/usr/include/tbb/enumerable_thread_specific.h is in libtbb-dev 4.3~20150611-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 | /*
Copyright 2005-2015 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks. Threading Building Blocks is free software;
you can redistribute it and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. Threading Building Blocks is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of
the GNU General Public License along with Threading Building Blocks; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software library without
restriction. Specifically, if other files instantiate templates or use macros or inline
functions from this file, or you compile this file and link it with other files to produce
an executable, this file does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.
*/
#ifndef __TBB_enumerable_thread_specific_H
#define __TBB_enumerable_thread_specific_H
#include "concurrent_vector.h"
#include "tbb_thread.h"
#include "tbb_allocator.h"
#include "tbb_profiling.h"
#include "cache_aligned_allocator.h"
#include "aligned_space.h"
#include "internal/_template_helpers.h"
#include <string.h> // for memcpy
#if _WIN32||_WIN64
#include "machine/windows_api.h"
#else
#include <pthread.h>
#endif
#define __TBB_ETS_USE_CPP11 \
(__TBB_CPP11_RVALUE_REF_PRESENT && __TBB_CPP11_VARIADIC_TEMPLATES_PRESENT \
&& __TBB_CPP11_DECLTYPE_PRESENT && __TBB_CPP11_LAMBDAS_PRESENT)
namespace tbb {
//! enum for selecting between single key and key-per-instance versions
enum ets_key_usage_type { ets_key_per_instance, ets_no_key };
namespace interface6 {
// Forward declaration to use in internal classes
template <typename T, typename Allocator, ets_key_usage_type ETS_key_type>
class enumerable_thread_specific;
//! @cond
namespace internal {
using namespace tbb::internal;
template<ets_key_usage_type ETS_key_type>
class ets_base: tbb::internal::no_copy {
protected:
#if _WIN32||_WIN64
typedef DWORD key_type;
#else
typedef pthread_t key_type;
#endif
#if __TBB_PROTECTED_NESTED_CLASS_BROKEN
public:
#endif
struct slot;
struct array {
array* next;
size_t lg_size;
slot& at( size_t k ) {
return ((slot*)(void*)(this+1))[k];
}
size_t size() const {return (size_t)1<<lg_size;}
size_t mask() const {return size()-1;}
size_t start( size_t h ) const {
return h>>(8*sizeof(size_t)-lg_size);
}
};
struct slot {
key_type key;
void* ptr;
bool empty() const {return !key;}
bool match( key_type k ) const {return key==k;}
bool claim( key_type k ) {
__TBB_ASSERT(sizeof(tbb::atomic<key_type>)==sizeof(key_type), NULL);
// TODO: maybe claim ptr, because key_type is not guaranteed to match word size
return tbb::internal::punned_cast<tbb::atomic<key_type>*>(&key)->compare_and_swap(k,0)==0;
}
};
#if __TBB_PROTECTED_NESTED_CLASS_BROKEN
protected:
#endif
static key_type key_of_current_thread() {
// TODO: replace key_type with tbb::tbb_thread::id
tbb::tbb_thread::id id = tbb::this_tbb_thread::get_id();
key_type k;
memcpy( &k, &id, sizeof(k) );
return k;
}
//! Root of linked list of arrays of decreasing size.
/** NULL if and only if my_count==0.
Each array in the list is half the size of its predecessor. */
atomic<array*> my_root;
atomic<size_t> my_count;
virtual void* create_local() = 0;
virtual void* create_array(size_t _size) = 0; // _size in bytes
virtual void free_array(void* ptr, size_t _size) = 0; // _size in bytes
array* allocate( size_t lg_size ) {
size_t n = 1<<lg_size;
array* a = static_cast<array*>(create_array( sizeof(array)+n*sizeof(slot) ));
a->lg_size = lg_size;
std::memset( a+1, 0, n*sizeof(slot) );
return a;
}
void free(array* a) {
size_t n = 1<<(a->lg_size);
free_array( (void *)a, size_t(sizeof(array)+n*sizeof(slot)) );
}
static size_t hash( key_type k ) {
// Multiplicative hashing. Client should use *upper* bits.
