This file is indexed.

/usr/include/tetgen.h is in libtet1.5-dev 1.5.0-4+b2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// TetGen                                                                    //
//                                                                           //
// A Quality Tetrahedral Mesh Generator and A 3D Delaunay Triangulator       //
//                                                                           //
// Version 1.5                                                               //
// November 4, 2013                                                          //
//                                                                           //
// TetGen is freely available through the website: http://www.tetgen.org.    //
//   It may be copied, modified, and redistributed for non-commercial use.   //
//   Please consult the file LICENSE for the detailed copyright notices.     //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////


#ifndef tetgenH
#define tetgenH

// To compile TetGen as a library instead of an executable program, define
//   the TETLIBRARY symbol.

// #define TETLIBRARY

// Uncomment the following line to disable assert macros. These macros were
//   inserted in the code where I hoped to catch bugs. They may slow down the
//   speed of TetGen.

// #define NDEBUG

// TetGen default uses the double precision (64 bit) for a real number. 
//   Alternatively, one can use the single precision (32 bit) 'float' if the
//   memory is limited.

#define REAL double  // #define REAL float

// Maximum number of characters in a file name (including the null).

#define FILENAMESIZE 1024

// Maximum number of chars in a line read from a file (including the null).

#define INPUTLINESIZE 2048

// TetGen only uses the C standard library.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <assert.h> 

// The types 'intptr_t' and 'uintptr_t' are signed and unsigned integer types,
//   respectively. They are guaranteed to be the same width as a pointer.
//   They are defined in <stdint.h> by the C99 Standard. However, Microsoft 
//   Visual C++ 2003 -- 2008 (Visual C++ 7.1 - 9) doesn't ship with this header
//   file. In such case, we can define them by ourself. 
// Update (learned from Stack Overflow): Visual Studio 2010 and Visual C++ 2010
//   Express both have stdint.h

// The following piece of code was provided by Steven Johnson (MIT). Define the
//   symbol _MSC_VER if you are using Microsoft Visual C++. Moreover, define 
//   the _WIN64 symbol if you are running TetGen on Win64 systems.

#ifdef _MSC_VER // Microsoft Visual C++
#  ifdef _WIN64
     typedef __int64 intptr_t;
     typedef unsigned __int64 uintptr_t;
#  else // not _WIN64
     typedef int intptr_t;
     typedef unsigned int uintptr_t;
#  endif
#else // not Visual C++
#  include <stdint.h>
#endif

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// tetgenio                                                                  //
//                                                                           //
// A structure for transferring data into and out of TetGen's mesh structure,//
// 'tetgenmesh' (declared below).                                            //
//                                                                           //
// The input of TetGen is either a 3D point set, or a 3D piecewise linear    //
// complex (PLC), or a tetrahedral mesh.  Depending on the input object and  //
// the specified options, the output of TetGen is either a Delaunay (or wei- //
// ghted Delaunay) tetrahedralization, or a constrained (Delaunay) tetrahed- //
// ralization, or a quality tetrahedral mesh.                                //
//                                                                           //
// A piecewise linear complex (PLC) represents a 3D polyhedral domain with   //
// possibly internal boundaries(subdomains). It is introduced in [Miller et  //
// al, 1996]. Basically it is a set of "cells", i.e., vertices, edges, poly- //
// gons, and polyhedra, and the intersection of any two of its cells is the  //
// union of other cells of it.                                               //
//                                                                           //
// TetGen uses a set of files to describe the inputs and outputs. Each file  //
// is identified from its file extension (.node, .ele, .face, .edge, etc).   //
//                                                                           //
// The 'tetgenio' structure is a collection of arrays of data, i.e., points, //
// facets, tetrahedra, and so forth. It contains functions to read and write //
// (input and output) files of TetGen as well as other supported mesh files. //
//                                                                           //
// Once an object of tetgenio is declared,  no array is created. One has to  //
// allocate enough memory for them. On deletion of this object, the memory   //
// occupied by these arrays needs to be freed.  The routine deinitialize()   //
// will be automatically called.  It frees the memory for an array if it is  //
// not a NULL. Note that it assumes that the memory is allocated by the C++  //
// "new" operator.  Otherwise, the user is responsible to free them and all  //
// pointers must be NULL before the call of the destructor.                  //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

class tetgenio {

public:

  // A "polygon" describes a simple polygon (no holes). It is not necessarily
  //   convex. Each polygon contains a number of corners (points) and the same
  //   number of sides (edges).  The points of the polygon must be given in
  //   either counterclockwise or clockwise order and they form a ring, so 
  //   every two consecutive points forms an edge of the polygon.
  typedef struct {
    int *vertexlist;
    int numberofvertices;
  } polygon;

  // A "facet" describes a polygonal region possibly with holes, edges, and 
  //   points floating in it.  Each facet consists of a list of polygons and
  //   a list of hole points (which lie strictly inside holes).
  typedef struct {
    polygon *polygonlist;
    int numberofpolygons;
    REAL *holelist;
    int numberofholes;
  } facet;

  // A "voroedge" is an edge of the Voronoi diagram. It corresponds to a
  //   Delaunay face.  Each voroedge is either a line segment connecting
  //   two Voronoi vertices or a ray starting from a Voronoi vertex to an
  //   "infinite vertex".  'v1' and 'v2' are two indices pointing to the
  //   list of Voronoi vertices. 'v1' must be non-negative, while 'v2' may
  //   be -1 if it is a ray, in this case, the unit normal of this ray is
  //   given in 'vnormal'. 
  typedef struct {
    int v1, v2;
    REAL vnormal[3];
  } voroedge;

  // A "vorofacet" is an facet of the Voronoi diagram. It corresponds to a
  //   Delaunay edge.  Each Voronoi facet is a convex polygon formed by a
  //   list of Voronoi edges, it may not be closed.  'c1' and 'c2' are two
  //   indices pointing into the list of Voronoi cells, i.e., the two cells
  //   share this facet.  'elist' is an array of indices pointing into the
  //   list of Voronoi edges, 'elist[0]' saves the number of Voronoi edges
  //   (including rays) of this facet.
  typedef struct {
    int c1, c2;
    int *elist;
  } vorofacet;


  // Additional parameters associated with an input (or mesh) vertex.
  //   These informations are provided by CAD libraries. 
  typedef struct {
    REAL uv[2];
    int tag;
    int type; // 0, 1, or 2.
  } pointparam;

  // Callback functions for meshing PSCs.
  typedef REAL (* GetVertexParamOnEdge)(void*, int, int);
  typedef void (* GetSteinerOnEdge)(void*, int, REAL, REAL*);
  typedef void (* GetVertexParamOnFace)(void*, int, int, REAL*);
  typedef void (* GetEdgeSteinerParamOnFace)(void*, int, REAL, int, REAL*);
  typedef void (* GetSteinerOnFace)(void*, int, REAL*, REAL*);

  // A callback function for mesh refinement.
  typedef bool (* TetSizeFunc)(REAL*, REAL*, REAL*, REAL*, REAL*, REAL);

  // Items are numbered starting from 'firstnumber' (0 or 1), default is 0.
  int firstnumber; 

  // Dimension of the mesh (2 or 3), default is 3.
  int mesh_dim;

  // Does the lines in .node file contain index or not, default is 1.
  int useindex;

  // 'pointlist':  An array of point coordinates.  The first point's x
  //   coordinate is at index [0] and its y coordinate at index [1], its
  //   z coordinate is at index [2], followed by the coordinates of the
  //   remaining points.  Each point occupies three REALs. 
  // 'pointattributelist':  An array of point attributes.  Each point's
  //   attributes occupy 'numberofpointattributes' REALs.
  // 'pointmtrlist': An array of metric tensors at points. Each point's
  //   tensor occupies 'numberofpointmtr' REALs.
  // 'pointmarkerlist':  An array of point markers; one integer per point.
  REAL *pointlist;
  REAL *pointattributelist;
  REAL *pointmtrlist;
  int  *pointmarkerlist;
  pointparam *pointparamlist;
  int numberofpoints;
  int numberofpointattributes;
  int numberofpointmtrs;
 
  // 'tetrahedronlist':  An array of tetrahedron corners.  The first 
  //   tetrahedron's first corner is at index [0], followed by its other 
  //   corners, followed by six nodes on the edges of the tetrahedron if the
  //   second order option (-o2) is applied. Each tetrahedron occupies
  //   'numberofcorners' ints.  The second order nodes are ouput only. 
  // 'tetrahedronattributelist':  An array of tetrahedron attributes.  Each
  //   tetrahedron's attributes occupy 'numberoftetrahedronattributes' REALs.
  // 'tetrahedronvolumelist':  An array of constraints, i.e. tetrahedron's
  //   volume; one REAL per element.  Input only.
  // 'neighborlist':  An array of tetrahedron neighbors; 4 ints per element. 
  //   Output only.
  int  *tetrahedronlist;
  REAL *tetrahedronattributelist;
  REAL *tetrahedronvolumelist;
  int  *neighborlist;
  int numberoftetrahedra;
  int numberofcorners;
  int numberoftetrahedronattributes;

  // 'facetlist':  An array of facets.  Each entry is a structure of facet.
  // 'facetmarkerlist':  An array of facet markers; one int per facet.
  facet *facetlist;
  int *facetmarkerlist;
  int numberoffacets;

  // 'holelist':  An array of holes (in volume).  Each hole is given by a
  //   seed (point) which lies strictly inside it. The first seed's x, y and z
  //   coordinates are at indices [0], [1] and [2], followed by the
  //   remaining seeds.  Three REALs per hole. 
  REAL *holelist;
  int numberofholes;

  // 'regionlist': An array of regions (subdomains).  Each region is given by
  //   a seed (point) which lies strictly inside it. The first seed's x, y and
  //   z coordinates are at indices [0], [1] and [2], followed by the regional
  //   attribute at index [3], followed by the maximum volume at index [4]. 
  //   Five REALs per region.
  // Note that each regional attribute is used only if you select the 'A'
  //   switch, and each volume constraint is used only if you select the
  //   'a' switch (with no number following).
  REAL *regionlist;
  int numberofregions;

  // 'facetconstraintlist':  An array of facet constraints.  Each constraint
  //   specifies a maximum area bound on the subfaces of that facet.  The
  //   first facet constraint is given by a facet marker at index [0] and its
  //   maximum area bound at index [1], followed by the remaining facet con-
  //   straints. Two REALs per facet constraint.  Note: the facet marker is
  //   actually an integer.
  REAL *facetconstraintlist;
  int numberoffacetconstraints;

  // 'segmentconstraintlist': An array of segment constraints. Each constraint 
  //   specifies a maximum length bound on the subsegments of that segment.
  //   The first constraint is given by the two endpoints of the segment at
  //   index [0] and [1], and the maximum length bound at index [2], followed
  //   by the remaining segment constraints.  Three REALs per constraint. 
  //   Note the segment endpoints are actually integers.
  REAL *segmentconstraintlist;
  int numberofsegmentconstraints;


  // 'trifacelist':  An array of face (triangle) corners.  The first face's
  //   three corners are at indices [0], [1] and [2], followed by the remaining
  //   faces.  Three ints per face.
  // 'trifacemarkerlist':  An array of face markers; one int per face.
  // 'o2facelist':  An array of second order nodes (on the edges) of the face.
  //   It is output only if the second order option (-o2) is applied. The
  //   first face's three second order nodes are at [0], [1], and [2],
  //   followed by the remaining faces.  Three ints per face.
  // 'adjtetlist':  An array of adjacent tetrahedra to the faces. The first
  //   face's two adjacent tetrahedra are at indices [0] and [1], followed by
  //   the remaining faces.  A '-1' indicates outside (no adj. tet). This list
  //   is output when '-nn' switch is used. Output only.
  int *trifacelist;
  int *trifacemarkerlist;
  int *o2facelist;
  int *adjtetlist;
  int numberoftrifaces;

  // 'edgelist':  An array of edge endpoints.  The first edge's endpoints
  //   are at indices [0] and [1], followed by the remaining edges.
  //   Two ints per edge.
  // 'edgemarkerlist':  An array of edge markers; one int per edge.
  // 'o2edgelist':  An array of midpoints of edges. It is output only if the
  //   second order option (-o2) is applied. One int per edge.
  // 'edgeadjtetlist':  An array of adjacent tetrahedra to the edges.  One
  //   tetrahedron (an integer) per edge.
  int *edgelist;
  int *edgemarkerlist;
  int *o2edgelist;
  int *edgeadjtetlist;
  int numberofedges;

  // 'vpointlist':  An array of Voronoi vertex coordinates (like pointlist).
  // 'vedgelist':  An array of Voronoi edges.  Each entry is a 'voroedge'.
  // 'vfacetlist':  An array of Voronoi facets. Each entry is a 'vorofacet'.
  // 'vcelllist':  An array of Voronoi cells.  Each entry is an array of
  //   indices pointing into 'vfacetlist'. The 0th entry is used to store
  //   the length of this array.
  REAL *vpointlist;
  voroedge *vedgelist;
  vorofacet *vfacetlist;
  int **vcelllist;
  int numberofvpoints;
  int numberofvedges;
  int numberofvfacets;
  int numberofvcells;

  // Variable (and callback functions) for meshing PSCs.
  void *geomhandle;
  GetVertexParamOnEdge getvertexparamonedge;
  GetSteinerOnEdge getsteineronedge;
  GetVertexParamOnFace getvertexparamonface;
  GetEdgeSteinerParamOnFace getedgesteinerparamonface;
  GetSteinerOnFace getsteineronface;

  // A callback function.
  TetSizeFunc tetunsuitable;

  // Input & output routines.
  bool load_node_call(FILE* infile, int markers, int uvflag, char*);
  bool load_node(char*);
  bool load_edge(char*);
  bool load_face(char*);
  bool load_tet(char*);
  bool load_vol(char*);
  bool load_var(char*);
  bool load_mtr(char*);
  bool load_pbc(char*);
  bool load_poly(char*);
  bool load_off(char*);
  bool load_ply(char*);
  bool load_stl(char*);
  bool load_vtk(char*);
  bool load_medit(char*, int);
  bool load_plc(char*, int);
  bool load_tetmesh(char*, int);
  void save_nodes(char*);
  void save_elements(char*);
  void save_faces(char*);
  void save_edges(char*);
  void save_neighbors(char*);
  void save_poly(char*);
  void save_faces2smesh(char*);

  // Read line and parse string functions.
  char *readline(char* string, FILE* infile, int *linenumber);
  char *findnextfield(char* string);
  char *readnumberline(char* string, FILE* infile, char* infilename);
  char *findnextnumber(char* string);

  static void init(polygon* p) {
    p->vertexlist = (int *) NULL;
    p->numberofvertices = 0;
  }

  static void init(facet* f) {
    f->polygonlist = (polygon *) NULL;
    f->numberofpolygons = 0;
    f->holelist = (REAL *) NULL;
    f->numberofholes = 0;
  }

