This file is indexed.

/usr/include/TiledArray/array_impl.h is in libtiledarray-dev 0.6.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
/*
 *  This file is a part of TiledArray.
 *  Copyright (C) 2014  Virginia Tech
 *
 *  This program is free software: you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation, either version 3 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *  Justus Calvin
 *  Department of Chemistry, Virginia Tech
 *
 *  array_impl.h
 *  Oct 24, 2014
 *
 */

#ifndef TILEDARRAY_ARRAY_IMPL_H__INCLUDED
#define TILEDARRAY_ARRAY_IMPL_H__INCLUDED

#include <TiledArray/tensor_impl.h>
#include <TiledArray/distributed_storage.h>
#include <TiledArray/transform_iterator.h>
#include <TiledArray/type_traits.h>

namespace TiledArray {
  namespace detail {

    // Forward declaration
    template <typename> class TensorReference;
    template <typename> class TensorConstReference;
    template <typename, typename> class ArrayIiterator;

    /// Tensor tile reference

    /// \tparam Impl The TensorImpl type
    template <typename Impl>
    class TileReference {
    private:

      template <typename, typename>
      friend class ArrayIiterator;

      template <typename>
      friend class TileConstReference;

      typedef typename Impl::range_type range_type;
      typedef typename Impl::range_type::index index_type;
      typedef typename Impl::size_type ordinal_type;

      Impl* tensor_; ///< The tensor that owns the referenced tile
      ordinal_type index_; ///< The ordinal index of the tile

      // Not allowed
      TileReference<Impl>& operator=(const TileReference<Impl>&);
    public:

      TileReference(Impl* tensor, const typename Impl::size_type index) :
        tensor_(tensor), index_(index)
      { }

      TileReference(const TileReference<Impl>& other) :
        tensor_(other.tensor_), index_(other.index_)
      { }

      template <typename Value>
      TileReference<Impl>& operator=(const Value& value) {
        tensor_->set(index_, value);
        return *this;
      }

      typename Impl::future future() const {
        TA_ASSERT(tensor_);
        return tensor_->get(index_);
      }

      typename Impl::value_type get() const {
        // NOTE: return by value to avoid lifetime issues.
        TA_ASSERT(tensor_);
        return future().get();
      }

      operator typename Impl::future() const { return this->future(); }

      operator typename Impl::value_type() const { return get(); }

      /// Tile coordinate index accessor

      /// \return The coordinate index of the current tile
      index_type index() const {
        TA_ASSERT(tensor_);
        return tensor_->range().idx(index_);
      }

      /// Tile ordinal index accessor

      /// \return The ordinal index of the current tile
      ordinal_type ordinal() const {
        return index_;
      }

      /// Tile range factory function

      /// Construct a range object for the current tile
      range_type make_range() const {
        TA_ASSERT(tensor_);
        return tensor_->trange().make_tile_range(index_);
      }

    }; // class TileReference

    /// Tensor tile reference

    /// \tparam Impl The TensorImpl type
    template <typename Impl>
    class TileConstReference {
    private:

      template <typename, typename>
      friend class ArrayIiterator;

      const Impl* tensor_; ///< The tensor that owns the referenced tile
      typename Impl::size_type index_; ///< The index of the tensor

      // Not allowed
      TileConstReference<Impl>& operator=(const TileConstReference<Impl>&);
    public:

      TileConstReference(const Impl* tensor, const typename Impl::size_type index) :
        tensor_(tensor), index_(index)
      { }

      TileConstReference(const TileConstReference<Impl>& other) :
        tensor_(other.tensor_), index_(other.index_)
      { }

      TileConstReference(const TileReference<Impl>& other) :
        tensor_(other.tensor_), index_(other.index_)
      { }

      typename Impl::future future() const {
        TA_ASSERT(tensor_);
        return tensor_->get(index_);
      }

      typename Impl::value_type get() const {
        // NOTE: return by value to avoid lifetime issues.
        TA_ASSERT(tensor_);
        return future().get();
      }

      operator typename Impl::future() const { return tensor_->get(index_); }

      operator typename Impl::value_type() const { return get(); }
    }; // class TileConstReference

  } // namespace detail
} // namespace TiledArray


namespace madness {
  namespace detail {

    // The following class specializations are required so MADNESS will do the
    // right thing when given a TileReference or TileConstReference object
    // as an input for task functions.

