned by IDACreate.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT void IDAQuadSensFree(void* ida_mem);
/*
* =================================================================
*
* INITIALIZATION AND DEALLOCATION FUNCTIONS FOR BACKWARD PROBLEMS
*
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDAAdjInit
* -----------------------------------------------------------------
* IDAAdjInit specifies some parameters for ASA, initializes ASA
* and allocates space for the adjoint memory structure.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAAdjInit(void *ida_mem, long int steps, int interp);
/*
* -----------------------------------------------------------------
* IDAAdjReInit
* -----------------------------------------------------------------
* IDAAdjReInit reinitializes the IDAS memory structure for ASA,
* assuming that the number of steps between check points and the
* type of interpolation remained unchanged. The list of check points
* (and associated memory) is deleted. The list of backward problems
* is kept (however, new backward problems can be added to this list
* by calling IDACreateB). The IDAS memory for the forward and
* backward problems can be reinitialized separately by calling
* IDAReInit and IDAReInitB, respectively.
* NOTE: if a entirely new list of backward problems is desired,
* then simply free the adjoint memory (by calling IDAAdjFree)
* and reinitialize ASA with IDAAdjReInit
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAAdjReInit(void *ida_mem);
/*
* -----------------------------------------------------------------
* IDAAdjFree
* -----------------------------------------------------------------
* IDAAdjFree frees the memory allocated by IDAAdjInit.
* It is typically called by IDAFree.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT void IDAAdjFree(void *ida_mem);
/*
* =================================================================
*
* OPTIONAL INPUT FUNCTIONS FOR BACKWARD PROBLEMS
*
* =================================================================
*/
/*
* =================================================================
*
* Interfaces to IDAS functions for setting-up backward problems.
*
* =================================================================
*/
SUNDIALS_EXPORT int IDACreateB(void *ida_mem, int *which);
SUNDIALS_EXPORT int IDAInitB(void *ida_mem, int which, IDAResFnB resB,
realtype tB0, N_Vector yyB0, N_Vector ypB0);
SUNDIALS_EXPORT int IDAInitBS(void *ida_mem, int which, IDAResFnBS resS,
realtype tB0, N_Vector yyB0, N_Vector ypB0);
SUNDIALS_EXPORT int IDAReInitB(void *ida_mem, int which,
realtype tB0, N_Vector yyB0, N_Vector ypB0);
SUNDIALS_EXPORT int IDASStolerancesB(void *ida_mem, int which,
realtype relTolB, realtype absTolB);
SUNDIALS_EXPORT int IDASVtolerancesB(void *ida_mem, int which,
realtype relTolB, N_Vector absTolB);
SUNDIALS_EXPORT int IDAQuadInitB(void *ida_mem, int which,
IDAQuadRhsFnB rhsQB, N_Vector yQB0);
SUNDIALS_EXPORT int IDAQuadInitBS(void *ida_mem, int which,
IDAQuadRhsFnBS rhsQS, N_Vector yQB0);
SUNDIALS_EXPORT int IDAQuadReInitB(void *ida_mem, int which, N_Vector yQB0);
SUNDIALS_EXPORT int IDAQuadSStolerancesB(void *ida_mem, int which,
realtype reltolQB, realtype abstolQB);
SUNDIALS_EXPORT int IDAQuadSVtolerancesB(void *ida_mem, int which,
realtype reltolQB, N_Vector abstolQB);
/*
* ----------------------------------------------------------------
* The following functions computes consistent initial conditions
* for the backward problems.
* ----------------------------------------------------------------
* Function : IDACalcICB
* ----------------------------------------------------------------
* IDACalcICB calculates corrected initial conditions for a DAE
* backward system (index-one in semi-implicit form).
* ----------------------------------------------------------------
* Function : IDACalcICBS
* ----------------------------------------------------------------
* IDACalcICBS calculates corrected initial conditions for a DAE
* backward problems that also depends on the sensitivities.
*
* They use Newton iteration combined with a Linesearch algorithm.
*
* Calling IDACalcICB(S) is optional. It is only necessary when the
* initial conditions do not solve the given system. I.e., if
* yB0 and ypB0 are known to satisfy the backward problem, then
* a call to IDACalcICB is NOT necessary (for index-one problems).