  // Initialize routine.
  void initialize()
  {
    firstnumber = 0;
    mesh_dim = 3;
    useindex = 1;

    pointlist = (REAL *) NULL;
    pointattributelist = (REAL *) NULL;
    pointmtrlist = (REAL *) NULL;
    pointmarkerlist = (int *) NULL;
    pointparamlist = (pointparam *) NULL;
    numberofpoints = 0;
    numberofpointattributes = 0;
    numberofpointmtrs = 0;

    tetrahedronlist = (int *) NULL;
    tetrahedronattributelist = (REAL *) NULL;
    tetrahedronvolumelist = (REAL *) NULL;
    neighborlist = (int *) NULL;
    numberoftetrahedra = 0;
    numberofcorners = 4; 
    numberoftetrahedronattributes = 0;

    trifacelist = (int *) NULL;
    trifacemarkerlist = (int *) NULL;
    o2facelist = (int *) NULL;
    adjtetlist = (int *) NULL;
    numberoftrifaces = 0; 

    edgelist = (int *) NULL;
    edgemarkerlist = (int *) NULL;
    o2edgelist = (int *) NULL;
    edgeadjtetlist = (int *) NULL;
    numberofedges = 0;

    facetlist = (facet *) NULL;
    facetmarkerlist = (int *) NULL;
    numberoffacets = 0; 

    holelist = (REAL *) NULL;
    numberofholes = 0;

    regionlist = (REAL *) NULL;
    numberofregions = 0;

    facetconstraintlist = (REAL *) NULL;
    numberoffacetconstraints = 0;
    segmentconstraintlist = (REAL *) NULL;
    numberofsegmentconstraints = 0;


    vpointlist = (REAL *) NULL;
    vedgelist = (voroedge *) NULL;
    vfacetlist = (vorofacet *) NULL; 
    vcelllist = (int **) NULL; 
    numberofvpoints = 0;
    numberofvedges = 0;
    numberofvfacets = 0;
    numberofvcells = 0;

    tetunsuitable = NULL;

    geomhandle = NULL;
    getvertexparamonedge = NULL;
    getsteineronedge = NULL;
    getvertexparamonface = NULL;
    getedgesteinerparamonface = NULL;
    getsteineronface = NULL;
  }

  // Free the memory allocated in 'tetgenio'.  Note that it assumes that the 
  //   memory was allocated by the "new" operator (C++).
  void deinitialize()
  {
    int i, j;

    if (pointlist != (REAL *) NULL) {
      delete [] pointlist;
    }
    if (pointattributelist != (REAL *) NULL) {
      delete [] pointattributelist;
    }
    if (pointmtrlist != (REAL *) NULL) {
      delete [] pointmtrlist;
    }
    if (pointmarkerlist != (int *) NULL) {
      delete [] pointmarkerlist;
    }
    if (pointparamlist != (pointparam *) NULL) {
      delete [] pointparamlist;
    }

    if (tetrahedronlist != (int *) NULL) {
      delete [] tetrahedronlist;
    }
    if (tetrahedronattributelist != (REAL *) NULL) {
      delete [] tetrahedronattributelist;
    }
    if (tetrahedronvolumelist != (REAL *) NULL) {
      delete [] tetrahedronvolumelist;
    }
    if (neighborlist != (int *) NULL) {
      delete [] neighborlist;
    }

    if (trifacelist != (int *) NULL) {
      delete [] trifacelist;
    }
    if (trifacemarkerlist != (int *) NULL) {
      delete [] trifacemarkerlist;
    }
    if (o2facelist != (int *) NULL) {
      delete [] o2facelist;
    }
    if (adjtetlist != (int *) NULL) {
      delete [] adjtetlist;
    }

    if (edgelist != (int *) NULL) {
      delete [] edgelist;
    }
    if (edgemarkerlist != (int *) NULL) {
      delete [] edgemarkerlist;
    }
    if (o2edgelist != (int *) NULL) {
      delete [] o2edgelist;
    }
    if (edgeadjtetlist != (int *) NULL) {
      delete [] edgeadjtetlist;
    }

    if (facetlist != (facet *) NULL) {
      facet *f;
      polygon *p;
      for (i = 0; i < numberoffacets; i++) {
        f = &facetlist[i];
        for (j = 0; j < f->numberofpolygons; j++) {
          p = &f->polygonlist[j];
          delete [] p->vertexlist;
        }
        delete [] f->polygonlist;
        if (f->holelist != (REAL *) NULL) {
          delete [] f->holelist;
        }
      }
      delete [] facetlist;
    }
    if (facetmarkerlist != (int *) NULL) {
      delete [] facetmarkerlist;
    }

    if (holelist != (REAL *) NULL) {
      delete [] holelist;
    }
    if (regionlist != (REAL *) NULL) {
      delete [] regionlist;
    }
    if (facetconstraintlist != (REAL *) NULL) {
      delete [] facetconstraintlist;
    }
    if (segmentconstraintlist != (REAL *) NULL) {
      delete [] segmentconstraintlist;
    }
    if (vpointlist != (REAL *) NULL) {
      delete [] vpointlist;
    }
    if (vedgelist != (voroedge *) NULL) {
      delete [] vedgelist;
    }
    if (vfacetlist != (vorofacet *) NULL) {
      for (i = 0; i < numberofvfacets; i++) {
        delete [] vfacetlist[i].elist;
      }
      delete [] vfacetlist;
    }
    if (vcelllist != (int **) NULL) {
      for (i = 0; i < numberofvcells; i++) {
        delete [] vcelllist[i];
      }
      delete [] vcelllist;
    }
  }

  // Constructor & destructor.
  tetgenio() {initialize();}
  ~tetgenio() {deinitialize();}

}; // class tetgenio

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// tetgenbehavior                                                            //
//                                                                           //
// A structure for maintaining the switches and parameters used by TetGen's  //
// mesh data structure and algorithms.                                       //
//                                                                           //
// All switches and parameters are initialized with default values. They can //
// be set by the command line arguments (a list of strings) of TetGen.       //
//                                                                           //
// NOTE: Some of the switches are incompatible. While some may depend on     //
// other switches.  The routine parse_commandline() sets the switches from   //
// the command line (a list of strings) and checks the consistency of the    //
// applied switches.                                                         //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

class tetgenbehavior {

public:

  // Switches of TetGen. 
  int plc;                                                         // '-p', 0.
  int psc;                                                         // '-s', 0.
  int refine;                                                      // '-r', 0.
  int quality;                                                     // '-q', 0.
  int nobisect;                                                    // '-Y', 0.
  int coarsen;                                                     // '-R', 0.
  int weighted;                                                    // '-w', 0.
  int brio_hilbert;                                                // '-b', 1.
  int incrflip;                                                    // '-l', 0.
  int flipinsert;                                                  // '-L', 0.
  int metric;                                                      // '-m', 0.
  int varvolume;                                                   // '-a', 0.
  int fixedvolume;                                                 // '-a', 0.
  int regionattrib;                                                // '-A', 0.
  int conforming;                                                  // '-D', 0.
  int insertaddpoints;                                             // '-i', 0.
  int diagnose;                                                    // '-d', 0.
  int convex;                                                      // '-c', 0.
  int nomergefacet;                                                // '-M', 0.
  int nomergevertex;                                               // '-M', 0.
  int noexact;                                                     // '-X', 0.
  int nostaticfilter;                                              // '-X', 0.
  int zeroindex;                                                   // '-z', 0.
  int facesout;                                                    // '-f', 0.
  int edgesout;                                                    // '-e', 0.
  int neighout;                                                    // '-n', 0.
  int voroout;                                                     // '-v', 0.
  int meditview;                                                   // '-g', 0.
  int vtkview;                                                     // '-k', 0.
  int nobound;                                                     // '-B', 0.
  int nonodewritten;                                               // '-N', 0.
  int noelewritten;                                                // '-E', 0.
  int nofacewritten;                                               // '-F', 0.
  int noiterationnum;                                              // '-I', 0.
  int nojettison;                                                  // '-J', 0.
  int reversetetori;                                               // '-R', 0.
  int docheck;                                                     // '-C', 0.
  int quiet;                                                       // '-Q', 0.
  int verbose;                                                     // '-V', 0.

  // Parameters of TetGen. 
  int vertexperblock;                                           // '-x', 4092.
  int tetrahedraperblock;                                       // '-x', 8188.
  int shellfaceperblock;                                        // '-x', 2044.
  int nobisect_param;                                              // '-Y', 2.
  int addsteiner_algo;                                            // '-Y/', 1.
  int coarsen_param;                                               // '-R', 0.
  int weighted_param;                                              // '-w', 0.
  int fliplinklevel;                                                    // -1.
  int flipstarsize;                                                     // -1.
  int fliplinklevelinc;                                                 //  1.
  int reflevel;                                                    // '-D', 3.
  int optlevel;                                                    // '-O', 2.
  int optscheme;                                                   // '-O', 7.
  int delmaxfliplevel;                                                   // 1.
  int order;                                                       // '-o', 1.
  int steinerleft;                                                 // '-S', 0.
  int no_sort;                                                           // 0.
  int hilbert_order;                                           // '-b///', 52.
  int hilbert_limit;                                             // '-b//'  8.
  int brio_threshold;                                              // '-b' 64.
  REAL brio_ratio;                                             // '-b/' 0.125.
  REAL facet_ang_tol;                                          // '-p', 179.9.
  REAL maxvolume;                                               // '-a', -1.0.
  REAL minratio;                                                 // '-q', 0.0.
  REAL mindihedral;                                              // '-q', 5.0.
  REAL optmaxdihedral;                                               // 165.0.
  REAL optminsmtdihed;                                               // 179.0.
  REAL optminslidihed;                                               // 179.0.  
  REAL epsilon;                                               // '-T', 1.0e-8.
  REAL minedgelength;                                                  // 0.0.
  REAL coarsen_percent;                                         // -R1/#, 1.0.

  // Strings of command line arguments and input/output file names.
  char commandline[1024];
  char infilename[1024];
  char outfilename[1024];
  char addinfilename[1024];
  char bgmeshfilename[1024];

  // The input object of TetGen. They are recognized by either the input 
  //   file extensions or by the specified options. 
  // Currently the following objects are supported:
  //   - NODES, a list of nodes (.node); 
  //   - POLY, a piecewise linear complex (.poly or .smesh); 
  //   - OFF, a polyhedron (.off, Geomview's file format); 
  //   - PLY, a polyhedron (.ply, file format from gatech, only ASCII);
  //   - STL, a surface mesh (.stl, stereolithography format);
  //   - MEDIT, a surface mesh (.mesh, Medit's file format); 
  //   - MESH, a tetrahedral mesh (.ele).
  // If no extension is available, the imposed command line switch
  //   (-p or -r) implies the object. 
  enum objecttype {NODES, POLY, OFF, PLY, STL, MEDIT, VTK, MESH} object;


  void syntax();
  void usage();

  // Command line parse routine.
  bool parse_commandline(int argc, char **argv);
  bool parse_commandline(char *switches) {
    return parse_commandline(0, &switches);
  }

  // Initialize all variables.
  tetgenbehavior()
  {
    plc = 0;
    psc = 0;
    refine = 0;
    quality = 0;
    nobisect = 0;
    coarsen = 0;
    metric = 0;
    weighted = 0;
    brio_hilbert = 1;
    incrflip = 0;
    flipinsert = 0;
    varvolume = 0;
    fixedvolume = 0;
    noexact = 0;
    nostaticfilter = 0;
    insertaddpoints = 0;
    regionattrib = 0;
    conforming = 0;
    diagnose = 0;
    convex = 0;
    zeroindex = 0;
    facesout = 0;
    edgesout = 0;
    neighout = 0;
    voroout = 0;
    meditview = 0;
    vtkview = 0;
    nobound = 0;
    nonodewritten = 0;
    noelewritten = 0;
    nofacewritten = 0;
    noiterationnum = 0;
    nomergefacet = 0;
    nomergevertex = 0;
    nojettison = 0;
    reversetetori = 0;
    docheck = 0;
    quiet = 0;
    verbose = 0;

    vertexperblock = 4092;
    tetrahedraperblock = 8188;
    shellfaceperblock = 4092;
    nobisect_param = 2;
    addsteiner_algo = 1;
    coarsen_param = 0;
    weighted_param = 0;
    fliplinklevel = -1; // No limit on linklevel.
    flipstarsize = -1;  // No limit on flip star size.
    fliplinklevelinc = 1;
    reflevel = 3;
    optscheme = 7;  // 1 & 2 & 4, // min_max_dihedral.
    optlevel = 2;
    delmaxfliplevel = 1;
    order = 1;
    steinerleft = -1;
    no_sort = 0;
    hilbert_order = 52; //-1;
    hilbert_limit = 8;
    brio_threshold = 64;
    brio_ratio = 0.125;
    facet_ang_tol = 179.9;
    maxvolume = -1.0;
    minratio = 2.0;
    mindihedral = 0.0; // 5.0; 
    optmaxdihedral = 165.00; // without -q, default is 179.0
    optminsmtdihed = 179.00; // without -q, default is 179.999
    optminslidihed = 179.00; // without -q, default is 179.999
    epsilon = 1.0e-8;
    minedgelength = 0.0;
    coarsen_percent = 1.0;
    object = NODES;

    commandline[0] = '\0';
    infilename[0] = '\0';
    outfilename[0] = '\0';
    addinfilename[0] = '\0';
    bgmeshfilename[0] = '\0';

  }

}; // class tetgenbehavior

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Robust Geometric predicates                                               //
//                                                                           //
// Geometric predicates are simple tests of spatial relations of a set of d- //
// dimensional points, such as the orientation test and the point-in-sphere  //
// test. Each of these tests is performed by evaluating the sign of a deter- //
// minant of a matrix whose entries are the coordinates of these points.  If //
// the computation is performed by using the floating-point numbers, e.g.,   //
// the single or double precision numbers in C/C++, roundoff error may cause //
// an incorrect result. This may either lead to a wrong result or eventually //
// lead to a failure of the program.  Computing the predicates exactly will  //
// avoid the error and make the program robust.                              //
//                                                                           //
// The following routines are the robust geometric predicates for 3D orient- //
// ation test and point-in-sphere test.  They were implemented by Shewchuk.  //
// The source code are generously provided by him in the public domain,      //
// http://www.cs.cmu.edu/~quake/robust.html. predicates.cxx is a C++ version //
// of the original C code.                                                   //
//                                                                           //
// The original predicates of Shewchuk only use "dynamic filters", i.e., it  //
// computes the error at run time step by step. TetGen first adds a "static  //
// filter" in each predicate. It estimates the maximal possible error in all //
// cases.  So it can safely and quickly answer many easy cases.              //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

void exactinit(int, int, int, REAL, REAL, REAL);
REAL orient3d(REAL *pa, REAL *pb, REAL *pc, REAL *pd);
REAL insphere(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe);
REAL orient4d(REAL *pa, REAL *pb, REAL *pc, REAL *pd, REAL *pe,
              REAL ah, REAL bh, REAL ch, REAL dh, REAL eh);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// tetgenmesh                                                                //
//                                                                           //
// A structure for creating and updating tetrahedral meshes.                 //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

class tetgenmesh {

public:

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh data structure                                                       //
//                                                                           //
// A tetrahedral mesh T of a 3D piecewise linear complex (PLC) X is a 3D     //
// simplicial complex whose underlying space is equal to the space of X.  T  //
// contains a 2D subcomplex S which is a triangular mesh of the boundary of  //
// X. S contains a 1D subcomplex L which is a linear mesh of the boundary of //
// S. Faces and edges in S and L are respectively called subfaces and segme- //
// nts to distinguish them from others in T.                                 //
//                                                                           //
// TetGen stores the tetrahedra and vertices of T. The basic structure of a  //
// tetrahedron contains pointers to its vertices and adjacent tetrahedra. A  //
// vertex stores its x-, y-, and z-coordinates, and a pointer to a tetrahed- //
// ron containing it. Both tetrahedra and vertices may contain user data.    // 
//                                                                           //
// Each face of T belongs to either two tetrahedra or one tetrahedron. In    //
// the latter case, the face is an exterior boundary face of T.  TetGen adds //
// fictitious tetrahedra (one-to-one) at such faces, and connects them to an //
// "infinite vertex" (which has no geometric coordinates).  One can imagine  //
// such a vertex lies in 4D space and is visible by all exterior boundary    //
// faces.  The extended set of tetrahedra (including the infinite vertex) is //
// a tetrahedralization of a 3-pseudomanifold without boundary.  It has the  //
// property that every face is shared by exactly two tetrahedra.             // 
//                                                                           //
// The current version of TetGen stores explicitly the subfaces and segments //
// (which are in surface mesh S and the linear mesh L), respectively.  Extra //
// pointers are allocated in tetrahedra and subfaces to point each others.   //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // The tetrahedron data structure.  It includes the following fields:
  //   - a list of four adjoining tetrahedra;
  //   - a list of four vertices;
  //   - a pointer to a list of four subfaces (optional, for -p switch);
  //   - a pointer to a list of six segments  (optional, for -p switch);
  //   - a list of user-defined floating-point attributes (optional);
  //   - a volume constraint (optional, for -a switch);
  //   - an integer of element marker (and flags);
  // The structure of a tetrahedron is an array of pointers.  Its actual size
  //   (the length of the array) is determined at runtime.

  typedef REAL **tetrahedron;

  // The subface data structure.  It includes the following fields:
  //   - a list of three adjoining subfaces;
  //   - a list of three vertices;
  //   - a list of three adjoining segments;
  //   - two adjoining tetrahedra;
  //   - an area constraint (optional, for -q switch);
  //   - an integer for boundary marker;
  //   - an integer for type, flags, etc.

  typedef REAL **shellface;

  // The point data structure.  It includes the following fields:
  //   - x, y and z coordinates;
  //   - a list of user-defined point attributes (optional);
  //   - u, v coordinates (optional, for -s switch);
  //   - a metric tensor (optional, for -q or -m switch);
  //   - a pointer to an adjacent tetrahedron;
  //   - a pointer to a parent (or a duplicate) point;
  //   - a pointer to an adjacent subface or segment (optional, -p switch);
  //   - a pointer to a tet in background mesh (optional, for -m switch);
  //   - an integer for boundary marker (point index);
  //   - an integer for point type (and flags).
  //   - an integer for geometry tag (optional, for -s switch).
  // The structure of a point is an array of REALs.  Its acutal size is 
  //   determined at the runtime.

  typedef REAL *point;

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Handles                                                                   //
//                                                                           //
// Navigation and manipulation in a tetrahedralization are accomplished by   //
// operating on structures referred as ``handles". A handle is a pair (t,v), //
// where t is a pointer to a tetrahedron, and v is a 4-bit integer, in the   //
// range from 0 to 11. v is called the ``version'' of a tetrahedron, it rep- //
// resents a directed edge of a specific face of the tetrahedron.            //
//                                                                           //
// There are 12 even permutations of the four vertices, each of them corres- //
// ponds to a directed edge (a version) of the tetrahedron.  The 12 versions //
// can be grouped into 4 distinct ``edge rings'' in 4 ``oriented faces'' of  //
// this tetrahedron.  One can encode each version (a directed edge) into a   //
// 4-bit integer such that the two upper bits encode the index (from 0 to 2) //
// of this edge in the edge ring, and the two lower bits encode the index (  //
// from 0 to 3) of the oriented face which contains this edge.               //  
//                                                                           //
// The four vertices of a tetrahedron are indexed from 0 to 3 (according to  //
// their storage in the data structure).  Give each face the same index as   //
// the node opposite it in the tetrahedron.  Denote the edge connecting face //
// i to face j as i/j. We number the twelve versions as follows:             //
//                                                                           //
//           |   edge 0     edge 1     edge 2                                //
//   --------|--------------------------------                               //
//    face 0 |   0 (0/1)    4 (0/3)    8 (0/2)                               //
//    face 1 |   1 (1/2)    5 (1/3)    9 (1/0)                               //
//    face 2 |   2 (2/3)    6 (2/1)   10 (2/0)                               //
//    face 3 |   3 (3/0)    7 (3/1)   11 (3/2)                               //
//                                                                           //
// Similarly, navigation and manipulation in a (boundary) triangulation are  //
// done by using handles of triangles. Each handle is a pair (s, v), where s //
// is a pointer to a triangle, and v is a version in the range from 0 to 5.  //
// Each version corresponds to a directed edge of this triangle.             //
//                                                                           //
// Number the three vertices of a triangle from 0 to 2 (according to their   //
// storage in the data structure). Give each edge the same index as the node //
// opposite it in the triangle. The six versions of a triangle are:          //
//                                                                           //
//                 | edge 0   edge 1   edge 2                                //
//  ---------------|--------------------------                               //
//   ccw orieation |   0        2        4                                   //
//    cw orieation |   1        3        5                                   //
//                                                                           //
// In the following, a 'triface' is a handle of tetrahedron, and a 'face' is //
// a handle of a triangle.                                                   //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class triface {
  public:
    tetrahedron *tet;
    int ver; // Range from 0 to 11.
    triface() : tet(0), ver(0) {}
    triface& operator=(const triface& t) {
      tet = t.tet; ver = t.ver;
      return *this;
    }
  };

  class face {
  public:
    shellface *sh;
    int shver; // Range from 0 to 5.
    face() : sh(0), shver(0) {}
    face& operator=(const face& s) {
      sh = s.sh; shver = s.shver;
      return *this;
    }
  };

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Arraypool                                                                 //
//                                                                           //
// A dynamic linear array. (It is written by J. Shewchuk)                    //
//                                                                           //
// Each arraypool contains an array of pointers to a number of blocks.  Each //
// block contains the same fixed number of objects.  Each index of the array //
// addresses a particular object in the pool. The most significant bits add- //
// ress the index of the block containing the object. The less significant   //
// bits address this object within the block.                                //
//                                                                           //
// 'objectbytes' is the size of one object in blocks; 'log2objectsperblock'  //
// is the base-2 logarithm of 'objectsperblock'; 'objects' counts the number //
// of allocated objects; 'totalmemory' is the total memory in bytes.         //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class arraypool {

  public:

    int objectbytes;
    int objectsperblock;
    int log2objectsperblock;
    int objectsperblockmark;
    int toparraylen;
    char **toparray;
    long objects;
    unsigned long totalmemory;

    void restart();
    void poolinit(int sizeofobject, int log2objperblk);
    char* getblock(int objectindex);
    void* lookup(int objectindex);
    int newindex(void **newptr);

    arraypool(int sizeofobject, int log2objperblk);
    ~arraypool();
  };

// fastlookup() -- A fast, unsafe operation. Return the pointer to the object
//   with a given index.  Note: The object's block must have been allocated,
//   i.e., by the function newindex().

#define fastlookup(pool, index) \
  (void *) ((pool)->toparray[(index) >> (pool)->log2objectsperblock] + \
            ((index) & (pool)->objectsperblockmark) * (pool)->objectbytes)

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Memorypool                                                                //
//                                                                           //
// A structure for memory allocation. (It is written by J. Shewchuk)         //
//                                                                           //
// firstblock is the first block of items. nowblock is the block from which  //
//   items are currently being allocated. nextitem points to the next slab   //
//   of free memory for an item. deaditemstack is the head of a linked list  //
//   (stack) of deallocated items that can be recycled.  unallocateditems is //
//   the number of items that remain to be allocated from nowblock.          //
//                                                                           //
// Traversal is the process of walking through the entire list of items, and //
//   is separate from allocation.  Note that a traversal will visit items on //
//   the "deaditemstack" stack as well as live items.  pathblock points to   //
//   the block currently being traversed.  pathitem points to the next item  //
//   to be traversed.  pathitemsleft is the number of items that remain to   //
//   be traversed in pathblock.                                              //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class memorypool {

  public:

    void **firstblock, **nowblock;
    void *nextitem;
    void *deaditemstack;
    void **pathblock;
    void *pathitem;
    int  alignbytes;
    int  itembytes, itemwords;
    int  itemsperblock;
    long items, maxitems;
    int  unallocateditems;
    int  pathitemsleft;

    memorypool();
    memorypool(int, int, int, int);
    ~memorypool();
    
    void poolinit(int, int, int, int);
    void restart();
    void *alloc();
    void dealloc(void*);
    void traversalinit();
    void *traverse();
  };  

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// badface                                                                   //
//                                                                           //
// Despite of its name, a 'badface' can be used to represent one of the      //
// following objects:                                                        //
//   - a face of a tetrahedron which is (possibly) non-Delaunay;             //
//   - an encroached subsegment or subface;                                  //
//   - a bad-quality tetrahedron, i.e, has too large radius-edge ratio;      //
//   - a sliver, i.e., has good radius-edge ratio but nearly zero volume;    //
//   - a recently flipped face (saved for undoing the flip later).           //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class badface {
  public:
    triface tt; 
    face ss;
    REAL key, cent[6];  // circumcenter or cos(dihedral angles) at 6 edges.
    point forg, fdest, fapex, foppo, noppo;
    badface *nextitem; 
    badface() : key(0), forg(0), fdest(0), fapex(0), foppo(0), noppo(0),
      nextitem(0) {}
  };

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// insertvertexflags                                                         //
//                                                                           //
// A collection of flags that pass to the routine insertvertex().            //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class insertvertexflags {

  public:

    int iloc;  // input/output.
    int bowywat, lawson;
    int splitbdflag, validflag, respectbdflag;
    int rejflag, chkencflag, cdtflag;
    int assignmeshsize;
    int sloc, sbowywat;

    // Used by Delaunay refinement.
    int refineflag; // 0, 1, 2, 3
    triface refinetet;
    face refinesh;
    int smlenflag; // for useinsertradius.
    REAL smlen; // for useinsertradius.
    point parentpt;

    insertvertexflags() {
      iloc = bowywat = lawson = 0;
      splitbdflag = validflag = respectbdflag = 0;
      rejflag = chkencflag = cdtflag = 0;
      assignmeshsize = 0;
      sloc = sbowywat = 0;

      refineflag = 0;
      refinetet.tet = NULL;
      refinesh.sh = NULL;
      smlenflag = 0;
      smlen = 0.0;
    }
  };

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// flipconstraints                                                           //
//                                                                           //
// A structure of a collection of data (options and parameters) which pass   //
// to the edge flip function flipnm().                                       //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class flipconstraints {

  public:

    // Elementary flip flags.
    int enqflag; // (= flipflag)
    int chkencflag;

    // Control flags
    int unflip;  // Undo the performed flips.
    int collectnewtets; // Collect the new tets created by flips.
    int collectencsegflag;

    // Optimization flags.
    int remove_ndelaunay_edge; // Remove a non-Delaunay edge.
    REAL bak_tetprism_vol; // The value to be minimized.
    REAL tetprism_vol_sum;
    int remove_large_angle; // Remove a large dihedral angle at edge.
    REAL cosdihed_in; // The input cosine of the dihedral angle (> 0).
    REAL cosdihed_out; // The improved cosine of the dihedral angle.

    // Boundary recovery flags.
    int checkflipeligibility;
    point seg[2];  // A constraining edge to be recovered.
    point fac[3];  // A constraining face to be recovered.
    point remvert; // A vertex to be removed.


    flipconstraints() {
      enqflag = 0; 
      chkencflag = 0;

      unflip = 0;
      collectnewtets = 0;
      collectencsegflag = 0;

      remove_ndelaunay_edge = 0;
      bak_tetprism_vol = 0.0;
      tetprism_vol_sum = 0.0;
      remove_large_angle = 0;
      cosdihed_in = 0.0;
      cosdihed_out = 0.0;

      checkflipeligibility = 0;
      seg[0] = NULL;
      fac[0] = NULL;
      remvert = NULL;
    }
  };

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// optparameters                                                             //
//                                                                           //
// Optimization options and parameters.                                      //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  class optparameters {

  public:

    // The one of goals of optimization.
    int max_min_volume;      // Maximize the minimum volume.
    int max_min_aspectratio; // Maximize the minimum aspect ratio.
    int min_max_dihedangle;  // Minimize the maximum dihedral angle. 