    template <typename Impl>
    struct task_arg<TiledArray::detail::TileReference<Impl> > {
        typedef typename Impl::value_type type;
        typedef typename Impl::future holderT;
    }; // struct task_arg<TiledArray::detail::TileReference<Impl> >

    template <typename Impl>
    struct task_arg<TiledArray::detail::TileConstReference<Impl> > {
        typedef typename Impl::value_type type;
        typedef typename Impl::future holderT;
    }; // struct task_arg<TiledArray::detail::TileConstReference<Impl> >

  }  // namespace detail
}  // namespace madness


namespace TiledArray {
  namespace detail {

    /// Distributed tensor iterator

    /// This iterator will reference local tiles for a TensorImpl object. It can
    /// be used to get or set futures to a tile, or access the coordinate and
    /// ordinal index of the tile.
    /// \tparam Impl The TensorImpl type
    /// \tparam Reference The iterator reference type
    template <typename Impl, typename Reference>
    class ArrayIiterator {
    private:
      // Give access to other iterator types.
      template <typename, typename>
      friend class ArrayIiterator;

      Impl* array_;
      typename Impl::pmap_interface::const_iterator it_;

    public:
      typedef ptrdiff_t difference_type; ///< Difference type
      typedef typename Impl::future value_type; ///< Iterator dereference value type
      typedef PointerProxy<value_type> pointer; ///< Pointer type to iterator value
      typedef Reference reference; ///< Reference type to iterator value
      typedef std::forward_iterator_tag iterator_category; ///< Iterator category type
      typedef ArrayIiterator<Impl, Reference> ArrayIterator_; ///< This object type
      typedef typename Impl::range_type::index index_type;
      typedef typename Impl::size_type ordinal_type;
      typedef typename Impl::range_type range_type;
      typedef typename Impl::value_type tile_type;

    private:

      void advance() {
        TA_ASSERT(array_);
        const typename Impl::pmap_interface::const_iterator end =
            array_->pmap()->end();
        do {
          ++it_;
        } while((it_ != end) && array_->is_zero(*it_));
      }

    public:

      /// Default constructor
      ArrayIiterator() : array_(NULL), it_() { }

      /// Constructor
      ArrayIiterator(Impl* tensor, typename Impl::pmap_interface::const_iterator it) :
        array_(tensor), it_(it)
      { }

      /// Copy constructor

      /// \param other The transform iterator to copy
      ArrayIiterator(const ArrayIterator_& other) :
        array_(other.array_), it_(other.it_)
      { }

      /// Copy const iterator constructor

      /// \tparam R Iterator reference type
      /// \param other The transform iterator to copy
      template <typename I, typename R,
          typename std::enable_if<
              !((! std::is_const<Impl>::value) &&
              std::is_const<I>::value)
          >::type* = nullptr>
      ArrayIiterator(const ArrayIiterator<I, R>& other) :
        array_(other.array_), it_(other.it_)
      { }

      /// Copy operator

      /// \param other The transform iterator to copy
      /// \return A reference to this object
      ArrayIterator_& operator=(const ArrayIterator_& other) {
        array_ = other.array_;
        it_ = other.it_;

        return *this;
      }

      /// Copy operator

      /// \tparam R Iterator reference type
      /// \param other The transform iterator to copy
      /// \return A reference to this object
      template <typename R>
      ArrayIterator_& operator=(const ArrayIiterator<Impl, R>& other) {
        array_ = other.array_;
        it_ = other.it_;

        return *this;
      }

      /// Prefix increment operator

      /// \return A reference to this object after it has been incremented.
      ArrayIterator_& operator++() {
        advance();
        return *this;
      }

      /// Post-fix increment operator

      /// \return A copy of this object before it is incremented.
      ArrayIterator_ operator++(int) {
        ArrayIterator_ tmp(*this);
        advance();
        return tmp;
      }

      /// Equality operator

      /// \tparam R Iterator reference type
      /// \param other The iterator to compare to this iterator.
      /// \return \c true when the iterators are equal to each other, otherwise
      /// \c false.
      template <typename I, typename R>
      bool operator==(const ArrayIiterator<I, R>& other) const {
        return (array_ == other.array_) && (it_ == other.it_);
      }

