This file is indexed.

/usr/include/trilinos/AnasaziBasicOrthoManager.hpp is in libtrilinos-anasazi-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER


/*! \file AnasaziBasicOrthoManager.hpp
  \brief Basic implementation of the Anasazi::OrthoManager class
*/

#ifndef ANASAZI_BASIC_ORTHOMANAGER_HPP
#define ANASAZI_BASIC_ORTHOMANAGER_HPP

/*!   \class Anasazi::BasicOrthoManager
      \brief An implementation of the Anasazi::MatOrthoManager that performs orthogonalization
      using (potentially) multiple steps of classical Gram-Schmidt.
      
      \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "AnasaziMatOrthoManager.hpp"
#include "Teuchos_TimeMonitor.hpp"
#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
#  include <Teuchos_FancyOStream.hpp>
#endif

namespace Anasazi {

  template<class ScalarType, class MV, class OP>
  class BasicOrthoManager : public MatOrthoManager<ScalarType,MV,OP> {

  private:
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<ScalarType>  SCT;
    typedef MultiVecTraits<ScalarType,MV>      MVT;
    typedef OperatorTraits<ScalarType,MV,OP>   OPT;

  public:

    //! @name Constructor/Destructor
    //@{ 
    //! Constructor specifying re-orthogonalization tolerance.
    BasicOrthoManager( Teuchos::RCP<const OP> Op = Teuchos::null, 
                       typename Teuchos::ScalarTraits<ScalarType>::magnitudeType kappa = 1.41421356 /* sqrt(2) */,
                       typename Teuchos::ScalarTraits<ScalarType>::magnitudeType eps = 0.0,
                       typename Teuchos::ScalarTraits<ScalarType>::magnitudeType tol = 0.20 );


    //! Destructor
    ~BasicOrthoManager() {}
    //@}


    //! @name Methods implementing Anasazi::MatOrthoManager
    //@{ 


    /*! \brief Given a list of mutually orthogonal and internally orthonormal bases \c Q, this method
     * projects a multivector \c X onto the space orthogonal to the individual <tt>Q[i]</tt>, 
     * optionally returning the coefficients of \c X for the individual <tt>Q[i]</tt>. All of this is done with respect
     * to the inner product innerProd().
     *
     * After calling this routine, \c X will be orthogonal to each of the <tt>Q[i]</tt>.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the columns of \c X will be orthogonal to each <tt>Q[i]</tt>, satisfying
       \f[
       X_{out} = X_{in} - \sum_i Q[i] \langle Q[i], X_{in} \rangle
       \f]

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param C [out] The coefficients of \c X in the bases <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
       \code
          innerProd( Q[i], X, C[i] );
       \endcode
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
       exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or
       <tt>C[i]</tt> is a null pointer, the caller will not have access to the
       computed coefficients.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying 
     \f[
        \langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
     \f]
     and
     \f[
        \langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
     \f]
    */
    void projectMat ( 
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> > Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
              = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
          Teuchos::RCP<MV> MX                        = Teuchos::null,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const;


    /*! \brief This method takes a multivector \c X and attempts to compute an orthonormal basis for \f$colspan(X)\f$, with respect to innerProd().
     *
     * The method uses classical Gram-Schmidt with selective reorthogonalization. As a result, the coefficient matrix \c B is upper triangular.
     *
     * This routine returns an integer \c rank stating the rank of the computed basis. If \c X does not have full rank and the normalize() routine does 
     * not attempt to augment the subspace, then \c rank may be smaller than the number of columns in \c X. In this case, only the first \c rank columns of 
     * output \c X and first \c rank rows of \c B will be valid.
     *  
     * The method attempts to find a basis with dimension equal to the number of columns in \c X. It does this by augmenting linearly dependent 
     * vectors in \c X with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the 
     * computed basis is less than the number of vectors in \c X.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the first \c rank columns of \c X satisfy
       \f[
          \langle X[i], X[j] \rangle = \delta_{ij}\ .
       \f]
       Also, 
       \f[
          X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n)
       \f]
       where \c m is the number of rows in \c X and \c n is the number of columns in \c X.

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param B [out] The coefficients of the original \c X with respect to the computed basis. If \c B is a non-null pointer and \c B matches the dimensions of \c B, then the
     coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling 
       \code
          innerProd( Xout, Xin, B );
       \endcode
     If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with \c X, then a std::invalid_argument exception will be thrown. Otherwise, if \c B is null, the caller will not have
     access to the computed coefficients. This matrix is not necessarily triangular (as in a QR factorization); see the documentation of specific orthogonalization managers.<br>
     The first rows in \c B corresponding to the valid columns in \c X will be upper triangular.