    // The initial and improved value.
    REAL initval, imprval;

    int numofsearchdirs;
    REAL searchstep;
    int maxiter;  // Maximum smoothing iterations (disabled by -1).
    int smthiter; // Performed iterations.


    optparameters() {
      max_min_volume = 0;
      max_min_aspectratio = 0;
      min_max_dihedangle = 0;

      initval = imprval = 0.0;

      numofsearchdirs = 10;
      searchstep = 0.01;
      maxiter = -1;   // Unlimited smoothing iterations.
      smthiter = 0;

    }
  };


///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Labels (enumeration declarations) used by TetGen.                         //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // Labels that signify the type of a vertex. 
  enum verttype {UNUSEDVERTEX, DUPLICATEDVERTEX, RIDGEVERTEX, ACUTEVERTEX,
                 FACETVERTEX, VOLVERTEX, FREESEGVERTEX, FREEFACETVERTEX, 
                 FREEVOLVERTEX, NREGULARVERTEX, DEADVERTEX};
 
  // Labels that signify the result of triangle-triangle intersection test.
  enum interresult {DISJOINT, INTERSECT, SHAREVERT, SHAREEDGE, SHAREFACE,
                    TOUCHEDGE, TOUCHFACE, ACROSSVERT, ACROSSEDGE, ACROSSFACE, 
                    COLLISIONFACE, ACROSSSEG, ACROSSSUB};

  // Labels that signify the result of point location.
  enum locateresult {UNKNOWN, OUTSIDE, INTETRAHEDRON, ONFACE, ONEDGE, ONVERTEX,
                     ENCVERTEX, ENCSEGMENT, ENCSUBFACE, NEARVERTEX, NONREGULAR,
                     INSTAR, BADELEMENT};

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Variables of TetGen                                                       //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // Pointer to the input data (a set of nodes, a PLC, or a mesh).
  tetgenio *in, *addin;

  // Pointer to the switches and parameters.
  tetgenbehavior *b;

  // Pointer to a background mesh (contains size specification map).
  tetgenmesh *bgm;

  // Memorypools to store mesh elements (points, tetrahedra, subfaces, and
  //   segments) and extra pointers between tetrahedra, subfaces, and segments.
  memorypool *tetrahedrons, *subfaces, *subsegs, *points;
  memorypool *tet2subpool, *tet2segpool;

  // Memorypools to store bad-quality (or encroached) elements.
  memorypool *badtetrahedrons, *badsubfacs, *badsubsegs;

  // A memorypool to store faces to be flipped.
  memorypool *flippool;
  arraypool *unflipqueue;
  badface *flipstack; 

  // Arrays used for point insertion (the Bowyer-Watson algorithm).
  arraypool *cavetetlist, *cavebdrylist, *caveoldtetlist;
  arraypool *cavetetshlist, *cavetetseglist, *cavetetvertlist;
  arraypool *caveencshlist, *caveencseglist;
  arraypool *caveshlist, *caveshbdlist, *cavesegshlist;

  // Stacks used for CDT construction and boundary recovery.
  arraypool *subsegstack, *subfacstack, *subvertstack;

  // Arrays of encroached segments and subfaces (for mesh refinement).
  arraypool *encseglist, *encshlist;

  // The map between facets to their vertices (for mesh refinement).
  int *idx2facetlist;
  point *facetverticeslist;

  // The map between segments to their endpoints (for mesh refinement).
  point *segmentendpointslist;

  // The infinite vertex.
  point dummypoint;
  // The recently visited tetrahedron, subface.
  triface recenttet;
  face recentsh;

  // PI is the ratio of a circle's circumference to its diameter.
  static REAL PI;

  // Array (size = numberoftetrahedra * 6) for storing high-order nodes of
  //   tetrahedra (only used when -o2 switch is selected).
  point *highordertable;

  // Various variables.
  int numpointattrib;                          // Number of point attributes.
  int numelemattrib;                     // Number of tetrahedron attributes.
  int sizeoftensor;                     // Number of REALs per metric tensor.
  int pointmtrindex;           // Index to find the metric tensor of a point.
  int pointparamindex;       // Index to find the u,v coordinates of a point.
  int point2simindex;         // Index to find a simplex adjacent to a point.
  int pointmarkindex;            // Index to find boundary marker of a point.
  int elemattribindex;          // Index to find attributes of a tetrahedron.
  int volumeboundindex;       // Index to find volume bound of a tetrahedron.
  int elemmarkerindex;              // Index to find marker of a tetrahedron.
  int shmarkindex;             // Index to find boundary marker of a subface.
  int areaboundindex;               // Index to find area bound of a subface.
  int checksubsegflag;   // Are there segments in the tetrahedralization yet?
  int checksubfaceflag;  // Are there subfaces in the tetrahedralization yet?
  int checkconstraints;  // Are there variant (node, seg, facet) constraints?
  int nonconvex;                               // Is current mesh non-convex?
  int autofliplinklevel;        // The increase of link levels, default is 1.
  int useinsertradius;       // Save the insertion radius for Steiner points.
  long samples;               // Number of random samples for point location.
  unsigned long randomseed;                    // Current random number seed.
  REAL cosmaxdihed, cosmindihed;    // The cosine values of max/min dihedral.
  REAL cossmtdihed;     // The cosine value of a bad dihedral to be smoothed.
  REAL cosslidihed;      // The cosine value of the max dihedral of a sliver.
  REAL minfaceang, minfacetdihed;     // The minimum input (dihedral) angles.
  REAL tetprism_vol_sum;   // The total volume of tetrahedral-prisms (in 4D).
  REAL longest;                          // The longest possible edge length.
  REAL xmax, xmin, ymax, ymin, zmax, zmin;         // Bounding box of points.

  // Counters.
  long insegments;                               // Number of input segments.
  long hullsize;                        // Number of exterior boundary faces.
  long meshedges;                                    // Number of mesh edges.
  long meshhulledges;                       // Number of boundary mesh edges.
  long steinerleft;                 // Number of Steiner points not yet used.
  long dupverts;                            // Are there duplicated vertices?
  long unuverts;                                // Are there unused vertices?
  long nonregularcount;                    // Are there non-regular vertices?
  long st_segref_count, st_facref_count, st_volref_count;  // Steiner points.
  long fillregioncount, cavitycount, cavityexpcount;
  long flip14count, flip26count, flipn2ncount;
  long flip23count, flip32count, flip44count, flip41count;
  long flip31count, flip22count;
  unsigned long totalworkmemory;      // Total memory used by working arrays.


///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh manipulation primitives                                              //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // Fast lookup tables for mesh manipulation primitives.
  static int bondtbl[12][12], fsymtbl[12][12];
  static int esymtbl[12], enexttbl[12], eprevtbl[12];
  static int enextesymtbl[12], eprevesymtbl[12]; 
  static int eorgoppotbl[12], edestoppotbl[12];
  static int facepivot1[12], facepivot2[12][12];
  static int orgpivot[12], destpivot[12], apexpivot[12], oppopivot[12];
  static int tsbondtbl[12][6], stbondtbl[12][6];
  static int tspivottbl[12][6], stpivottbl[12][6];
  static int ver2edge[12], edge2ver[6], epivot[12];
  static int sorgpivot [6], sdestpivot[6], sapexpivot[6];
  static int snextpivot[6];

  void inittables();

  // Primitives for tetrahedra.
  inline tetrahedron encode(triface& t);
  inline tetrahedron encode2(tetrahedron* ptr, int ver);
  inline void decode(tetrahedron ptr, triface& t);
  inline void bond(triface& t1, triface& t2);
  inline void dissolve(triface& t);
  inline void esym(triface& t1, triface& t2);
  inline void esymself(triface& t);
  inline void enext(triface& t1, triface& t2);
  inline void enextself(triface& t);
  inline void eprev(triface& t1, triface& t2);
  inline void eprevself(triface& t);
  inline void enextesym(triface& t1, triface& t2);
  inline void enextesymself(triface& t);
  inline void eprevesym(triface& t1, triface& t2);
  inline void eprevesymself(triface& t);
  inline void eorgoppo(triface& t1, triface& t2);
  inline void eorgoppoself(triface& t);
  inline void edestoppo(triface& t1, triface& t2);
  inline void edestoppoself(triface& t);
  inline void fsym(triface& t1, triface& t2);
  inline void fsymself(triface& t);
  inline void fnext(triface& t1, triface& t2);
  inline void fnextself(triface& t);
  inline point org (triface& t);
  inline point dest(triface& t);
  inline point apex(triface& t);
  inline point oppo(triface& t);
  inline void setorg (triface& t, point p);
  inline void setdest(triface& t, point p);
  inline void setapex(triface& t, point p);
  inline void setoppo(triface& t, point p);
  inline REAL elemattribute(tetrahedron* ptr, int attnum);
  inline void setelemattribute(tetrahedron* ptr, int attnum, REAL value);
  inline REAL volumebound(tetrahedron* ptr);
  inline void setvolumebound(tetrahedron* ptr, REAL value);
  inline int  elemindex(tetrahedron* ptr);
  inline void setelemindex(tetrahedron* ptr, int value);
  inline int  elemmarker(tetrahedron* ptr);
  inline void setelemmarker(tetrahedron* ptr, int value);
  inline void infect(triface& t);
  inline void uninfect(triface& t);
  inline bool infected(triface& t);
  inline void marktest(triface& t);
  inline void unmarktest(triface& t);
  inline bool marktested(triface& t);
  inline void markface(triface& t);
  inline void unmarkface(triface& t);
  inline bool facemarked(triface& t);
  inline void markedge(triface& t);
  inline void unmarkedge(triface& t);
  inline bool edgemarked(triface& t);
  inline void marktest2(triface& t);
  inline void unmarktest2(triface& t);
  inline bool marktest2ed(triface& t);
  inline int  elemcounter(triface& t);
  inline void setelemcounter(triface& t, int value);
  inline void increaseelemcounter(triface& t);
  inline void decreaseelemcounter(triface& t);
  inline bool ishulltet(triface& t);
  inline bool isdeadtet(triface& t);
 
  // Primitives for subfaces and subsegments.
  inline void sdecode(shellface sptr, face& s);
  inline shellface sencode(face& s);
  inline shellface sencode2(shellface *sh, int shver);
  inline void spivot(face& s1, face& s2);
  inline void spivotself(face& s);
  inline void sbond(face& s1, face& s2);
  inline void sbond1(face& s1, face& s2);
  inline void sdissolve(face& s);
  inline point sorg(face& s);
  inline point sdest(face& s);
  inline point sapex(face& s);
  inline void setsorg(face& s, point pointptr);
  inline void setsdest(face& s, point pointptr);
  inline void setsapex(face& s, point pointptr);
  inline void sesym(face& s1, face& s2);
  inline void sesymself(face& s);
  inline void senext(face& s1, face& s2);
  inline void senextself(face& s);
  inline void senext2(face& s1, face& s2);
  inline void senext2self(face& s);
  inline REAL areabound(face& s);
  inline void setareabound(face& s, REAL value);
  inline int shellmark(face& s);
  inline void setshellmark(face& s, int value);
  inline void sinfect(face& s);
  inline void suninfect(face& s);
  inline bool sinfected(face& s);
  inline void smarktest(face& s);
  inline void sunmarktest(face& s);
  inline bool smarktested(face& s);
  inline void smarktest2(face& s);
  inline void sunmarktest2(face& s);
  inline bool smarktest2ed(face& s);
  inline void smarktest3(face& s);
  inline void sunmarktest3(face& s);
  inline bool smarktest3ed(face& s);
  inline void setfacetindex(face& f, int value);
  inline int  getfacetindex(face& f);

  // Primitives for interacting tetrahedra and subfaces.
  inline void tsbond(triface& t, face& s);
  inline void tsdissolve(triface& t);
  inline void stdissolve(face& s);
  inline void tspivot(triface& t, face& s);
  inline void stpivot(face& s, triface& t);

  // Primitives for interacting tetrahedra and segments.
  inline void tssbond1(triface& t, face& seg);
  inline void sstbond1(face& s, triface& t);
  inline void tssdissolve1(triface& t);
  inline void sstdissolve1(face& s);
  inline void tsspivot1(triface& t, face& s);
  inline void sstpivot1(face& s, triface& t);

  // Primitives for interacting subfaces and segments.
  inline void ssbond(face& s, face& edge);
  inline void ssbond1(face& s, face& edge);
  inline void ssdissolve(face& s);
  inline void sspivot(face& s, face& edge);

  // Primitives for points.
  inline int  pointmark(point pt);
  inline void setpointmark(point pt, int value);
  inline enum verttype pointtype(point pt);
  inline void setpointtype(point pt, enum verttype value);
  inline int  pointgeomtag(point pt);
  inline void setpointgeomtag(point pt, int value);
  inline REAL pointgeomuv(point pt, int i);
  inline void setpointgeomuv(point pt, int i, REAL value);
  inline void pinfect(point pt);
  inline void puninfect(point pt);
  inline bool pinfected(point pt);
  inline void pmarktest(point pt);
  inline void punmarktest(point pt);
  inline bool pmarktested(point pt);
  inline void pmarktest2(point pt);
  inline void punmarktest2(point pt);
  inline bool pmarktest2ed(point pt);
  inline void pmarktest3(point pt);
  inline void punmarktest3(point pt);
  inline bool pmarktest3ed(point pt);
  inline tetrahedron point2tet(point pt);
  inline void setpoint2tet(point pt, tetrahedron value);
  inline shellface point2sh(point pt);
  inline void setpoint2sh(point pt, shellface value);
  inline point point2ppt(point pt);
  inline void setpoint2ppt(point pt, point value);
  inline tetrahedron point2bgmtet(point pt);
  inline void setpoint2bgmtet(point pt, tetrahedron value);
  inline void setpointinsradius(point pt, REAL value);
  inline REAL getpointinsradius(point pt);

  // Advanced primitives.
  inline void point2tetorg(point pt, triface& t);
  inline void point2shorg(point pa, face& s);
  inline point farsorg(face& seg);
  inline point farsdest(face& seg);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
//  Memory managment                                                         //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void tetrahedrondealloc(tetrahedron*);
  tetrahedron *tetrahedrontraverse();
  tetrahedron *alltetrahedrontraverse();
  void shellfacedealloc(memorypool*, shellface*);
  shellface *shellfacetraverse(memorypool*);
  void pointdealloc(point);
  point pointtraverse();

  void makeindex2pointmap(point*&);
  void makepoint2submap(memorypool*, int*&, face*&);
  void maketetrahedron(triface*);
  void makeshellface(memorypool*, face*);
  void makepoint(point*, enum verttype);

  void initializepools();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Advanced geometric predicates and calculations                            //
//                                                                           //
// TetGen uses a simplified symbolic perturbation scheme from Edelsbrunner,  //
// et al [*].  Hence the point-in-sphere test never returns a zero. The idea //
// is to perturb the weights of vertices in the fourth dimension.  TetGen    //
// uses the indices of the vertices decide the amount of perturbation. It is //
// implemented in the routine insphere_s().
//                                                                           //
// The routine tri_edge_test() determines whether or not a triangle and an   //
// edge intersect in 3D. If they intersect, their intersection type is also  //
// reported. This test is a combination of n 3D orientation tests (n is bet- //
// ween 3 and 9). It uses the robust orient3d() test to make the branch dec- //
// isions.  The routine tri_tri_test() determines whether or not two triang- //
// les intersect in 3D. It also uses the robust orient3d() test.             //
//                                                                           //
// There are a number of routines to calculate geometrical quantities, e.g., //
// circumcenters, angles, dihedral angles, face normals, face areas, etc.    //
// They are so far done by the default floating-point arithmetics which are  //
// non-robust. They should be improved in the future.                        //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // Symbolic perturbations (robust)
  REAL insphere_s(REAL*, REAL*, REAL*, REAL*, REAL*);
  REAL orient4d_s(REAL*, REAL*, REAL*, REAL*, REAL*, 
                  REAL, REAL, REAL, REAL, REAL);

  // Triangle-edge intersection test (robust)
  int tri_edge_2d(point, point, point, point, point, point, int, int*, int*);
  int tri_edge_tail(point, point, point, point, point, point, REAL, REAL, int,
                    int*, int*);
  int tri_edge_test(point, point, point, point, point, point, int, int*, int*);

  // Triangle-triangle intersection test (robust)
  int tri_edge_inter_tail(point, point, point, point, point, REAL, REAL);
  int tri_tri_inter(point, point, point, point, point, point);

  // Linear algebra functions
  inline REAL dot(REAL* v1, REAL* v2);
  inline void cross(REAL* v1, REAL* v2, REAL* n);
  bool lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N);
  void lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N);

  // An embedded 2-dimensional geometric predicate (non-robust)
  REAL incircle3d(point pa, point pb, point pc, point pd);