      /// Inequality operator

      /// \tparam R Iterator reference type
      /// \param other The iterator to compare to this iterator.
      /// \return \c true when the iterators are not equal to each other,
      /// otherwise \c false.
      template <typename I, typename R>
      bool operator!=(const ArrayIiterator<I, R>& other) const {
        return (array_ != other.array_) || (it_ != other.it_);
      }

      /// Dereference operator

      /// \return A referenc to the current tile future.
      reference operator*() const {
        TA_ASSERT(array_);
        return reference(array_, *it_);
      }

      /// Arrow dereference operator

      /// \return A pointer-proxy to the current tile
      pointer operator->() const {
        TA_ASSERT(array_);
        return pointer(array_->get(*it_));
      }

      /// Tile coordinate index accessor

      /// \return The coordinate index of the current tile
      index_type index() const {
        TA_ASSERT(array_);
        return array_->range().idx(*it_);
      }

      /// Tile ordinal index accessor

      /// \return The ordinal index of the current tile
      ordinal_type ordinal() const {
        TA_ASSERT(array_);
        return *it_;
      }

      /// Tile range factory function

      /// Construct a range object for the current tile
      range_type make_range() const {
        TA_ASSERT(array_);
        TA_ASSERT(it_ != array_->pmap()->end());
        return array_->trange().make_tile_range(*it_);
      }

    }; // class TensorIterator

    /// Tensor implementation and base for other tensor implementation objects

    /// This implementation object holds the data for tensor object, which
    /// includes tiled range, shape, and tiles. The tiles are held in a
    /// distributed container, stored according to a given process map.
    /// \tparam Tile The tile or value_type of this tensor
    /// \note The process map must be set before data elements can be set.
    /// \note It is the users responsibility to ensure the process maps on all
    /// nodes are identical.
    template <typename Tile, typename Policy>
    class ArrayImpl : public TensorImpl<Policy> {
    public:
      typedef ArrayImpl<Tile, Policy> ArrayImpl_; ///< This object type
      typedef TensorImpl<Policy> TensorImpl_; ///< The base class of this object
      typedef typename TensorImpl_::size_type size_type; ///< Size type
      typedef typename TensorImpl_::trange_type trange_type; ///< Tiled range type for this object
      typedef typename TensorImpl_::range_type range_type; ///< Range type this tensor
      typedef typename TensorImpl_::shape_type shape_type; ///< Shape type
      typedef typename TensorImpl_::pmap_interface pmap_interface; ///< process map interface type
      typedef Tile value_type; ///< Tile or data type
      typedef typename eval_trait<Tile>::type eval_type; ///< The tile evaluation type
      typedef typename numeric_type<value_type>::type
          numeric_type; ///< the numeric type that supports Tile
      typedef DistributedStorage<value_type> storage_type; ///< The data container type
      typedef typename storage_type::future future; ///< Future tile type
      typedef TileReference<ArrayImpl_> reference; ///< Tile reference type
      typedef TileConstReference<ArrayImpl_> const_reference; ///< Tile constant reference type
      typedef ArrayIiterator<ArrayImpl_, reference> iterator; ///< Iterator type
      typedef ArrayIiterator<const ArrayImpl_, const_reference> const_iterator; ///< Constant iterator type

    private:

      storage_type data_; ///< Tile container

    public:

      /// Constructor

      /// The size of shape must be equal to the volume of the tiled range tiles.
      /// \param world The world where this tensor will live
      /// \param trange The tiled range for this tensor
      /// \param shape The shape of this tensor
      /// \param pmap The tile-process map
      /// \throw TiledArray::Exception When the size of shape is not equal to
      /// zero
      ArrayImpl(World& world, const trange_type& trange, const shape_type& shape,
          const std::shared_ptr<pmap_interface>& pmap) :
        TensorImpl_(world, trange, shape, pmap),
        data_(world, trange.tiles_range().volume(), pmap)
      { }

      /// Virtual destructor
      virtual ~ArrayImpl() { }

      /// Tile future accessor

      /// \tparam Index The index type
      /// \param i The tile index
      /// \return A \c future to tile \c i
      /// \throw TiledArray::Exception When tile \c i is zero
      template <typename Index>
      future get(const Index& i) const {
        TA_ASSERT(! TensorImpl_::is_zero(i));
        return data_.get(TensorImpl_::trange().tiles_range().ordinal(i));
      }