*
* Any call to IDACalcICB(S) should precede the call(s) to
* IDASolveB for the given problem.
*
* The functions compute the algebraic components of y and
* differential components of y', given the differential
* components of y. This option requires that the N_Vector id was
* set through a call to IDASetIdB specifying the differential and
* algebraic components.
*
* The arguments to IDACalcICB(S) are as follows:
*
* ida_mem is the pointer to IDA memory returned by IDACreate.
*
* which is the index of the backward problem returned by
* IDACreateB
*
* tout1 is the first value of t at which a soluton will be
* requested (from IDASolveB). (This is needed here to
* determine the direction of integration and rough
* scale in the independent variable t.)
*
* yy0 state variables y and y' corresponding to the initial
* yp0 time at which the backward problem is (re)started.
*
* yyS0 sensitivities variables corresponding to the initial
* ypS0 time at which the backward problem is (re)started.
*
* Return value is a int flag. For more information see IDACalcIC.
*/
SUNDIALS_EXPORT int IDACalcICB (void *ida_mem, int which, realtype tout1,
N_Vector yy0, N_Vector yp0);
SUNDIALS_EXPORT int IDACalcICBS(void *ida_mem, int which, realtype tout1,
N_Vector yy0, N_Vector yp0,
N_Vector *yyS0, N_Vector *ypS0);
/*
* =================================================================
*
* MAIN SOLVER FUNCTIONS FOR FORWARD PROBLEMS
*
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDASolveF
* -----------------------------------------------------------------
* IDASolveF integrates towards tout and returns solution into yret
* and ypret.
*
* In the same time, it stores check point data every 'steps'.
*
* IDASolveF can be called repeatedly by the user.
*
* ncheckPtr represents the number of check points stored so far.
*
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASolveF(void *ida_mem, realtype tout,
realtype *tret,
N_Vector yret, N_Vector ypret,
int itask, int *ncheckPtr);
/*
* -----------------------------------------------------------------
* IDASolveB
* -----------------------------------------------------------------
* IDASolveB performs the integration of all backward problems
* specified through calls to IDACreateB through a sequence of
* forward-backward runs in between consecutive check points. It can
* be called either in IDA_NORMAL or IDA_ONE_STEP mode. After a
* successful return from IDASolveB, the solution and quadrature
* variables at the current return time for any given backward
* problem can be obtained by calling IDAGetB and IDAGetQuadB.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASolveB(void *ida_mem, realtype tBout, int itaskB);
/*
* =================================================================
*
* OPTIONAL INPUT FUNCTIONS FOR BACKWARD PROBLEMS
*
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDASetAdjNoSensi
* -----------------------------------------------------------------
* Disables the forward sensitivity analysis in IDASolveF.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetAdjNoSensi(void *ida_mem);
/*
* -----------------------------------------------------------------
* Optional input functions for backward problems
* -----------------------------------------------------------------
* These functions are just wrappers around the corresponding
* functions from the forward module, with some particularizations
* for the backward integration.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDASetUserDataB(void *ida_mem, int which, void *user_dataB);
SUNDIALS_EXPORT int IDASetMaxOrdB(void *ida_mem, int which, int maxordB);
SUNDIALS_EXPORT int IDASetMaxNumStepsB(void *ida_mem, int which, long int mxstepsB);
SUNDIALS_EXPORT int IDASetInitStepB(void *ida_mem, int which, realtype hinB);
SUNDIALS_EXPORT int IDASetMaxStepB(void *ida_mem, int which, realtype hmaxB);
SUNDIALS_EXPORT int IDASetSuppressAlgB(void *ida_mem, int which,
booleantype suppressalgB);
SUNDIALS_EXPORT int IDASetIdB(void *ida_mem, int which, N_Vector idB);
SUNDIALS_EXPORT int IDASetConstraintsB(void *ida_mem, int which,
N_Vector constraintsB);
SUNDIALS_EXPORT int IDASetQuadErrConB(void *ida_mem, int which, int errconQB);
/*
* =================================================================
*
* EXTRACTION AND DENSE OUTPUT FUNCTIONS FOR BACKWARD PROBLEMS
*
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDAGetB and IDAGetQuadB