     @return Rank of the basis computed by this method, less than or equal to the number of columns in \c X. This specifies how many columns in the returned \c X and rows in the returned \c B are valid.
    */
    int normalizeMat ( 
          MV &X, 
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
          Teuchos::RCP<MV> MX                                         = Teuchos::null
        ) const;


    /*! \brief Given a set of bases <tt>Q[i]</tt> and a multivector \c X, this method computes an orthonormal basis for \f$colspan(X) - \sum_i colspan(Q[i])\f$.
     *
     *  This routine returns an integer \c rank stating the rank of the computed basis. If the subspace \f$colspan(X) - \sum_i colspan(Q[i])\f$ does not 
     *  have dimension as large as the number of columns of \c X and the orthogonalization manager doe not attempt to augment the subspace, then \c rank 
     *  may be smaller than the number of columns of \c X. In this case, only the first \c rank columns of output \c X and first \c rank rows of \c B will 
     *  be valid.
     *
     * The method attempts to find a basis with dimension the same as the number of columns in \c X. It does this by augmenting linearly dependent 
     * vectors with random directions. A finite number of these attempts will be made; therefore, it is possible that the dimension of the 
     * computed basis is less than the number of vectors in \c X.
     *
     @param X [in/out] The multivector to be modified.<br>
       On output, the first \c rank columns of \c X satisfy
       \f[
            \langle X[i], X[j] \rangle = \delta_{ij} \quad \textrm{and} \quad \langle X, Q[i] \rangle = 0\ .
       \f]
       Also, 
       \f[
          X_{in}(1:m,1:n) = X_{out}(1:m,1:rank) B(1:rank,1:n) + \sum_i Q[i] C[i]
       \f]
       where \c m is the number of rows in \c X and \c n is the number of columns in \c X.

     @param MX [in/out] The image of \c X under the inner product operator \c Op. 
       If \f$ MX != 0\f$: On input, this is expected to be consistent with \c Op \cdot X. On output, this is updated consistent with updates to \c X.
       If \f$ MX == 0\f$ or \f$ Op == 0\f$: \c MX is not referenced.

     @param C [out] The coefficients of \c X in the <tt>Q[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>, similar to calling
       \code
          innerProd( Q[i], X, C[i] );
       \endcode
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c X and \c <tt>Q[i]</tt>, then a std::invalid_argument
       exception will be thrown. Otherwise, if <tt>C.size() < i</tt> or
       <tt>C[i]</tt> is a null pointer, the caller will not have access to the
       computed coefficients.

     @param B [out] The coefficients of the original \c X with respect to the computed basis. If \c B is a non-null pointer and \c B matches the dimensions of \c B, then the
     coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling 
       \code
          innerProd( Xout, Xin, B );
       \endcode
     If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with \c X, then a std::invalid_argument exception will be thrown. Otherwise, if \c B is null, the caller will not have
     access to the computed coefficients. This matrix is not necessarily triangular (as in a QR factorization); see the documentation of specific orthogonalization managers.<br>
     The first rows in \c B corresponding to the valid columns in \c X will be upper triangular.

     @param Q [in] A list of multivector bases specifying the subspaces to be orthogonalized against, satisfying 
     \f[
        \langle Q[i], Q[j] \rangle = I \quad\textrm{if}\quad i=j
     \f]
     and
     \f[
        \langle Q[i], Q[j] \rangle = 0 \quad\textrm{if}\quad i \neq j\ .
     \f]

     @return Rank of the basis computed by this method, less than or equal to the number of columns in \c X. This specifies how many columns in the returned \c X and rows in the returned \c B are valid.

    */
    int projectAndNormalizeMat ( 
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
              = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B                  = Teuchos::null, 
          Teuchos::RCP<MV> MX                        = Teuchos::null,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const;

    //@}

    //! @name Error methods
    //@{ 

    /*! \brief This method computes the error in orthonormality of a multivector, measured
     * as the Frobenius norm of the difference <tt>innerProd(X,Y) - I</tt>.
     *  The method has the option of exploiting a caller-provided \c MX.
     */
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
    orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX = Teuchos::null) const;

    /*! \brief This method computes the error in orthogonality of two multivectors, measured
     * as the Frobenius norm of <tt>innerProd(X,Y)</tt>.
     *  The method has the option of exploiting a caller-provided \c MX.
     */
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
    orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP<const MV> MX1, Teuchos::RCP<const MV> MX2) const;