  // Geometric calculations (non-robust)
  REAL orient3dfast(REAL *pa, REAL *pb, REAL *pc, REAL *pd);
  inline REAL norm2(REAL x, REAL y, REAL z);
  inline REAL distance(REAL* p1, REAL* p2);
  void facenormal(point pa, point pb, point pc, REAL *n, int pivot, REAL *lav);
  REAL shortdistance(REAL* p, REAL* e1, REAL* e2);
  REAL triarea(REAL* pa, REAL* pb, REAL* pc);
  REAL interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n);
  void projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj);
  void projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj);
  REAL facedihedral(REAL* pa, REAL* pb, REAL* pc1, REAL* pc2);
  bool tetalldihedral(point, point, point, point, REAL*, REAL*, REAL*);
  void tetallnormal(point, point, point, point, REAL N[4][3], REAL* volume);
  REAL tetaspectratio(point, point, point, point);
  bool circumsphere(REAL*, REAL*, REAL*, REAL*, REAL* cent, REAL* radius);
  bool orthosphere(REAL*,REAL*,REAL*,REAL*,REAL,REAL,REAL,REAL,REAL*,REAL*);
  void planelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
  int linelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
  REAL tetprismvol(REAL* pa, REAL* pb, REAL* pc, REAL* pd);
  bool calculateabovepoint(arraypool*, point*, point*, point*);
  void calculateabovepoint4(point, point, point, point);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Local mesh transformations                                                //
//                                                                           //
// A local transformation replaces a small set of tetrahedra with another    //
// set of tetrahedra which fills the same space and the same boundaries.     //
//   In 3D, the most simplest local transformations are the elementary flips //
// performed within the convex hull of five vertices: 2-to-3, 3-to-2, 1-to-4,//
// and 4-to-1 flips,  where the numbers indicate the number of tetrahedra    //
// before and after each flip.  The 1-to-4 and 4-to-1 flip involve inserting //
// or deleting a vertex, respectively.                                       //
//   There are complex local transformations which can be decomposed as a    //
// combination of elementary flips. For example,a 4-to-4 flip which replaces //
// two coplanar edges can be regarded by a 2-to-3 flip and a 3-to-2 flip.    //
// Note that the first 2-to-3 flip will temporarily create a degenerate tet- //
// rahedron which is removed immediately by the followed 3-to-2 flip.  More  //
// generally, a n-to-m flip, where n > 3, m = (n - 2) * 2, which removes an  //
// edge can be done by first performing a sequence of (n - 3) 2-to-3 flips   //
// followed by a 3-to-2 flip.                                                //
//                                                                           //
// The routines flip23(), flip32(), and flip41() perform the three element-  //
// ray flips. The flip14() is available inside the routine insertpoint().    //
//                                                                           //
// The routines flipnm() and flipnm_post() implement a generalized edge flip //
// algorithm which uses a combination of elementary flips.                   //
//                                                                           //
// The routine insertpoint() implements a variant of Bowyer-Watson's cavity  //
// algorithm to insert a vertex. It works for arbitrary tetrahedralization,  //
// either Delaunay, or constrained Delaunay, or non-Delaunay.                //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // The elementary flips.
  void flip23(triface*, int, flipconstraints* fc);
  void flip32(triface*, int, flipconstraints* fc);
  void flip41(triface*, int, flipconstraints* fc);

  // A generalized edge flip.
  int flipnm(triface*, int n, int level, int, flipconstraints* fc);
  int flipnm_post(triface*, int n, int nn, int, flipconstraints* fc);

  // Point insertion.
  int  insertpoint(point, triface*, face*, face*, insertvertexflags*);
  void insertpoint_abort(face*, insertvertexflags*);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Delaunay tetrahedralization                                               //
//                                                                           //
// The routine incrementaldelaunay() implemented two incremental algorithms  //
// for constructing Delaunay tetrahedralizations (DTs):  the Bowyer-Watson   //
// (B-W) algorithm and the incremental flip algorithm of Edelsbrunner and    //
// Shah, "Incremental topological flipping works for regular triangulation," //
// Algorithmica, 15:233-241, 1996.                                           //
//                                                                           //
// The routine incrementalflip() implements the flip algorithm of [Edelsbru- //
// nner and Shah, 1996].  It flips a queue of locally non-Delaunay faces (in //
// an arbitrary order).  The success is guaranteed when the Delaunay tetrah- //
// edralization is constructed incrementally by adding one vertex at a time. //
//                                                                           //
// The routine locate() finds a tetrahedron contains a new point in current  //
// DT.  It uses a simple stochastic walk algorithm: starting from an arbitr- //
// ary tetrahedron in DT, it finds the destination by visit one tetrahedron  //
// at a time, randomly chooses a tetrahedron if there are more than one      //
// choices. This algorithm terminates due to Edelsbrunner's acyclic theorem. //
//   Choose a good starting tetrahedron is crucial to the speed of the walk. //
// TetGen originally uses the "jump-and-walk" algorithm of Muecke, E.P.,     //
// Saias, I., and Zhu, B. "Fast Randomized Point Location Without Preproces- //
// sing." In Proceedings of the 12th ACM Symposium on Computational Geometry,//
// 274-283, 1996.  It first randomly samples several tetrahedra in the DT    //
// and then choosing the closet one to start walking.                        //
//   The above algorithm slows download dramatically as the number of points //
// grows -- reported in Amenta, N., Choi, S. and Rote, G., "Incremental      //
// construction con {BRIO}," In Proceedings of 19th ACM Symposium on         //
// Computational Geometry, 211-219, 2003.  On the other hand, Liu and        //
// Snoeyink showed that the point location can be made in constant time if   //
// the points are pre-sorted so that the nearby points in space have nearby  //
// indices, then adding the points in this order. They sorted the points     //
// along the 3D Hilbert curve.                                               //
//                                                                           //
// The routine hilbert_sort3() sorts a set of 3D points along the 3D Hilbert //
// curve. It recursively splits a point set according to the Hilbert indices //
// mapped to the subboxes of the bounding box of the point set.              //
//   The Hilbert indices is calculated by Butz's algorithm in 1971.  A nice  //
// exposition of this algorithm can be found in the paper of Hamilton, C.,   //
// "Compact Hilbert Indices", Technical Report CS-2006-07, Computer Science, //
// Dalhousie University, 2006 (the Section 2). My implementation also refer- //
// enced Steven Witham's implementation of "Hilbert walk" (hopefully, it is  //
// still available at: http://www.tiac.net/~sw/2008/10/Hilbert/).            //
//                                                                           //
// TetGen sorts the points using the method in the paper of Boissonnat,J.-D.,//
// Devillers, O. and Hornus, S. "Incremental Construction of the Delaunay    //
// Triangulation and the Delaunay Graph in Medium Dimension," In Proceedings //
// of the 25th ACM Symposium on Computational Geometry, 2009.                //
//   It first randomly sorts the points into subgroups using the Biased Rand-//
// omized Insertion Ordering (BRIO) of Amenta et al 2003, then sorts the     //
// points in each subgroup along the 3D Hilbert curve.  Inserting points in  //
// this order ensures a randomized "sprinkling" of the points over the       //
// domain, while sorting of each subset ensures locality.                    //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void transfernodes();

  // Point sorting.
  int  transgc[8][3][8], tsb1mod3[8];
  void hilbert_init(int n);
  int  hilbert_split(point* vertexarray, int arraysize, int gc0, int gc1,
                     REAL, REAL, REAL, REAL, REAL, REAL);
  void hilbert_sort3(point* vertexarray, int arraysize, int e, int d,
                     REAL, REAL, REAL, REAL, REAL, REAL, int depth);
  void brio_multiscale_sort(point*,int,int threshold,REAL ratio,int* depth);

  // Point location.
  unsigned long randomnation(unsigned int choices);
  void randomsample(point searchpt, triface *searchtet);
  enum locateresult locate(point searchpt, triface *searchtet);

  // Incremental flips.
  void flippush(badface*&, triface*);
  int  incrementalflip(point newpt, int, flipconstraints *fc);

  // Incremental Delaunay construction.
  void initialdelaunay(point pa, point pb, point pc, point pd);
  void incrementaldelaunay(clock_t&);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Surface triangulation                                                     //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void flipshpush(face*);
  void flip22(face*, int, int);
  void flip31(face*, int);
  long lawsonflip();
  int sinsertvertex(point newpt, face*, face*, int iloc, int bowywat, int);
  int sremovevertex(point delpt, face*, face*, int lawson);

  enum locateresult slocate(point, face*, int, int, int);
  enum interresult sscoutsegment(face*, point);
  void scarveholes(int, REAL*);
  void triangulate(int, arraypool*, arraypool*, int, REAL*);

  void unifysubfaces(face*, face*);
  void unifysegments();
  void mergefacets();
  void identifypscedges(point*);
  void meshsurface();

  void interecursive(shellface** subfacearray, int arraysize, int axis,
                     REAL, REAL, REAL, REAL, REAL, REAL, int* internum);
  void detectinterfaces();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Constrained Delaunay tetrahedralization                                   //
//                                                                           //
// A constrained Delaunay tetrahedralization (CDT) is a variation of a Dela- //
// unay tetrahedralization (DT) that is constrained to respect the boundary  //
// of a 3D PLC (domain). In a CDT of a 3D PLC, every vertex or edge of the   //
// PLC is also a vertex or an edge of the CDT, every polygon of the PLC is a //
// union of triangles of the CDT. A crucial difference between a CDT and a   //
// DT is that triangles in the PLC's polygons are not required to be locally //
// Delaunay, which frees the CDT to better respect the PLC's polygons. CDTs  //
// have optimal properties similar to those of DTs.                          //
//                                                                           //
// Steiner Points and Steiner CDTs. It is known that even a simple 3D polyh- //
// edron may not have a tetrahedralization which only uses its own vertices. //
// Some extra points, so-called "Steiner points" are needed in order to form //
// a tetrahedralization of such polyhedron.  It is true for tetrahedralizing //
// a 3D PLC as well. A Steiner CDT of a 3D PLC is a CDT containing Steiner   //
// points. The CDT algorithms of TetGen in general create Steiner CDTs.      //
// Almost all of the Steiner points are added in the edges of the PLC. They  //
// guarantee the existence of a CDT of the modified PLC.                     //
//                                                                           //
// The routine constraineddelaunay() starts from a DT of the vertices of a   //
// PLC and creates a (Steiner) CDT of the PLC (including Steiner points). It //
// is constructed by two steps, (1) segment recovery and (2) facet (polygon) //
// recovery. Each step is accomplished by its own algorithm.                 //
//                                                                           //
// The routine delaunizesegments() implements the segment recovery algorithm //
// of Si, H. and Gaertner, K. "Meshing Piecewise Linear Complexes by Constr- //
// ained Delaunay Tetrahedralizations," In Proceedings of the 14th Internat- //
// ional Meshing Roundtable, 147--163, 2005.  It adds Steiner points into    //
// non-Delaunay segments until all subsegments appear together in a DT. The  //
// running time of this algorithm is proportional to the number of added     //
// Steiner points.                                                           //
//                                                                           //
// There are two incremental facet recovery algorithms: the cavity re-trian- //
// gulation algorithm of Si, H. and Gaertner, K. "3D Boundary Recovery by    //
// Constrained Delaunay Tetrahedralization," International Journal for Numer-//
// ical Methods in Engineering, 85:1341-1364, 2011, and the flip algorithm   //
// of Shewchuk, J. "Updating and Constructing Constrained Delaunay and       //
// Constrained Regular Triangulations by Flips." In Proceedings of the 19th  //
// ACM Symposium on Computational Geometry, 86-95, 2003.                     //
//                                                                           //
// It is guaranteed in theory, no Steiner point is needed in both algorithms //
// However, a facet with non-coplanar vertices might cause the  additions of //
// Steiner points. It is discussed in the paper of Si, H., and  Shewchuk, J.,//
// "Incrementally Constructing and Updating Constrained Delaunay             //
// Tetrahedralizations with Finite Precision Coordinates." In Proceedings of //
// the 21th International Meshing Roundtable, 2012.                          //
//                                                                           //
// Our implementation of the facet recovery algorithms recover a "missing    //
// region" at a time. Each missing region is a subset of connected interiors //
// of a polygon. The routine formcavity() creates the cavity of crossing     //
// tetrahedra of the missing region.                                         //
//                                                                           //
// The cavity re-triangulation algorithm is implemented by three subroutines,//
// delaunizecavity(), fillcavity(), and carvecavity(). Since it may fail due //
// to non-coplanar vertices, the subroutine restorecavity() is used to rest- //
// ore the original cavity.                                                  //
//                                                                           //
// The routine flipinsertfacet() implements the flip algorithm. The subrout- //
// ine flipcertify() is used to maintain the priority queue of flips.        // 
//                                                                           //
// The routine refineregion() is called when the facet recovery algorithm    //
// fail to recover a missing region. It inserts Steiner points to refine the //
// missing region. In order to avoid inserting Steiner points very close to  //
// existing segments.  The classical encroachment rules of the Delaunay      //
// refinement algorithm are used to choose the Steiner points.               //
//                                                                           //
// The routine constrainedfacets() does the facet recovery by using either   //
// the cavity re-triangulation algorithm (default) or the flip algorithm. It //
// results a CDT of the (modified) PLC (including Steiner points).           //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void makesegmentendpointsmap();

  enum interresult finddirection(triface* searchtet, point endpt);
  enum interresult scoutsegment(point, point, triface*, point*, arraypool*);
  int  getsteinerptonsegment(face* seg, point refpt, point steinpt);
  void delaunizesegments();

  enum interresult scoutsubface(face* searchsh, triface* searchtet);
  void formregion(face*, arraypool*, arraypool*, arraypool*);
  int  scoutcrossedge(triface& crosstet, arraypool*, arraypool*);
  bool formcavity(triface*, arraypool*, arraypool*, arraypool*, arraypool*, 
                  arraypool*, arraypool*);

  // Facet recovery by cavity re-triangulation [Si and Gaertner 2011].
  void delaunizecavity(arraypool*, arraypool*, arraypool*, arraypool*, 
                       arraypool*, arraypool*);
  bool fillcavity(arraypool*, arraypool*, arraypool*, arraypool*,
                  arraypool*, arraypool*, triface* crossedge);
  void carvecavity(arraypool*, arraypool*, arraypool*);
  void restorecavity(arraypool*, arraypool*, arraypool*, arraypool*);