* -----------------------------------------------------------------
* Extraction functions for the solution and quadratures for a given
* backward problem. They return their corresponding output vector
* at the current time reached by the integration of the backward
* problem. To obtain the solution or quadratures associated with
* a given backward problem at some other time within the last
* integration step (dense output), first obtain a pointer to the
* proper IDAS memory by calling IDAGetAdjIDABmem and then use it
* to call IDAGetDky and IDAGetQuadDky.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetB(void* ida_mem, int which, realtype *tret,
N_Vector yy, N_Vector yp);
SUNDIALS_EXPORT int IDAGetQuadB(void *ida_mem, int which,
realtype *tret, N_Vector qB);
/*
* =================================================================
*
* OPTIONAL OUTPUT FUNCTIONS FOR BACKWARD PROBLEMS
*
* =================================================================
*/
/*
* -----------------------------------------------------------------
* IDAGetAdjIDABmem
* -----------------------------------------------------------------
* IDAGetAdjIDABmem returns a (void *) pointer to the IDAS
* memory allocated for the backward problem. This pointer can
* then be used to call any of the IDAGet* IDAS routines to
* extract optional output for the backward integration phase.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT void *IDAGetAdjIDABmem(void *ida_mem, int which);
/*
* -----------------------------------------------------------------
* IDAGetConsistentICB
* -----------------------------------------------------------------
* IDAGetConsistentIC returns the consistent initial conditions
* computed by IDACalcICB or IDCalcICBS
*/
SUNDIALS_EXPORT int IDAGetConsistentICB(void *ida_mem, int which,
N_Vector yyB0, N_Vector ypB0);
/*
* -----------------------------------------------------------------
* IDAGetAdjY
* -----------------------------------------------------------------
* Returns the interpolated forward solution at time t. This
* function is a wrapper around the interpType-dependent internal
* function.
* The calling function must allocate space for yy and yp.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetAdjY(void *ida_mem, realtype t,
N_Vector yy, N_Vector yp);
/*
* -----------------------------------------------------------------
* IDAGetAdjCheckPointsInfo
* -----------------------------------------------------------------
* Loads an array of nckpnts structures of type IDAadjCheckPointRec
* defined below.
*
* The user must allocate space for ckpnt (ncheck+1).
* -----------------------------------------------------------------
*/
typedef struct {
void *my_addr;
void *next_addr;
realtype t0;
realtype t1;
long int nstep;
int order;
realtype step;
} IDAadjCheckPointRec;
SUNDIALS_EXPORT int IDAGetAdjCheckPointsInfo(void *ida_mem,
IDAadjCheckPointRec *ckpnt);
/*
* -----------------------------------------------------------------
* IDAGetAdjDataPointHermite
* -----------------------------------------------------------------
* Returns the 2 vectors stored for cubic Hermite interpolation at
* the data point 'which'. The user must allocate space for yy and
* yd.
*
* Returns IDA_MEM_NULL if ida_mem is NULL, IDA_ILL_INPUT if the
* interpolation type previously specified is not IDA_HERMITE or
* IDA_SUCCESS otherwise.
*
* -----------------------------------------------------------------
* IDAGetAdjDataPointPolynomial
* -----------------------------------------------------------------
* Returns the vector stored for polynomial interpolation at the
* data point 'which'. The user must allocate space for y.
*
* Returns IDA_MEM_NULL if ida_mem is NULL, IDA_ILL_INPUT if the
* interpolation type previously specified is not IDA_POLYNOMIAL or
* IDA_SUCCESS otherwise.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetAdjDataPointHermite(void *ida_mem, int which,
realtype *t, N_Vector yy, N_Vector yd);
SUNDIALS_EXPORT int IDAGetAdjDataPointPolynomial(void *ida_mem, int which,
realtype *t, int *order,
N_Vector y);
/*
* -----------------------------------------------------------------
* IDAGetAdjCurrentCheckPoint
* -----------------------------------------------------------------
* Returns the address of the 'active' check point.
* -----------------------------------------------------------------
*/
SUNDIALS_EXPORT int IDAGetAdjCurrentCheckPoint(void *ida_mem, void **addr);
#ifdef __cplusplus
}
#endif
#endif
|