// casts required for Mac gcc4.* compiler
// TODO: casting of key_type to uintptr_t is not portable; implement and use hashing of thread::id
return uintptr_t(k)*tbb::internal::select_size_t_constant<0x9E3779B9,0x9E3779B97F4A7C15ULL>::value;
}
ets_base() {my_root=NULL; my_count=0;}
virtual ~ets_base(); // g++ complains if this is not virtual...
void* table_lookup( bool& exists );
void table_clear();
// table_find is used in copying ETS, so is not used in concurrent context. So
// we don't need itt annotations for it.
slot& table_find( key_type k ) {
size_t h = hash(k);
array* r = my_root;
size_t mask = r->mask();
for(size_t i = r->start(h);;i=(i+1)&mask) {
slot& s = r->at(i);
if( s.empty() || s.match(k) )
return s;
}
}
void table_reserve_for_copy( const ets_base& other ) {
__TBB_ASSERT(!my_root,NULL);
__TBB_ASSERT(!my_count,NULL);
if( other.my_root ) {
array* a = allocate(other.my_root->lg_size);
a->next = NULL;
my_root = a;
my_count = other.my_count;
}
}
};
template<ets_key_usage_type ETS_key_type>
ets_base<ETS_key_type>::~ets_base() {
__TBB_ASSERT(!my_root, NULL);
}
template<ets_key_usage_type ETS_key_type>
void ets_base<ETS_key_type>::table_clear() {
while( array* r = my_root ) {
my_root = r->next;
free(r);
}
my_count = 0;
}
template<ets_key_usage_type ETS_key_type>
void* ets_base<ETS_key_type>::table_lookup( bool& exists ) {
const key_type k = key_of_current_thread();
__TBB_ASSERT(k!=0,NULL);
void* found;
size_t h = hash(k);
for( array* r=my_root; r; r=r->next ) {
call_itt_notify(acquired,r);
size_t mask=r->mask();
for(size_t i = r->start(h); ;i=(i+1)&mask) {
slot& s = r->at(i);
if( s.empty() ) break;
if( s.match(k) ) {
if( r==my_root ) {
// Success at top level
exists = true;
return s.ptr;
} else {
// Success at some other level. Need to insert at top level.
exists = true;
found = s.ptr;
goto insert;
}
}
}
}
// Key does not yet exist. The density of slots in the table does not exceed 0.5,
// for if this will occur a new table is allocated with double the current table
// size, which is swapped in as the new root table. So an empty slot is guaranteed.
exists = false;
found = create_local();
{
size_t c = ++my_count;
array* r = my_root;
call_itt_notify(acquired,r);
if( !r || c>r->size()/2 ) {
size_t s = r ? r->lg_size : 2;
while( c>size_t(1)<<(s-1) ) ++s;
array* a = allocate(s);
for(;;) {
a->next = r;
call_itt_notify(releasing,a);
array* new_r = my_root.compare_and_swap(a,r);
if( new_r==r ) break;
call_itt_notify(acquired, new_r);
if( new_r->lg_size>=s ) {
// Another thread inserted an equal or bigger array, so our array is superfluous.
free(a);
break;
}
r = new_r;
}
}
}
insert:
// Whether a slot has been found in an older table, or if it has been inserted at this level,
// it has already been accounted for in the total. Guaranteed to be room for it, and it is
// not present, so search for empty slot and use it.
array* ir = my_root;
call_itt_notify(acquired, ir);
size_t mask = ir->mask();
for(size_t i = ir->start(h);;i=(i+1)&mask) {
slot& s = ir->at(i);
if( s.empty() ) {
if( s.claim(k) ) {
s.ptr = found;
return found;
}
}
}
}
//! Specialization that exploits native TLS
template <>
class ets_base<ets_key_per_instance>: protected ets_base<ets_no_key> {
typedef ets_base<ets_no_key> super;
#if _WIN32||_WIN64
#if __TBB_WIN8UI_SUPPORT
typedef DWORD tls_key_t;
void create_key() { my_key = FlsAlloc(NULL); }
void destroy_key() { FlsFree(my_key); }
void set_tls(void * value) { FlsSetValue(my_key, (LPVOID)value); }
void* get_tls() { return (void *)FlsGetValue(my_key); }
#else
typedef DWORD tls_key_t;
void create_key() { my_key = TlsAlloc(); }
void destroy_key() { TlsFree(my_key); }
void set_tls(void * value) { TlsSetValue(my_key, (LPVOID)value); }
void* get_tls() { return (void *)TlsGetValue(my_key); }
#endif
#else
typedef pthread_key_t tls_key_t;
void create_key() { pthread_key_create(&my_key, NULL); }
void destroy_key() { pthread_key_delete(my_key); }
void set_tls( void * value ) const { pthread_setspecific(my_key, value); }
void* get_tls() const { return pthread_getspecific(my_key); }
#endif
tls_key_t my_key;
virtual void* create_local() = 0;
virtual void* create_array(size_t _size) = 0; // _size in bytes
virtual void free_array(void* ptr, size_t _size) = 0; // size in bytes
public:
ets_base() {create_key();}
~ets_base() {destroy_key();}
void* table_lookup( bool& exists ) {
void* found = get_tls();
if( found ) {
exists=true;
} else {
found = super::table_lookup(exists);
set_tls(found);
}
return found;
}
void table_clear() {
destroy_key();
create_key();
super::table_clear();
}
};
//! Random access iterator for traversing the thread local copies.