  // Facet recovery by flips [Shewchuk 2003].
  void flipcertify(triface *chkface, badface **pqueue, point, point, point);
  void flipinsertfacet(arraypool*, arraypool*, arraypool*, arraypool*);

  bool fillregion(arraypool* missingshs, arraypool*, arraypool* newshs);

  int  insertpoint_cdt(point, triface*, face*, face*, insertvertexflags*,
                       arraypool*, arraypool*, arraypool*, arraypool*,
                       arraypool*, arraypool*);
  void refineregion(face&, arraypool*, arraypool*, arraypool*, arraypool*,
                    arraypool*, arraypool*);

  void constrainedfacets();  

  void constraineddelaunay(clock_t&);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Constrained tetrahedralizations.                                          //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  int checkflipeligibility(int fliptype, point, point, point, point, point,
                           int level, int edgepivot, flipconstraints* fc);

  int removeedgebyflips(triface*, flipconstraints*);
  int removefacebyflips(triface*, flipconstraints*);

  int recoveredgebyflips(point, point, triface*, int fullsearch);
  int add_steinerpt_in_schoenhardtpoly(triface*, int, int chkencflag);
  int add_steinerpt_in_segment(face*, int searchlevel); 
  int addsteiner4recoversegment(face*, int);
  int recoversegments(arraypool*, int fullsearch, int steinerflag);

  int recoverfacebyflips(point, point, point, face*, triface*);
  int recoversubfaces(arraypool*, int steinerflag);

  int getvertexstar(int, point searchpt, arraypool*, arraypool*, arraypool*);
  int getedge(point, point, triface*);
  int reduceedgesatvertex(point startpt, arraypool* endptlist);
  int removevertexbyflips(point steinerpt);

  int suppressbdrysteinerpoint(point steinerpt);
  int suppresssteinerpoints();

  void recoverboundary(clock_t&);

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh reconstruction                                                       //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void carveholes();

  void reconstructmesh();

  int  scoutpoint(point, triface*, int randflag);
  REAL getpointmeshsize(point, triface*, int iloc);
  void interpolatemeshsize();

  void insertconstrainedpoints(point *insertarray, int arylen, int rejflag);
  void insertconstrainedpoints(tetgenio *addio);

  void collectremovepoints(arraypool *remptlist);
  void meshcoarsening();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh refinement                                                           //
//                                                                           //
// The purpose of mesh refinement is to obtain a tetrahedral mesh with well- //
// -shaped tetrahedra and appropriate mesh size.  It is necessary to insert  //
// new Steiner points to achieve this property. The questions are (1) how to //
// choose the Steiner points? and (2) how to insert them?                    //
//                                                                           //
// Delaunay refinement is a technique first developed by Chew [1989] and     //
// Ruppert [1993, 1995] to generate quality triangular meshes in the plane.  //
// It provides guarantee on the smallest angle of the triangles.  Rupper's   //
// algorithm guarantees that the mesh is size-optimal (to within a constant  //
// factor) among all meshes with the same quality.                           //
//   Shewchuk generalized Ruppert's algorithm into 3D in his PhD thesis      //
// [Shewchuk 1997]. A short version of his algorithm appears in "Tetrahedral //
// Mesh Generation by Delaunay Refinement," In Proceedings of the 14th ACM   //
// Symposium on Computational Geometry, 86-95, 1998.  It guarantees that all //
// tetrahedra of the output mesh have a "radius-edge ratio" (equivalent to   //
// the minimal face angle) bounded. However, it does not remove slivers, a   //
// type of very flat tetrahedra which can have no small face angles but have //
// very small (and large) dihedral angles. Moreover, it may not terminate if //
// the input PLC contains "sharp features", e.g., two edges (or two facets)  //
// meet at an acute angle (or dihedral angle).                               //
//                                                                           //
// TetGen uses the basic Delaunay refinement scheme to insert Steiner points.//
// While it always maintains a constrained Delaunay mesh.  The algorithm is  //
// described in Si, H., "Adaptive Constrained Delaunay Mesh Generation,"     //
// International Journal for Numerical Methods in Engineering, 75:856-880.   //
// This algorithm always terminates and sharp features are easily preserved. //
// The mesh has good quality (same as Shewchuk's Delaunay refinement algori- //
// thm) in the bulk of the mesh domain. Moreover, it supports the generation //
// of adaptive mesh according to a (isotropic) mesh sizing function.         //   
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void makefacetverticesmap();
  int segsegadjacent(face *, face *);
  int segfacetadjacent(face *checkseg, face *checksh);
  int facetfacetadjacent(face *, face *);

  int checkseg4encroach(point pa, point pb, point checkpt);
  int checkseg4split(face *chkseg, point&, int&);
  int splitsegment(face *splitseg, point encpt, REAL, point, point, int, int);
  void repairencsegs(int chkencflag);

  void enqueuesubface(memorypool*, face*);
  int checkfac4encroach(point, point, point, point checkpt, REAL*, REAL*);
  int checkfac4split(face *chkfac, point& encpt, int& qflag, REAL *ccent);
  int splitsubface(face *splitfac, point, point, int qflag, REAL *ccent, int);
  void repairencfacs(int chkencflag);

  void enqueuetetrahedron(triface*);
  int checktet4split(triface *chktet, int& qflag, REAL *ccent);
  int splittetrahedron(triface* splittet,int qflag,REAL *ccent, int);
  void repairbadtets(int chkencflag);

  void delaunayrefinement();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh optimization                                                         //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  long lawsonflip3d(flipconstraints *fc);
  void recoverdelaunay();

  int  gettetrahedron(point, point, point, point, triface *);
  long improvequalitybyflips();

  int  smoothpoint(point smtpt, arraypool*, int ccw, optparameters *opm);
  long improvequalitybysmoothing(optparameters *opm);

  int  splitsliver(triface *, REAL, int);
  long removeslivers(int);

  void optimizemesh();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh check and statistics                                                 //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  // Mesh validations.
  int checkmesh(int topoflag);
  int checkshells();
  int checksegments();
  int checkdelaunay();
  int checkregular(int);
  int checkconforming(int);

  //  Mesh statistics.
  void printfcomma(unsigned long n);
  void qualitystatistics();
  void memorystatistics();
  void statistics();

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Mesh output                                                               //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  void jettisonnodes();
  void highorder();
  void numberedges();
  void outnodes(tetgenio*);
  void outmetrics(tetgenio*);
  void outelements(tetgenio*);
  void outfaces(tetgenio*);
  void outhullfaces(tetgenio*);
  void outsubfaces(tetgenio*);
  void outedges(tetgenio*);
  void outsubsegments(tetgenio*);
  void outneighbors(tetgenio*);
  void outvoronoi(tetgenio*);
  void outsmesh(char*);
  void outmesh2medit(char*);
  void outmesh2vtk(char*);



///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Constructor & destructor                                                  //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

  tetgenmesh()
  {
    in  = addin = NULL;
    b   = NULL;
    bgm = NULL;

    tetrahedrons = subfaces = subsegs = points = NULL;
    badtetrahedrons = badsubfacs = badsubsegs = NULL;
    tet2segpool = tet2subpool = NULL;
    flippool = NULL;

    dummypoint = NULL;
    flipstack = NULL;
    unflipqueue = NULL;

    cavetetlist = cavebdrylist = caveoldtetlist = NULL;
    cavetetshlist = cavetetseglist = cavetetvertlist = NULL;
    caveencshlist = caveencseglist = NULL;
    caveshlist = caveshbdlist = cavesegshlist = NULL;

    subsegstack = subfacstack = subvertstack = NULL;
    encseglist = encshlist = NULL;
    idx2facetlist = NULL;
    facetverticeslist = NULL;
    segmentendpointslist = NULL;

    highordertable = NULL;

    numpointattrib = numelemattrib = 0;
    sizeoftensor = 0;
    pointmtrindex = 0;
    pointparamindex = 0;
    pointmarkindex = 0;
    point2simindex = 0;
    elemattribindex = 0;
    volumeboundindex = 0;
    shmarkindex = 0;
    areaboundindex = 0;
    checksubsegflag = 0;
    checksubfaceflag = 0;
    checkconstraints = 0;
    nonconvex = 0;
    autofliplinklevel = 1;
    useinsertradius = 0;
    samples = 0l;
    randomseed = 1l;
    minfaceang = minfacetdihed = PI;
    tetprism_vol_sum = 0.0;
    longest = 0.0;
    xmax = xmin = ymax = ymin = zmax = zmin = 0.0; 

    insegments = 0l;
    hullsize = 0l;
    meshedges = meshhulledges = 0l;
    steinerleft = -1;
    dupverts = 0l;
    unuverts = 0l;
    nonregularcount = 0l;
    st_segref_count = st_facref_count = st_volref_count = 0l;
    fillregioncount = cavitycount = cavityexpcount = 0l;
    flip14count = flip26count = flipn2ncount = 0l;
    flip23count = flip32count = flip44count = flip41count = 0l;
    flip22count = flip31count = 0l;
    totalworkmemory = 0l;


  } // tetgenmesh()

  void freememory()
  {
    if (bgm != NULL) {
      delete bgm;
    }

    if (points != (memorypool *) NULL) {
      delete points;
      delete [] dummypoint;
    }

    if (tetrahedrons != (memorypool *) NULL) {
      delete tetrahedrons;
    }

    if (subfaces != (memorypool *) NULL) {
      delete subfaces;
      delete subsegs;
    }

    if (tet2segpool != NULL) {
      delete tet2segpool;
      delete tet2subpool;
    }

    if (flippool != NULL) {
      delete flippool;
      delete unflipqueue;
    }

    if (cavetetlist != NULL) {
      delete cavetetlist;
      delete cavebdrylist;
      delete caveoldtetlist;
      delete cavetetvertlist;
    }

    if (caveshlist != NULL) {
      delete caveshlist;
      delete caveshbdlist;
      delete cavesegshlist;
      delete cavetetshlist;
      delete cavetetseglist;
      delete caveencshlist;
      delete caveencseglist;
    }

    if (subsegstack != NULL) {
      delete subsegstack;
      delete subfacstack;
      delete subvertstack;
    }

    if (idx2facetlist != NULL) {
      delete [] idx2facetlist;
      delete [] facetverticeslist;
    }

    if (segmentendpointslist != NULL) {
      delete [] segmentendpointslist;
    }

    if (highordertable != NULL) {
      delete [] highordertable;
    }
  }

  ~tetgenmesh()
  {
    freememory();
  } // ~tetgenmesh()

};                                               // End of class tetgenmesh.

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// tetrahedralize()    Interface for using TetGen's library to generate      //
//                     Delaunay tetrahedralizations, constrained Delaunay    //
//                     tetrahedralizations, quality tetrahedral meshes.      //
//                                                                           //
// 'in' is an object of 'tetgenio' which contains a PLC you want to tetrahed-//
// ralize or a previously generated tetrahedral mesh you want to refine.  It //
// must not be a NULL. 'out' is another object of 'tetgenio' for storing the //
// generated tetrahedral mesh. It can be a NULL. If so, the output will be   //
// saved to file(s). If 'bgmin' != NULL, it contains a background mesh which //
// defines a mesh size function.                                             //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

void tetrahedralize(tetgenbehavior *b, tetgenio *in, tetgenio *out, 
                    tetgenio *addin = NULL, tetgenio *bgmin = NULL);

#ifdef TETLIBRARY
void tetrahedralize(char *switches, tetgenio *in, tetgenio *out,
                    tetgenio *addin = NULL, tetgenio *bgmin = NULL);
#endif // #ifdef TETLIBRARY

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// terminatetetgen()    Terminate TetGen with a given exit code.             //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

inline void terminatetetgen(tetgenmesh *m, int x)
{
  // Release the allocated memory.
  if (m) {
    m->freememory();
  }
#ifdef TETLIBRARY
  throw x;
#else
  switch (x) {
  case 1: // Out of memory.
    printf("Error:  Out of memory.\n"); 
    break;
  case 2: // Encounter an internal error.
    printf("Please report this bug to Hang.Si@wias-berlin.de. Include\n");
    printf("  the message above, your input data set, and the exact\n");
    printf("  command line you used to run this program, thank you.\n");
    break;
  case 3:
    printf("A self-intersection was detected. Program stopped.\n");
    printf("Hint: use -d option to detect all self-intersections.\n"); 
    break;
  case 4:
    printf("A very small input feature size was detected. Program stopped.\n");
    printf("Hint: use -T option to set a smaller tolerance.\n");
    break;
  case 5:
    printf("Two very close input facets were detected. Program stopped.\n");
    printf("Hint: use -Y option to avoid adding Steiner points in boundary.\n");
    break;
  case 10: 
    printf("An input error was detected. Program stopped.\n"); 
    break;
  } // switch (x)
  exit(x);
#endif // #ifdef TETLIBRARY
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for tetrahedra                                                 //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

// encode()  compress a handle into a single pointer.  It relies on the 
//   assumption that all addresses of tetrahedra are aligned to sixteen-
//   byte boundaries, so that the last four significant bits are zero.

inline tetgenmesh::tetrahedron tetgenmesh::encode(triface& t) {
  return (tetrahedron) ((uintptr_t) (t).tet | (uintptr_t) (t).ver);
}

inline tetgenmesh::tetrahedron tetgenmesh::encode2(tetrahedron* ptr, int ver) {
  return (tetrahedron) ((uintptr_t) (ptr) | (uintptr_t) (ver));
}

// decode()  converts a pointer to a handle. The version is extracted from
//   the four least significant bits of the pointer.

inline void tetgenmesh::decode(tetrahedron ptr, triface& t) {
  (t).ver = (int) ((uintptr_t) (ptr) & (uintptr_t) 15);
  (t).tet = (tetrahedron *) ((uintptr_t) (ptr) ^ (uintptr_t) (t).ver);
}

// bond()  connects two tetrahedra together. (t1,v1) and (t2,v2) must 
//   refer to the same face and the same edge. 

inline void tetgenmesh::bond(triface& t1, triface& t2) {
  t1.tet[t1.ver & 3] = encode2(t2.tet, bondtbl[t1.ver][t2.ver]);
  t2.tet[t2.ver & 3] = encode2(t1.tet, bondtbl[t2.ver][t1.ver]);
}


// dissolve()  a bond (from one side).

inline void tetgenmesh::dissolve(triface& t) {
  t.tet[t.ver & 3] = NULL;
}

// enext()  finds the next edge (counterclockwise) in the same face.

inline void tetgenmesh::enext(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = enexttbl[t1.ver];
}

inline void tetgenmesh::enextself(triface& t) {
  t.ver = enexttbl[t.ver];
}

// eprev()   finds the next edge (clockwise) in the same face.

inline void tetgenmesh::eprev(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = eprevtbl[t1.ver];
}

inline void tetgenmesh::eprevself(triface& t) {
  t.ver = eprevtbl[t.ver];
}

// esym()  finds the reversed edge.  It is in the other face of the
//   same tetrahedron.

inline void tetgenmesh::esym(triface& t1, triface& t2) {
  (t2).tet = (t1).tet;
  (t2).ver = esymtbl[(t1).ver];
}

inline void tetgenmesh::esymself(triface& t) {
  (t).ver = esymtbl[(t).ver];
}

// enextesym()  finds the reversed edge of the next edge. It is in the other
//   face of the same tetrahedron. It is the combination esym() * enext(). 

inline void tetgenmesh::enextesym(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = enextesymtbl[t1.ver];
}

inline void tetgenmesh::enextesymself(triface& t) {
  t.ver = enextesymtbl[t.ver];
}