      /// Tile future accessor

      /// \tparam Integer An integer type
      /// \param i The tile index, as an \c std::initializer_list<Integer>
      /// \return A \c future to tile \c i
      /// \throw TiledArray::Exception When tile \c i is zero
      template <typename Integer>
      future get(const std::initializer_list<Integer>& i) const {
        return get<std::initializer_list<Integer>>(i);
      }

      /// Set tile

      /// Set the tile at \c i with \c value . \c Value type may be \c value_type ,
      /// \c Future<value_type> , or
      /// \c madness::detail::MoveWrapper<value_type> .
      /// \tparam Index The index type
      /// \tparam Value The value type
      /// \param i The index of the tile to be set
      /// \param value The object tat contains the tile value
      template <typename Index, typename Value>
      void set(const Index& i, const Value& value) {
        TA_ASSERT(! TensorImpl_::is_zero(i));
        data_.set(TensorImpl_::trange().tiles_range().ordinal(i), value);
      }

      /// Array begin iterator

      /// \return A const iterator to the first element of the array.
      iterator begin() {
        // Get the pmap iterator
        typename pmap_interface::const_iterator it = TensorImpl_::pmap()->begin();

        // Find the fist non-zero iterator
        const typename pmap_interface::const_iterator end = TensorImpl_::pmap()->end();
        while((it != end) && TensorImpl_::is_zero(*it)) ++it;

        // Construct and return the iterator
        return iterator(this, it);
      }

      /// Array begin iterator

      /// \return A const iterator to the first element of the array.
      const_iterator cbegin() const {
        // Get the pmap iterator
        typename pmap_interface::const_iterator it = TensorImpl_::pmap()->begin();

        // Find the fist non-zero iterator
        const typename pmap_interface::const_iterator end = TensorImpl_::pmap()->end();
        while((it != end) && TensorImpl_::is_zero(*it)) ++it;

        // Construct and return the iterator
        return const_iterator(this, it);
      }

      /// Array end iterator

      /// \return A const iterator to one past the last element of the array.
      iterator end() {
        return iterator(this, TensorImpl_::pmap()->end());
      }

      /// Array end iterator

      /// \return A const iterator to one past the last element of the array.
      const_iterator cend() const {
        return const_iterator(this, TensorImpl_::pmap()->end());
      }

      /// Unique object id accessor

      /// \return A const reference to this object unique id
      const madness::uniqueidT& id() const { return data_.id(); }

    }; // class ArrayImpl


#ifndef TILEDARRAY_HEADER_ONLY

    extern template
    class ArrayImpl<Tensor<double, Eigen::aligned_allocator<double> >, DensePolicy>;
    extern template
    class ArrayImpl<Tensor<float, Eigen::aligned_allocator<float> >, DensePolicy>;
    extern template
    class ArrayImpl<Tensor<int, Eigen::aligned_allocator<int> >, DensePolicy>;
    extern template
    class ArrayImpl<Tensor<long, Eigen::aligned_allocator<long> >, DensePolicy>;
//    extern template
//    class ArrayImpl<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, DensePolicy>;
//    extern template
//    class ArrayImpl<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, DensePolicy>;

    extern template
    class ArrayImpl<Tensor<double, Eigen::aligned_allocator<double> >, SparsePolicy>;
    extern template
    class ArrayImpl<Tensor<float, Eigen::aligned_allocator<float> >, SparsePolicy>;
    extern template
    class ArrayImpl<Tensor<int, Eigen::aligned_allocator<int> >, SparsePolicy>;
    extern template
    class ArrayImpl<Tensor<long, Eigen::aligned_allocator<long> >, SparsePolicy>;
//    extern template
//    class ArrayImpl<Tensor<std::complex<double>, Eigen::aligned_allocator<std::complex<double> > >, SparsePolicy>;
//    extern template
//    class ArrayImpl<Tensor<std::complex<float>, Eigen::aligned_allocator<std::complex<float> > >, SparsePolicy>;

#endif // TILEDARRAY_HEADER_ONLY

  }  // namespace detail
}  // namespace TiledArray

#endif // TILEDARRAY_ARRAY_IMPL_H__INCLUDED