template< typename Container, typename Value >
class enumerable_thread_specific_iterator
#if defined(_WIN64) && defined(_MSC_VER)
// Ensure that Microsoft's internal template function _Val_type works correctly.
: public std::iterator<std::random_access_iterator_tag,Value>
#endif /* defined(_WIN64) && defined(_MSC_VER) */
{
//! current position in the concurrent_vector
Container *my_container;
typename Container::size_type my_index;
mutable Value *my_value;
template<typename C, typename T>
friend enumerable_thread_specific_iterator<C,T> operator+( ptrdiff_t offset,
const enumerable_thread_specific_iterator<C,T>& v );
template<typename C, typename T, typename U>
friend bool operator==( const enumerable_thread_specific_iterator<C,T>& i,
const enumerable_thread_specific_iterator<C,U>& j );
template<typename C, typename T, typename U>
friend bool operator<( const enumerable_thread_specific_iterator<C,T>& i,
const enumerable_thread_specific_iterator<C,U>& j );
template<typename C, typename T, typename U>
friend ptrdiff_t operator-( const enumerable_thread_specific_iterator<C,T>& i, const enumerable_thread_specific_iterator<C,U>& j );
template<typename C, typename U>
friend class enumerable_thread_specific_iterator;
public:
enumerable_thread_specific_iterator( const Container &container, typename Container::size_type index ) :
my_container(&const_cast<Container &>(container)), my_index(index), my_value(NULL) {}
//! Default constructor
enumerable_thread_specific_iterator() : my_container(NULL), my_index(0), my_value(NULL) {}
template<typename U>
enumerable_thread_specific_iterator( const enumerable_thread_specific_iterator<Container, U>& other ) :
my_container( other.my_container ), my_index( other.my_index), my_value( const_cast<Value *>(other.my_value) ) {}
enumerable_thread_specific_iterator operator+( ptrdiff_t offset ) const {
return enumerable_thread_specific_iterator(*my_container, my_index + offset);
}
enumerable_thread_specific_iterator &operator+=( ptrdiff_t offset ) {
my_index += offset;
my_value = NULL;
return *this;
}
enumerable_thread_specific_iterator operator-( ptrdiff_t offset ) const {
return enumerable_thread_specific_iterator( *my_container, my_index-offset );
}
enumerable_thread_specific_iterator &operator-=( ptrdiff_t offset ) {
my_index -= offset;
my_value = NULL;
return *this;
}
Value& operator*() const {
Value* value = my_value;
if( !value ) {
value = my_value = (*my_container)[my_index].value();
}
__TBB_ASSERT( value==(*my_container)[my_index].value(), "corrupt cache" );
return *value;
}
Value& operator[]( ptrdiff_t k ) const {
return (*my_container)[my_index + k].value;
}
Value* operator->() const {return &operator*();}
enumerable_thread_specific_iterator& operator++() {
++my_index;
my_value = NULL;
return *this;
}
enumerable_thread_specific_iterator& operator--() {
--my_index;
my_value = NULL;
return *this;
}
//! Post increment
enumerable_thread_specific_iterator operator++(int) {
enumerable_thread_specific_iterator result = *this;
++my_index;
my_value = NULL;
return result;
}
//! Post decrement
enumerable_thread_specific_iterator operator--(int) {
enumerable_thread_specific_iterator result = *this;
--my_index;
my_value = NULL;
return result;
}
// STL support
typedef ptrdiff_t difference_type;
typedef Value value_type;
typedef Value* pointer;
typedef Value& reference;
typedef std::random_access_iterator_tag iterator_category;
};
template<typename Container, typename T>
enumerable_thread_specific_iterator<Container,T> operator+( ptrdiff_t offset,
const enumerable_thread_specific_iterator<Container,T>& v ) {
return enumerable_thread_specific_iterator<Container,T>( v.my_container, v.my_index + offset );
}
template<typename Container, typename T, typename U>
bool operator==( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return i.my_index==j.my_index && i.my_container == j.my_container;
}
template<typename Container, typename T, typename U>
bool operator!=( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return !(i==j);
}