// eprevesym()  finds the reversed edge of the previous edge.

inline void tetgenmesh::eprevesym(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = eprevesymtbl[t1.ver];
}

inline void tetgenmesh::eprevesymself(triface& t) {
  t.ver = eprevesymtbl[t.ver];
}

// eorgoppo()    Finds the opposite face of the origin of the current edge.
//               Return the opposite edge of the current edge.

inline void tetgenmesh::eorgoppo(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = eorgoppotbl[t1.ver];
}

inline void tetgenmesh::eorgoppoself(triface& t) {
  t.ver = eorgoppotbl[t.ver];
}

// edestoppo()    Finds the opposite face of the destination of the current 
//                edge. Return the opposite edge of the current edge.

inline void tetgenmesh::edestoppo(triface& t1, triface& t2) {
  t2.tet = t1.tet;
  t2.ver = edestoppotbl[t1.ver];
}

inline void tetgenmesh::edestoppoself(triface& t) {
  t.ver = edestoppotbl[t.ver];
}

// fsym()  finds the adjacent tetrahedron at the same face and the same edge.

inline void tetgenmesh::fsym(triface& t1, triface& t2) {
  decode((t1).tet[(t1).ver & 3], t2);
  t2.ver = fsymtbl[t1.ver][t2.ver];
}


#define fsymself(t) \
  t1ver = (t).ver; \
  decode((t).tet[(t).ver & 3], (t));\
  (t).ver = fsymtbl[t1ver][(t).ver]

// fnext()  finds the next face while rotating about an edge according to
//   a right-hand rule. The face is in the adjacent tetrahedron.  It is
//   the combination: fsym() * esym().

inline void tetgenmesh::fnext(triface& t1, triface& t2) {
  decode(t1.tet[facepivot1[t1.ver]], t2);
  t2.ver = facepivot2[t1.ver][t2.ver];
}


#define fnextself(t) \
  t1ver = (t).ver; \
  decode((t).tet[facepivot1[(t).ver]], (t)); \
  (t).ver = facepivot2[t1ver][(t).ver]


// The following primtives get or set the origin, destination, face apex,
//   or face opposite of an ordered tetrahedron.

inline tetgenmesh::point tetgenmesh::org(triface& t) {
  return (point) (t).tet[orgpivot[(t).ver]];
}

inline tetgenmesh::point tetgenmesh:: dest(triface& t) {
  return (point) (t).tet[destpivot[(t).ver]];
}

inline tetgenmesh::point tetgenmesh:: apex(triface& t) {
  return (point) (t).tet[apexpivot[(t).ver]];
}

inline tetgenmesh::point tetgenmesh:: oppo(triface& t) {
  return (point) (t).tet[oppopivot[(t).ver]];
}

inline void tetgenmesh:: setorg(triface& t, point p) {
  (t).tet[orgpivot[(t).ver]] = (tetrahedron) (p);
}

inline void tetgenmesh:: setdest(triface& t, point p) {
  (t).tet[destpivot[(t).ver]] = (tetrahedron) (p);
}

inline void tetgenmesh:: setapex(triface& t, point p) {
  (t).tet[apexpivot[(t).ver]] = (tetrahedron) (p);
}

inline void tetgenmesh:: setoppo(triface& t, point p) {
  (t).tet[oppopivot[(t).ver]] = (tetrahedron) (p);
}

#define setvertices(t, torg, tdest, tapex, toppo) \
  (t).tet[orgpivot[(t).ver]] = (tetrahedron) (torg);\
  (t).tet[destpivot[(t).ver]] = (tetrahedron) (tdest); \
  (t).tet[apexpivot[(t).ver]] = (tetrahedron) (tapex); \
  (t).tet[oppopivot[(t).ver]] = (tetrahedron) (toppo)

// Check or set a tetrahedron's attributes.

inline REAL tetgenmesh::elemattribute(tetrahedron* ptr, int attnum) {
  return ((REAL *) (ptr))[elemattribindex + attnum];
}

inline void tetgenmesh::setelemattribute(tetrahedron* ptr, int attnum, 
  REAL value) {
  ((REAL *) (ptr))[elemattribindex + attnum] = value;
}

// Check or set a tetrahedron's maximum volume bound.

inline REAL tetgenmesh::volumebound(tetrahedron* ptr) {
  return ((REAL *) (ptr))[volumeboundindex];
}

inline void tetgenmesh::setvolumebound(tetrahedron* ptr, REAL value) {
  ((REAL *) (ptr))[volumeboundindex] = value;
}

// Get or set a tetrahedron's index (only used for output).
//    These two routines use the reserved slot ptr[10].

inline int tetgenmesh::elemindex(tetrahedron* ptr) {
  int *iptr = (int *) &(ptr[10]);
  return iptr[0];
}

inline void tetgenmesh::setelemindex(tetrahedron* ptr, int value) {
  int *iptr = (int *) &(ptr[10]);
  iptr[0] = value;
}

// Get or set a tetrahedron's marker. 
//   Set 'value = 0' cleans all the face/edge flags.

inline int tetgenmesh::elemmarker(tetrahedron* ptr) {
  return ((int *) (ptr))[elemmarkerindex];
}

inline void tetgenmesh::setelemmarker(tetrahedron* ptr, int value) {
  ((int *) (ptr))[elemmarkerindex] = value;
}

// infect(), infected(), uninfect() -- primitives to flag or unflag a
//   tetrahedron. The last bit of the element marker is flagged (1)
//   or unflagged (0).

inline void tetgenmesh::infect(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] |= 1;
}

inline void tetgenmesh::uninfect(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] &= ~1;
}

inline bool tetgenmesh::infected(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex] & 1) != 0;
}

// marktest(), marktested(), unmarktest() -- primitives to flag or unflag a
//   tetrahedron.  Use the second lowerest bit of the element marker.

inline void tetgenmesh::marktest(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] |= 2;
}

inline void tetgenmesh::unmarktest(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] &= ~2;
}
    
inline bool tetgenmesh::marktested(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex] & 2) != 0;
}

// markface(), unmarkface(), facemarked() -- primitives to flag or unflag a
//   face of a tetrahedron.  From the last 3rd to 6th bits are used for
//   face markers, e.g., the last third bit corresponds to loc = 0. 

inline void tetgenmesh::markface(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] |= (4 << (t.ver & 3));
}

inline void tetgenmesh::unmarkface(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] &= ~(4 << (t.ver & 3));
}

inline bool tetgenmesh::facemarked(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex] & (4 << (t.ver & 3))) != 0;
}

// markedge(), unmarkedge(), edgemarked() -- primitives to flag or unflag an
//   edge of a tetrahedron.  From the last 7th to 12th bits are used for
//   edge markers, e.g., the last 7th bit corresponds to the 0th edge, etc. 
//   Remark: The last 7th bit is marked by 2^6 = 64.

inline void tetgenmesh::markedge(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] |= (int) (64 << ver2edge[(t).ver]);
}

inline void tetgenmesh::unmarkedge(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] &= ~(int) (64 << ver2edge[(t).ver]);
}

inline bool tetgenmesh::edgemarked(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex] & 
           (int) (64 << ver2edge[(t).ver])) != 0;
}

// marktest2(), unmarktest2(), marktest2ed() -- primitives to flag and unflag
//   a tetrahedron. The 13th bit (2^12 = 4096) is used for this flag.

inline void tetgenmesh::marktest2(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] |= (int) (4096);
}

inline void tetgenmesh::unmarktest2(triface& t) {
  ((int *) (t.tet))[elemmarkerindex] &= ~(int) (4096);
}

inline bool tetgenmesh::marktest2ed(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex] & (int) (4096)) != 0;
}

// elemcounter(), setelemcounter() -- primitives to read or ser a (small)
//   integer counter in this tet. It is saved from the 16th bit. On 32 bit
//   system, the range of the counter is [0, 2^15 = 32768]. 

inline int tetgenmesh::elemcounter(triface& t) {
  return (((int *) (t.tet))[elemmarkerindex]) >> 16;
}

inline void tetgenmesh::setelemcounter(triface& t, int value) {
  int c = ((int *) (t.tet))[elemmarkerindex];
  // Clear the old counter while keep the other flags.
  c &= 65535; // sum_{i=0^15} 2^i
  c |= (value << 16);
  ((int *) (t.tet))[elemmarkerindex] = c;
}

inline void tetgenmesh::increaseelemcounter(triface& t) {
  int c = elemcounter(t);
  setelemcounter(t, c + 1);
}

inline void tetgenmesh::decreaseelemcounter(triface& t) {
  int c = elemcounter(t);
  setelemcounter(t, c - 1);
}

// ishulltet()  tests if t is a hull tetrahedron.

inline bool tetgenmesh::ishulltet(triface& t) {
  return (point) (t).tet[7] == dummypoint;
}

// isdeadtet()  tests if t is a tetrahedron is dead.

inline bool tetgenmesh::isdeadtet(triface& t) {
  return ((t.tet == NULL) || (t.tet[4] == NULL));
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for subfaces and subsegments                                   //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

// Each subface contains three pointers to its neighboring subfaces, with
//   edge versions.  To save memory, both information are kept in a single
//   pointer. To make this possible, all subfaces are aligned to eight-byte
//   boundaries, so that the last three bits of each pointer are zeros. An
//   edge version (in the range 0 to 5) is compressed into the last three
//   bits of each pointer by 'sencode()'.  'sdecode()' decodes a pointer,
//   extracting an edge version and a pointer to the beginning of a subface.

inline void tetgenmesh::sdecode(shellface sptr, face& s) {
  s.shver = (int) ((uintptr_t) (sptr) & (uintptr_t) 7);
  s.sh = (shellface *) ((uintptr_t) (sptr) ^ (uintptr_t) (s.shver));
}

inline tetgenmesh::shellface tetgenmesh::sencode(face& s) {
  return (shellface) ((uintptr_t) s.sh | (uintptr_t) s.shver);
}

inline tetgenmesh::shellface tetgenmesh::sencode2(shellface *sh, int shver) {
  return (shellface) ((uintptr_t) sh | (uintptr_t) shver);
}

// sbond() bonds two subfaces (s1) and (s2) together. s1 and s2 must refer
//   to the same edge. No requirement is needed on their orientations.

inline void tetgenmesh::sbond(face& s1, face& s2) 
{
  s1.sh[s1.shver >> 1] = sencode(s2);
  s2.sh[s2.shver >> 1] = sencode(s1);
}

// sbond1() bonds s1 <== s2, i.e., after bonding, s1 is pointing to s2,
//   but s2 is not pointing to s1.  s1 and s2 must refer to the same edge.
//   No requirement is needed on their orientations.

inline void tetgenmesh::sbond1(face& s1, face& s2) 
{
  s1.sh[s1.shver >> 1] = sencode(s2);
}

// Dissolve a subface bond (from one side).  Note that the other subface
//   will still think it's connected to this subface.

inline void tetgenmesh::sdissolve(face& s)
{
  s.sh[s.shver >> 1] = NULL;
}

// spivot() finds the adjacent subface (s2) for a given subface (s1).
//   s1 and s2 share at the same edge.

inline void tetgenmesh::spivot(face& s1, face& s2) 
{
  shellface sptr = s1.sh[s1.shver >> 1];
  sdecode(sptr, s2);
}

inline void tetgenmesh::spivotself(face& s) 
{
  shellface sptr = s.sh[s.shver >> 1];
  sdecode(sptr, s);
}

// These primitives determine or set the origin, destination, or apex
//   of a subface with respect to the edge version.

inline tetgenmesh::point tetgenmesh::sorg(face& s) 
{
  return (point) s.sh[sorgpivot[s.shver]];
}

inline tetgenmesh::point tetgenmesh::sdest(face& s) 
{
  return (point) s.sh[sdestpivot[s.shver]];
}

inline tetgenmesh::point tetgenmesh::sapex(face& s) 
{
  return (point) s.sh[sapexpivot[s.shver]];
}

inline void tetgenmesh::setsorg(face& s, point pointptr) 
{
  s.sh[sorgpivot[s.shver]] = (shellface) pointptr;
}

inline void tetgenmesh::setsdest(face& s, point pointptr) 
{
  s.sh[sdestpivot[s.shver]] = (shellface) pointptr;
}

inline void tetgenmesh::setsapex(face& s, point pointptr) 
{
  s.sh[sapexpivot[s.shver]] = (shellface) pointptr;
}

#define setshvertices(s, pa, pb, pc)\
  setsorg(s, pa);\
  setsdest(s, pb);\
  setsapex(s, pc)

// sesym()  reserves the direction of the lead edge.

inline void tetgenmesh::sesym(face& s1, face& s2) 
{
  s2.sh = s1.sh;
  s2.shver = (s1.shver ^ 1);  // Inverse the last bit.
}

inline void tetgenmesh::sesymself(face& s) 
{
  s.shver ^= 1;
}

// senext()  finds the next edge (counterclockwise) in the same orientation
//   of this face.

inline void tetgenmesh::senext(face& s1, face& s2) 
{
  s2.sh = s1.sh;
  s2.shver = snextpivot[s1.shver];
}

inline void tetgenmesh::senextself(face& s) 
{
  s.shver = snextpivot[s.shver];
}

inline void tetgenmesh::senext2(face& s1, face& s2) 
{
  s2.sh = s1.sh;
  s2.shver = snextpivot[snextpivot[s1.shver]];
}

inline void tetgenmesh::senext2self(face& s) 
{
  s.shver = snextpivot[snextpivot[s.shver]];
}


// Check or set a subface's maximum area bound.

inline REAL tetgenmesh::areabound(face& s) 
{
  return ((REAL *) (s.sh))[areaboundindex];
}

inline void tetgenmesh::setareabound(face& s, REAL value) 
{
  ((REAL *) (s.sh))[areaboundindex] = value;
}

// These two primitives read or set a shell marker.  Shell markers are used
//   to hold user boundary information.

inline int tetgenmesh::shellmark(face& s) 
{
  return ((int *) (s.sh))[shmarkindex];
}

inline void tetgenmesh::setshellmark(face& s, int value) 
{
  ((int *) (s.sh))[shmarkindex] = value;
}



// sinfect(), sinfected(), suninfect() -- primitives to flag or unflag a
//   subface. The last bit of ((int *) ((s).sh))[shmarkindex+1] is flagged.

inline void tetgenmesh::sinfect(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *) ((s).sh))[shmarkindex+1] | (int) 1);
}

inline void tetgenmesh::suninfect(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *) ((s).sh))[shmarkindex+1] & ~(int) 1);
}

// Test a subface for viral infection.

inline bool tetgenmesh::sinfected(face& s) 
{
  return (((int *) ((s).sh))[shmarkindex+1] & (int) 1) != 0;
}

// smarktest(), smarktested(), sunmarktest() -- primitives to flag or unflag
//   a subface. The last 2nd bit of the integer is flagged.