template<typename Container, typename T, typename U>
bool operator<( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return i.my_index<j.my_index;
}
template<typename Container, typename T, typename U>
bool operator>( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return j<i;
}
template<typename Container, typename T, typename U>
bool operator>=( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return !(i<j);
}
template<typename Container, typename T, typename U>
bool operator<=( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return !(j<i);
}
template<typename Container, typename T, typename U>
ptrdiff_t operator-( const enumerable_thread_specific_iterator<Container,T>& i,
const enumerable_thread_specific_iterator<Container,U>& j ) {
return i.my_index-j.my_index;
}
template<typename SegmentedContainer, typename Value >
class segmented_iterator
#if defined(_WIN64) && defined(_MSC_VER)
: public std::iterator<std::input_iterator_tag, Value>
#endif
{
template<typename C, typename T, typename U>
friend bool operator==(const segmented_iterator<C,T>& i, const segmented_iterator<C,U>& j);
template<typename C, typename T, typename U>
friend bool operator!=(const segmented_iterator<C,T>& i, const segmented_iterator<C,U>& j);
template<typename C, typename U>
friend class segmented_iterator;
public:
segmented_iterator() {my_segcont = NULL;}
segmented_iterator( const SegmentedContainer& _segmented_container ) :
my_segcont(const_cast<SegmentedContainer*>(&_segmented_container)),
outer_iter(my_segcont->end()) { }
~segmented_iterator() {}
typedef typename SegmentedContainer::iterator outer_iterator;
typedef typename SegmentedContainer::value_type InnerContainer;
typedef typename InnerContainer::iterator inner_iterator;
// STL support
typedef ptrdiff_t difference_type;
typedef Value value_type;
typedef typename SegmentedContainer::size_type size_type;
typedef Value* pointer;
typedef Value& reference;
typedef std::input_iterator_tag iterator_category;
// Copy Constructor
template<typename U>
segmented_iterator(const segmented_iterator<SegmentedContainer, U>& other) :
my_segcont(other.my_segcont),
outer_iter(other.outer_iter),
// can we assign a default-constructed iterator to inner if we're at the end?
inner_iter(other.inner_iter)
{}
// assignment
template<typename U>
segmented_iterator& operator=( const segmented_iterator<SegmentedContainer, U>& other) {
if(this != &other) {
my_segcont = other.my_segcont;
outer_iter = other.outer_iter;
if(outer_iter != my_segcont->end()) inner_iter = other.inner_iter;
}
return *this;
}
// allow assignment of outer iterator to segmented iterator. Once it is
// assigned, move forward until a non-empty inner container is found or
// the end of the outer container is reached.
segmented_iterator& operator=(const outer_iterator& new_outer_iter) {
__TBB_ASSERT(my_segcont != NULL, NULL);
// check that this iterator points to something inside the segmented container
for(outer_iter = new_outer_iter ;outer_iter!=my_segcont->end(); ++outer_iter) {
if( !outer_iter->empty() ) {
inner_iter = outer_iter->begin();
break;
}
}
return *this;
}
// pre-increment
segmented_iterator& operator++() {
advance_me();
return *this;
}
// post-increment
segmented_iterator operator++(int) {
segmented_iterator tmp = *this;
operator++();
return tmp;
}
bool operator==(const outer_iterator& other_outer) const {
__TBB_ASSERT(my_segcont != NULL, NULL);
return (outer_iter == other_outer &&
(outer_iter == my_segcont->end() || inner_iter == outer_iter->begin()));
}
bool operator!=(const outer_iterator& other_outer) const {
return !operator==(other_outer);
}
// (i)* RHS
reference operator*() const {
__TBB_ASSERT(my_segcont != NULL, NULL);
__TBB_ASSERT(outer_iter != my_segcont->end(), "Dereferencing a pointer at end of container");
__TBB_ASSERT(inner_iter != outer_iter->end(), NULL); // should never happen
return *inner_iter;
}
// i->
pointer operator->() const { return &operator*();}
private:
SegmentedContainer* my_segcont;
outer_iterator outer_iter;
inner_iterator inner_iter;
void advance_me() {
__TBB_ASSERT(my_segcont != NULL, NULL);
__TBB_ASSERT(outer_iter != my_segcont->end(), NULL); // not true if there are no inner containers
__TBB_ASSERT(inner_iter != outer_iter->end(), NULL); // not true if the inner containers are all empty.
++inner_iter;
while(inner_iter == outer_iter->end() && ++outer_iter != my_segcont->end()) {
inner_iter = outer_iter->begin();
}
}
}; // segmented_iterator
template<typename SegmentedContainer, typename T, typename U>
bool operator==( const segmented_iterator<SegmentedContainer,T>& i,
const segmented_iterator<SegmentedContainer,U>& j ) {
if(i.my_segcont != j.my_segcont) return false;
if(i.my_segcont == NULL) return true;
if(i.outer_iter != j.outer_iter) return false;
if(i.outer_iter == i.my_segcont->end()) return true;
return i.inner_iter == j.inner_iter;
}
// !=
template<typename SegmentedContainer, typename T, typename U>
bool operator!=( const segmented_iterator<SegmentedContainer,T>& i,
const segmented_iterator<SegmentedContainer,U>& j ) {
return !(i==j);
}
template<typename T>
struct construct_by_default: tbb::internal::no_assign {
void construct(void*where) {new(where) T();} // C++ note: the () in T() ensure zero initialization.
construct_by_default( int ) {}
};
template<typename T>
struct construct_by_exemplar: tbb::internal::no_assign {
const T exemplar;
void construct(void*where) {new(where) T(exemplar);}
construct_by_exemplar( const T& t ) : exemplar(t) {}
#if __TBB_ETS_USE_CPP11
construct_by_exemplar( T&& t ) : exemplar(std::move(t)) {}
#endif
};
template<typename T, typename Finit>
struct construct_by_finit: tbb::internal::no_assign {
Finit f;
void construct(void* where) {new(where) T(f());}
construct_by_finit( const Finit& f_ ) : f(f_) {}
#if __TBB_ETS_USE_CPP11
construct_by_finit( Finit&& f_ ) : f(std::move(f_)) {}
#endif
};
#if __TBB_ETS_USE_CPP11
template<typename T, typename... P>
struct construct_by_args: tbb::internal::no_assign {
internal::stored_pack<P...> pack;
void construct(void* where) {
internal::call( [where](const typename strip<P>::type&... args ){
new(where) T(args...);
}, pack );
}
construct_by_args( P&& ... args ) : pack(std::forward<P>(args)...) {}
};
#endif
// storage for initialization function pointer
template<typename T>
class callback_base {
public:
// Clone *this
virtual callback_base* clone() const = 0;
// Destruct and free *this
virtual void destroy() = 0;
// Need virtual destructor to satisfy GCC compiler warning
virtual ~callback_base() { }
// Construct T at where
virtual void construct(void* where) = 0;
};
template <typename T, typename Constructor>
class callback_leaf: public callback_base<T>, Constructor {
#if __TBB_ETS_USE_CPP11
template<typename... P> callback_leaf( P&& ... params ) : Constructor(std::forward<P>(params)...) {}
#else
template<typename X> callback_leaf( const X& x ) : Constructor(x) {}
#endif
typedef typename tbb::tbb_allocator<callback_leaf> my_allocator_type;
/*override*/ callback_base<T>* clone() const {
return make(*this);
}
/*override*/ void destroy() {
my_allocator_type().destroy(this);
my_allocator_type().deallocate(this,1);
}
/*override*/ void construct(void* where) {
Constructor::construct(where);
}
public:
#if __TBB_ETS_USE_CPP11
template<typename... P>
static callback_base<T>* make( P&& ... params ) {
void* where = my_allocator_type().allocate(1);
return new(where) callback_leaf( std::forward<P>(params)... );
}
#else
template<typename X>
static callback_base<T>* make( const X& x ) {
void* where = my_allocator_type().allocate(1);
return new(where) callback_leaf(x);
}
#endif
};
//! Template for recording construction of objects in table
/** All maintenance of the space will be done explicitly on push_back,
and all thread local copies must be destroyed before the concurrent
vector is deleted.
The flag is_built is initialized to false. When the local is
successfully-constructed, set the flag to true. If the constructor
throws, the flag will be false.