inline void tetgenmesh::smarktest(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] | (int) 2);
}

inline void tetgenmesh::sunmarktest(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] & ~(int)2);
}

inline bool tetgenmesh::smarktested(face& s) 
{
  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 2) != 0);
}

// smarktest2(), smarktest2ed(), sunmarktest2() -- primitives to flag or 
//   unflag a subface. The last 3rd bit of the integer is flagged.

inline void tetgenmesh::smarktest2(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] | (int) 4);
}

inline void tetgenmesh::sunmarktest2(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] & ~(int)4);
}

inline bool tetgenmesh::smarktest2ed(face& s) 
{
  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 4) != 0);
}

// The last 4th bit of ((int *) ((s).sh))[shmarkindex+1] is flagged.

inline void tetgenmesh::smarktest3(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] | (int) 8);
}

inline void tetgenmesh::sunmarktest3(face& s) 
{
  ((int *) ((s).sh))[shmarkindex+1] = 
    (((int *)((s).sh))[shmarkindex+1] & ~(int)8);
}

inline bool tetgenmesh::smarktest3ed(face& s) 
{
  return ((((int *) ((s).sh))[shmarkindex+1] & (int) 8) != 0);
}


// Each facet has a unique index (automatically indexed). Starting from '0'.
// We save this index in the same field of the shell type. 

inline void tetgenmesh::setfacetindex(face& s, int value)
{
  ((int *) (s.sh))[shmarkindex + 2] = value;
}

inline int tetgenmesh::getfacetindex(face& s)
{
  return ((int *) (s.sh))[shmarkindex + 2];
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for interacting between tetrahedra and subfaces                //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

// tsbond() bond a tetrahedron (t) and a subface (s) together.
// Note that t and s must be the same face and the same edge. Moreover,
//   t and s have the same orientation. 
// Since the edge number in t and in s can be any number in {0,1,2}. We bond
//   the edge in s which corresponds to t's 0th edge, and vice versa.

inline void tetgenmesh::tsbond(triface& t, face& s)
{
  if ((t).tet[9] == NULL) {
    // Allocate space for this tet.
    (t).tet[9] = (tetrahedron) tet2subpool->alloc();
    // Initialize.
    for (int i = 0; i < 4; i++) {
      ((shellface *) (t).tet[9])[i] = NULL;
    }
  }
  // Bond t <== s.
  ((shellface *) (t).tet[9])[(t).ver & 3] = 
    sencode2((s).sh, tsbondtbl[t.ver][s.shver]);
  // Bond s <== t.
  s.sh[9 + ((s).shver & 1)] = 
    (shellface) encode2((t).tet, stbondtbl[t.ver][s.shver]);
}

// tspivot() finds a subface (s) abutting on the given tetrahdera (t).
//   Return s.sh = NULL if there is no subface at t. Otherwise, return
//   the subface s, and s and t must be at the same edge wth the same
//   orientation.

inline void tetgenmesh::tspivot(triface& t, face& s) 
{
  if ((t).tet[9] == NULL) {
    (s).sh = NULL;
    return;
  }
  // Get the attached subface s.
  sdecode(((shellface *) (t).tet[9])[(t).ver & 3], (s));
  (s).shver = tspivottbl[t.ver][s.shver];
}

// Quickly check if the handle (t, v) is a subface.
#define issubface(t) \
  ((t).tet[9] && ((t).tet[9])[(t).ver & 3])

// stpivot() finds a tetrahedron (t) abutting a given subface (s).
//   Return the t (if it exists) with the same edge and the same
//   orientation of s.

inline void tetgenmesh::stpivot(face& s, triface& t) 
{
  decode((tetrahedron) s.sh[9 + (s.shver & 1)], t);
  if ((t).tet == NULL) {
    return;
  }
  (t).ver = stpivottbl[t.ver][s.shver];
}

// Quickly check if this subface is attached to a tetrahedron.

#define isshtet(s) \
  ((s).sh[9 + ((s).shver & 1)])

// tsdissolve() dissolve a bond (from the tetrahedron side).

inline void tetgenmesh::tsdissolve(triface& t) 
{
  if ((t).tet[9] != NULL) {
    ((shellface *) (t).tet[9])[(t).ver & 3] = NULL;
  }
}

// stdissolve() dissolve a bond (from the subface side).

inline void tetgenmesh::stdissolve(face& s) 
{
  (s).sh[9] = NULL;
  (s).sh[10] = NULL;
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for interacting between subfaces and segments                  //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

// ssbond() bond a subface to a subsegment.

inline void tetgenmesh::ssbond(face& s, face& edge) 
{
  s.sh[6 + (s.shver >> 1)] = sencode(edge);
  edge.sh[0] = sencode(s);
}

inline void tetgenmesh::ssbond1(face& s, face& edge) 
{
  s.sh[6 + (s.shver >> 1)] = sencode(edge);
  //edge.sh[0] = sencode(s);
}

// ssdisolve() dissolve a bond (from the subface side)

inline void tetgenmesh::ssdissolve(face& s) 
{
  s.sh[6 + (s.shver >> 1)] = NULL;
}

// sspivot() finds a subsegment abutting a subface.

inline void tetgenmesh::sspivot(face& s, face& edge) 
{
  sdecode((shellface) s.sh[6 + (s.shver >> 1)], edge);
}

// Quickly check if the edge is a subsegment.

#define isshsubseg(s) \
  ((s).sh[6 + ((s).shver >> 1)])

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for interacting between tetrahedra and segments                //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

inline void tetgenmesh::tssbond1(triface& t, face& s)
{
  if ((t).tet[8] == NULL) {
    // Allocate space for this tet.
    (t).tet[8] = (tetrahedron) tet2segpool->alloc();
    // Initialization.
    for (int i = 0; i < 6; i++) {
      ((shellface *) (t).tet[8])[i] = NULL;
    }
  }
  ((shellface *) (t).tet[8])[ver2edge[(t).ver]] = sencode((s)); 
}

inline void tetgenmesh::sstbond1(face& s, triface& t) 
{
  ((tetrahedron *) (s).sh)[9] = encode(t);
}

inline void tetgenmesh::tssdissolve1(triface& t)
{
  if ((t).tet[8] != NULL) {
    ((shellface *) (t).tet[8])[ver2edge[(t).ver]] = NULL;
  }
}

inline void tetgenmesh::sstdissolve1(face& s) 
{
  ((tetrahedron *) (s).sh)[9] = NULL;
}

inline void tetgenmesh::tsspivot1(triface& t, face& s)
{
  if ((t).tet[8] != NULL) {
    sdecode(((shellface *) (t).tet[8])[ver2edge[(t).ver]], s);
  } else {
    (s).sh = NULL;
  }
}

// Quickly check whether 't' is a segment or not.

#define issubseg(t) \
  ((t).tet[8] && ((t).tet[8])[ver2edge[(t).ver]])

inline void tetgenmesh::sstpivot1(face& s, triface& t) 
{
  decode((tetrahedron) s.sh[9], t);
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Primitives for points                                                     //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

inline int tetgenmesh::pointmark(point pt) { 
  return ((int *) (pt))[pointmarkindex]; 
}

inline void tetgenmesh::setpointmark(point pt, int value) {
  ((int *) (pt))[pointmarkindex] = value;
}


// These two primitives set and read the type of the point.

inline enum tetgenmesh::verttype tetgenmesh::pointtype(point pt) {
  return (enum verttype) (((int *) (pt))[pointmarkindex + 1] >> (int) 8);
}

inline void tetgenmesh::setpointtype(point pt, enum verttype value) {
  ((int *) (pt))[pointmarkindex + 1] = 
    ((int) value << 8) + (((int *) (pt))[pointmarkindex + 1] & (int) 255);
}

// Read and set the geometry tag of the point (used by -s option).

inline int tetgenmesh::pointgeomtag(point pt) { 
  return ((int *) (pt))[pointmarkindex + 2]; 
}

inline void tetgenmesh::setpointgeomtag(point pt, int value) {
  ((int *) (pt))[pointmarkindex + 2] = value;
}

// Read and set the u,v coordinates of the point (used by -s option).

inline REAL tetgenmesh::pointgeomuv(point pt, int i) {
  return pt[pointparamindex + i];
}

inline void tetgenmesh::setpointgeomuv(point pt, int i, REAL value) {
  pt[pointparamindex + i] = value;
}

// pinfect(), puninfect(), pinfected() -- primitives to flag or unflag
//   a point. The last bit of the integer '[pointindex+1]' is flagged.

inline void tetgenmesh::pinfect(point pt) {
  ((int *) (pt))[pointmarkindex + 1] |= (int) 1;
}

inline void tetgenmesh::puninfect(point pt) {
  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 1;
}

inline bool tetgenmesh::pinfected(point pt) {
  return (((int *) (pt))[pointmarkindex + 1] & (int) 1) != 0;
}

// pmarktest(), punmarktest(), pmarktested() -- more primitives to 
//   flag or unflag a point. 

inline void tetgenmesh::pmarktest(point pt) {
  ((int *) (pt))[pointmarkindex + 1] |= (int) 2;
}

inline void tetgenmesh::punmarktest(point pt) {
  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 2;
}

inline bool tetgenmesh::pmarktested(point pt) {
  return (((int *) (pt))[pointmarkindex + 1] & (int) 2) != 0;
}

inline void tetgenmesh::pmarktest2(point pt) {
  ((int *) (pt))[pointmarkindex + 1] |= (int) 4;
}

inline void tetgenmesh::punmarktest2(point pt) {
  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 4;
}

inline bool tetgenmesh::pmarktest2ed(point pt) {
  return (((int *) (pt))[pointmarkindex + 1] & (int) 4) != 0;
}

inline void tetgenmesh::pmarktest3(point pt) {
  ((int *) (pt))[pointmarkindex + 1] |= (int) 8;
}

inline void tetgenmesh::punmarktest3(point pt) {
  ((int *) (pt))[pointmarkindex + 1] &= ~(int) 8;
}

inline bool tetgenmesh::pmarktest3ed(point pt) {
  return (((int *) (pt))[pointmarkindex + 1] & (int) 8) != 0;
}

// These following primitives set and read a pointer to a tetrahedron
//   a subface/subsegment, a point, or a tet of background mesh.

inline tetgenmesh::tetrahedron tetgenmesh::point2tet(point pt) {
  return ((tetrahedron *) (pt))[point2simindex];
}

inline void tetgenmesh::setpoint2tet(point pt, tetrahedron value) {
  ((tetrahedron *) (pt))[point2simindex] = value;
}

inline tetgenmesh::point tetgenmesh::point2ppt(point pt) {
  return (point) ((tetrahedron *) (pt))[point2simindex + 1];
}

inline void tetgenmesh::setpoint2ppt(point pt, point value) {
  ((tetrahedron *) (pt))[point2simindex + 1] = (tetrahedron) value;
}

inline tetgenmesh::shellface tetgenmesh::point2sh(point pt) {
  return (shellface) ((tetrahedron *) (pt))[point2simindex + 2];
}

inline void tetgenmesh::setpoint2sh(point pt, shellface value) {
  ((tetrahedron *) (pt))[point2simindex + 2] = (tetrahedron) value;
}


inline tetgenmesh::tetrahedron tetgenmesh::point2bgmtet(point pt) {
  return ((tetrahedron *) (pt))[point2simindex + 3];
}

inline void tetgenmesh::setpoint2bgmtet(point pt, tetrahedron value) {
  ((tetrahedron *) (pt))[point2simindex + 3] = value;
}


// The primitives for saving and getting the insertion radius.
inline void tetgenmesh::setpointinsradius(point pt, REAL value)
{
  pt[pointmtrindex + sizeoftensor - 1] = value;
}

inline REAL tetgenmesh::getpointinsradius(point pt)
{
  return pt[pointmtrindex + sizeoftensor - 1];
}

// point2tetorg()    Get the tetrahedron whose origin is the point.

inline void tetgenmesh::point2tetorg(point pa, triface& searchtet)
{
  decode(point2tet(pa), searchtet);
  if ((point) searchtet.tet[4] == pa) {
    searchtet.ver = 11;
  } else if ((point) searchtet.tet[5] == pa) {
    searchtet.ver = 3;
  } else if ((point) searchtet.tet[6] == pa) {
    searchtet.ver = 7;
  } else {
    assert((point) searchtet.tet[7] == pa); // SELF_CHECK
    searchtet.ver = 0;
  }
}

// point2shorg()    Get the subface/segment whose origin is the point.

inline void tetgenmesh::point2shorg(point pa, face& searchsh)
{
  sdecode(point2sh(pa), searchsh);
  if ((point) searchsh.sh[3] == pa) {
    searchsh.shver = 0;
  } else if ((point) searchsh.sh[4] == pa) {
    searchsh.shver = (searchsh.sh[5] != NULL ? 2 : 1); 
  } else {
    assert((point) searchsh.sh[5] == pa); // SELF_CHECK
    searchsh.shver = 4;
  }
}

// farsorg()    Return the origin of the subsegment.
// farsdest()   Return the destination of the subsegment.

inline tetgenmesh::point tetgenmesh::farsorg(face& s)
{
  face travesh, neighsh;

  travesh = s;
  while (1) {
    senext2(travesh, neighsh);
    spivotself(neighsh); 
    if (neighsh.sh == NULL) break;
    if (sorg(neighsh) != sorg(travesh)) sesymself(neighsh);
    senext2(neighsh, travesh); 
  }
  return sorg(travesh);
}

inline tetgenmesh::point tetgenmesh::farsdest(face& s) 
{
  face travesh, neighsh;

  travesh = s;
  while (1) {
    senext(travesh, neighsh);
    spivotself(neighsh); 
    if (neighsh.sh == NULL) break;
    if (sdest(neighsh) != sdest(travesh)) sesymself(neighsh);
    senext(neighsh, travesh); 
  }
  return sdest(travesh);
}

///////////////////////////////////////////////////////////////////////////////
//                                                                           //
// Linear algebra operators.                                                 //
//                                                                           //
///////////////////////////////////////////////////////////////////////////////

// dot() returns the dot product: v1 dot v2.
inline REAL tetgenmesh::dot(REAL* v1, REAL* v2) 
{
  return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
}

// cross() computes the cross product: n = v1 cross v2.
inline void tetgenmesh::cross(REAL* v1, REAL* v2, REAL* n) 
{
  n[0] =   v1[1] * v2[2] - v2[1] * v1[2];
  n[1] = -(v1[0] * v2[2] - v2[0] * v1[2]);
  n[2] =   v1[0] * v2[1] - v2[0] * v1[1];
}

// distance() computes the Euclidean distance between two points.
inline REAL tetgenmesh::distance(REAL* p1, REAL* p2)
{
  return sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) +
              (p2[1] - p1[1]) * (p2[1] - p1[1]) +
              (p2[2] - p1[2]) * (p2[2] - p1[2]));
}

inline REAL tetgenmesh::norm2(REAL x, REAL y, REAL z)
{
  return (x) * (x) + (y) * (y) + (z) * (z);
}


#endif // #ifndef tetgenH