*/
template<typename U>
struct ets_element {
tbb::aligned_space<U> my_space;
bool is_built;
ets_element() { is_built = false; } // not currently-built
U *value() { return my_space.begin(); }
void unconstruct() {
if(is_built) {
my_space.begin()->~U();
is_built = false;
}
}
~ets_element() {unconstruct();}
};
// A predicate that can be used for a compile-time compatibility check of ETS instances
// Ideally, it should have been declared inside the ETS class, but unfortunately
// in that case VS2013 does not enable the variadic constructor.
template<typename T, typename ETS> struct is_compatible_ets { static const bool value = false; };
template<typename T, typename U, typename A, ets_key_usage_type C>
struct is_compatible_ets< T, enumerable_thread_specific<U,A,C> > { static const bool value = internal::is_same_type<T,U>::value; };
#if __TBB_ETS_USE_CPP11
// A predicate that checks whether, for a variable 'foo' of type T, foo() is a valid expression
template <typename T>
class is_callable_no_args {
private:
typedef char yes[1];
typedef char no [2];
template<typename U> static yes& decide( decltype(declval<U>()())* );
template<typename U> static no& decide(...);
public:
static const bool value = (sizeof(decide<T>(NULL)) == sizeof(yes));
};
#endif
} // namespace internal
//! @endcond
//! The enumerable_thread_specific container
/** enumerable_thread_specific has the following properties:
- thread-local copies are lazily created, with default, exemplar or function initialization.
- thread-local copies do not move (during lifetime, and excepting clear()) so the address of a copy is invariant.
- the contained objects need not have operator=() defined if combine is not used.
- enumerable_thread_specific containers may be copy-constructed or assigned.
- thread-local copies can be managed by hash-table, or can be accessed via TLS storage for speed.
- outside of parallel contexts, the contents of all thread-local copies are accessible by iterator or using combine or combine_each methods
@par Segmented iterator
When the thread-local objects are containers with input_iterators defined, a segmented iterator may
be used to iterate over all the elements of all thread-local copies.
@par combine and combine_each
- Both methods are defined for enumerable_thread_specific.
- combine() requires the type T have operator=() defined.
- neither method modifies the contents of the object (though there is no guarantee that the applied methods do not modify the object.)
- Both are evaluated in serial context (the methods are assumed to be non-benign.)
@ingroup containers */
template <typename T,
typename Allocator=cache_aligned_allocator<T>,
ets_key_usage_type ETS_key_type=ets_no_key >
class enumerable_thread_specific: internal::ets_base<ETS_key_type> {
template<typename U, typename A, ets_key_usage_type C> friend class enumerable_thread_specific;
typedef internal::padded< internal::ets_element<T> > padded_element;
//! A generic range, used to create range objects from the iterators
template<typename I>
class generic_range_type: public blocked_range<I> {
public:
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef I iterator;
typedef ptrdiff_t difference_type;
generic_range_type( I begin_, I end_, size_t grainsize_ = 1) : blocked_range<I>(begin_,end_,grainsize_) {}
template<typename U>
generic_range_type( const generic_range_type<U>& r) : blocked_range<I>(r.begin(),r.end(),r.grainsize()) {}
generic_range_type( generic_range_type& r, split ) : blocked_range<I>(r,split()) {}
};
typedef typename Allocator::template rebind< padded_element >::other padded_allocator_type;
typedef tbb::concurrent_vector< padded_element, padded_allocator_type > internal_collection_type;
internal::callback_base<T> *my_construct_callback;
internal_collection_type my_locals;
/*override*/ void* create_local() {
padded_element* lref = &*my_locals.grow_by(1);
my_construct_callback->construct(lref->value());
lref->is_built = true;
return lref;
}
void unconstruct_locals() {
for(typename internal_collection_type::iterator cvi = my_locals.begin(); cvi != my_locals.end(); ++cvi) {
cvi->unconstruct();
}
}
typedef typename Allocator::template rebind< uintptr_t >::other array_allocator_type;
// _size is in bytes
/*override*/ void* create_array(size_t _size) {
size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t);
return array_allocator_type().allocate(nelements);
}
/*override*/ void free_array( void* _ptr, size_t _size) {
size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t);
array_allocator_type().deallocate( reinterpret_cast<uintptr_t *>(_ptr),nelements);
}
public:
//! Basic types
typedef Allocator allocator_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* pointer;
typedef const T* const_pointer;
typedef typename internal_collection_type::size_type size_type;
typedef typename internal_collection_type::difference_type difference_type;
// Iterator types
typedef typename internal::enumerable_thread_specific_iterator< internal_collection_type, value_type > iterator;
typedef typename internal::enumerable_thread_specific_iterator< internal_collection_type, const value_type > const_iterator;
// Parallel range types
typedef generic_range_type< iterator > range_type;
typedef generic_range_type< const_iterator > const_range_type;
//! Default constructor. Each local instance of T is default constructed.
enumerable_thread_specific() : my_construct_callback(
internal::callback_leaf<T,internal::construct_by_default<T> >::make(/*dummy argument*/0)
){}
//! Constructor with initializer functor. Each local instance of T is constructed by T(finit()).
template <typename Finit
#if __TBB_ETS_USE_CPP11
, typename = typename internal::enable_if<internal::is_callable_no_args<typename internal::strip<Finit>::type>::value>::type
#endif
>
enumerable_thread_specific( Finit finit ) : my_construct_callback(
internal::callback_leaf<T,internal::construct_by_finit<T,Finit> >::make( tbb::internal::move(finit) )
){}
//! Constructor with exemplar. Each local instance of T is copy-constructed from the exemplar.
enumerable_thread_specific( const T& exemplar ) : my_construct_callback(
internal::callback_leaf<T,internal::construct_by_exemplar<T> >::make( exemplar )
){}
#if __TBB_ETS_USE_CPP11
enumerable_thread_specific( T&& exemplar ) : my_construct_callback(
internal::callback_leaf<T,internal::construct_by_exemplar<T> >::make( std::move(exemplar) )
){}
//! Variadic constructor with initializer arguments. Each local instance of T is constructed by T(args...)
template <typename P1, typename... P,
typename = typename internal::enable_if<!internal::is_callable_no_args<typename internal::strip<P1>::type>::value
&& !internal::is_compatible_ets<T, typename internal::strip<P1>::type>::value
&& !internal::is_same_type<T, typename internal::strip<P1>::type>::value
>::type>
enumerable_thread_specific( P1&& arg1, P&& ... args ) : my_construct_callback(
internal::callback_leaf<T,internal::construct_by_args<T,P1,P...> >::make( std::forward<P1>(arg1), std::forward<P>(args)... )
){}
#endif
//! Destructor
~enumerable_thread_specific() {
my_construct_callback->destroy();
this->clear(); // deallocation before the derived class is finished destructing
// So free(array *) is still accessible
}
//! returns reference to local, discarding exists
reference local() {
bool exists;
return local(exists);
}
//! Returns reference to calling thread's local copy, creating one if necessary
reference local(bool& exists) {
void* ptr = this->table_lookup(exists);
return *(T*)ptr;
}
//! Get the number of local copies
size_type size() const { return my_locals.size(); }
//! true if there have been no local copies created
bool empty() const { return my_locals.empty(); }
//! begin iterator
iterator begin() { return iterator( my_locals, 0 ); }
//! end iterator
iterator end() { return iterator(my_locals, my_locals.size() ); }
//! begin const iterator
const_iterator begin() const { return const_iterator(my_locals, 0); }
//! end const iterator
const_iterator end() const { return const_iterator(my_locals, my_locals.size()); }
//! Get range for parallel algorithms
range_type range( size_t grainsize=1 ) { return range_type( begin(), end(), grainsize ); }
//! Get const range for parallel algorithms
const_range_type range( size_t grainsize=1 ) const { return const_range_type( begin(), end(), grainsize ); }
//! Destroys local copies
void clear() {
unconstruct_locals();
my_locals.clear();
this->table_clear();
// callback is not destroyed
// exemplar is not destroyed
}
private:
template<typename A2, ets_key_usage_type C2>
void internal_copy( const enumerable_thread_specific<T, A2, C2>& other);
public:
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific( const enumerable_thread_specific<T, Alloc, Cachetype>& other ) : internal::ets_base<ETS_key_type> ()
{
internal_copy(other);
}
enumerable_thread_specific( const enumerable_thread_specific& other ) : internal::ets_base<ETS_key_type> ()
{
internal_copy(other);
}
// TODO: add move constructors
private:
template<typename A2, ets_key_usage_type C2>
enumerable_thread_specific &
internal_assign(const enumerable_thread_specific<T, A2, C2>& other) {
if(static_cast<void *>( this ) != static_cast<const void *>( &other )) {
this->clear();
my_construct_callback->destroy();
my_construct_callback = 0;
internal_copy( other );
}
return *this;
}
public:
// assignment
enumerable_thread_specific& operator=(const enumerable_thread_specific& other) {
return internal_assign(other);
}
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const enumerable_thread_specific<T, Alloc, Cachetype>& other)
{
return internal_assign(other);
}
// TODO: add move assignments
// combine_func_t has signature T(T,T) or T(const T&, const T&)
template <typename combine_func_t>
T combine(combine_func_t f_combine) {
if(begin() == end()) {
internal::ets_element<T> location;
my_construct_callback->construct(location.value());
location.is_built = true;
return *location.value();
}
const_iterator ci = begin();
T my_result = *ci;
while(++ci != end())
my_result = f_combine( my_result, *ci );
return my_result;
}
// combine_func_t takes T by value or by [const] reference, and returns nothing
template <typename combine_func_t>
void combine_each(combine_func_t f_combine) {
for(iterator ci = begin(); ci != end(); ++ci) {
f_combine( *ci );
}
}
}; // enumerable_thread_specific
template <typename T, typename Allocator, ets_key_usage_type ETS_key_type>
template<typename A2, ets_key_usage_type C2>
void enumerable_thread_specific<T,Allocator,ETS_key_type>::internal_copy( const enumerable_thread_specific<T, A2, C2>& other) {
#if __TBB_ETS_USE_CPP11
__TBB_STATIC_ASSERT( (internal::is_compatible_ets<T, typename internal::strip<decltype(other)>::type>::value), "Maybe is_compatible_ets works incorrectly" );
#endif
// Initialize my_construct_callback first, so that it is valid even if rest of this routine throws an exception.
my_construct_callback = other.my_construct_callback->clone();
typedef internal::ets_base<ets_no_key> base;
__TBB_ASSERT(my_locals.size()==0,NULL);
this->table_reserve_for_copy( other );
for( base::array* r=other.my_root; r; r=r->next ) {
for( size_t i=0; i<r->size(); ++i ) {
base::slot& s1 = r->at(i);
if( !s1.empty() ) {
base::slot& s2 = this->table_find(s1.key);
if( s2.empty() ) {
void* lref = &*my_locals.grow_by(1);
s2.ptr = new(lref) T(*(T*)s1.ptr);
s2.key = s1.key;
} else {
// Skip the duplicate
}
}
}
}
}
template< typename Container >
class flattened2d {
// This intermediate typedef is to address issues with VC7.1 compilers
typedef typename Container::value_type conval_type;
public:
//! Basic types
typedef typename conval_type::size_type size_type;
typedef typename conval_type::difference_type difference_type;
typedef typename conval_type::allocator_type allocator_type;
typedef typename conval_type::value_type value_type;
typedef typename conval_type::reference reference;
typedef typename conval_type::const_reference const_reference;
typedef typename conval_type::pointer pointer;
typedef typename conval_type::const_pointer const_pointer;
typedef typename internal::segmented_iterator<Container, value_type> iterator;
typedef typename internal::segmented_iterator<Container, const value_type> const_iterator;
flattened2d( const Container &c, typename Container::const_iterator b, typename Container::const_iterator e ) :
my_container(const_cast<Container*>(&c)), my_begin(b), my_end(e) { }
flattened2d( const Container &c ) :
my_container(const_cast<Container*>(&c)), my_begin(c.begin()), my_end(c.end()) { }
iterator begin() { return iterator(*my_container) = my_begin; }
iterator end() { return iterator(*my_container) = my_end; }
const_iterator begin() const { return const_iterator(*my_container) = my_begin; }
const_iterator end() const { return const_iterator(*my_container) = my_end; }
size_type size() const {
size_type tot_size = 0;
for(typename Container::const_iterator i = my_begin; i != my_end; ++i) {
tot_size += i->size();
}
return tot_size;
}
private:
Container *my_container;
typename Container::const_iterator my_begin;
typename Container::const_iterator my_end;
};
template <typename Container>
flattened2d<Container> flatten2d(const Container &c, const typename Container::const_iterator b, const typename Container::const_iterator e) {
return flattened2d<Container>(c, b, e);
}
template <typename Container>
flattened2d<Container> flatten2d(const Container &c) {
return flattened2d<Container>(c);
}
} // interface6
namespace internal {
using interface6::internal::segmented_iterator;
}
using interface6::enumerable_thread_specific;
using interface6::flattened2d;
using interface6::flatten2d;
} // namespace tbb
#endif
|