    //@}

    //! @name Accessor routines
    //@{ 

    //! Set parameter for re-orthogonalization threshold.
    void setKappa( typename Teuchos::ScalarTraits<ScalarType>::magnitudeType kappa ) { kappa_ = kappa; }

    //! Return parameter for re-orthogonalization threshold.
    typename Teuchos::ScalarTraits<ScalarType>::magnitudeType getKappa() const { return kappa_; } 

    //@} 

  private:
    //! Parameter for re-orthogonalization.
    MagnitudeType kappa_;
    MagnitudeType eps_;
    MagnitudeType tol_;
  
    // ! Routine to find an orthonormal basis
    int findBasis(MV &X, Teuchos::RCP<MV> MX, 
                         Teuchos::SerialDenseMatrix<int,ScalarType> &B, 
                         bool completeBasis, int howMany = -1 ) const;

    //
    // Internal timers
    //
    Teuchos::RCP<Teuchos::Time> timerReortho_;
    
  };


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor
  template<class ScalarType, class MV, class OP>
  BasicOrthoManager<ScalarType,MV,OP>::BasicOrthoManager( Teuchos::RCP<const OP> Op,
                                                          typename Teuchos::ScalarTraits<ScalarType>::magnitudeType kappa,
                                                          typename Teuchos::ScalarTraits<ScalarType>::magnitudeType eps,
                                                          typename Teuchos::ScalarTraits<ScalarType>::magnitudeType tol ) : 
    MatOrthoManager<ScalarType,MV,OP>(Op), kappa_(kappa), eps_(eps), tol_(tol)
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    , timerReortho_(Teuchos::TimeMonitor::getNewTimer("Anasazi::BasicOrthoManager::Re-orthogonalization"))
#endif
  {
    TEUCHOS_TEST_FOR_EXCEPTION(eps_ < SCT::magnitude(SCT::zero()),std::invalid_argument,
        "Anasazi::BasicOrthoManager::BasicOrthoManager(): argument \"eps\" must be non-negative.");
    if (eps_ == 0) {
      Teuchos::LAPACK<int,MagnitudeType> lapack;
      eps_ = lapack.LAMCH('E');
      eps_ = Teuchos::ScalarTraits<MagnitudeType>::pow(eps_,.75);
    }
    TEUCHOS_TEST_FOR_EXCEPTION(
        tol_ < SCT::magnitude(SCT::zero()) || tol_ > SCT::magnitude(SCT::one()),
        std::invalid_argument,
        "Anasazi::BasicOrthoManager::BasicOrthoManager(): argument \"tol\" must be in [0,1].");
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute the distance from orthonormality
  template<class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  BasicOrthoManager<ScalarType,MV,OP>::orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX) const {
    const ScalarType ONE = SCT::one();
    int rank = MVT::GetNumberVecs(X);
    Teuchos::SerialDenseMatrix<int,ScalarType> xTx(rank,rank);
    MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X,X,xTx,MX,MX);
    for (int i=0; i<rank; i++) {
      xTx(i,i) -= ONE;
    }
    return xTx.normFrobenius();
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Compute the distance from orthogonality
  template<class ScalarType, class MV, class OP>
  typename Teuchos::ScalarTraits<ScalarType>::magnitudeType 
  BasicOrthoManager<ScalarType,MV,OP>::orthogErrorMat(const MV &X1, const MV &X2, Teuchos::RCP<const MV> MX1, Teuchos::RCP<const MV> MX2) const {
    int r1 = MVT::GetNumberVecs(X1);
    int r2  = MVT::GetNumberVecs(X2);
    Teuchos::SerialDenseMatrix<int,ScalarType> xTx(r1,r2);
    MatOrthoManager<ScalarType,MV,OP>::innerProdMat(X1,X2,xTx,MX1,MX2);
    return xTx.normFrobenius();
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  template<class ScalarType, class MV, class OP>
  void BasicOrthoManager<ScalarType, MV, OP>::projectMat(
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> > Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
          Teuchos::RCP<MV> MX,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ
      ) const {
    // For the inner product defined by the operator Op or the identity (Op == 0)
    //   -> Orthogonalize X against each Q[i]
    // Modify MX accordingly
    //
    // Note that when Op is 0, MX is not referenced
    //
    // Parameter variables
    //
    // X  : Vectors to be transformed
    //
    // MX : Image of the block vector X by the mass matrix
    //
    // Q  : Bases to orthogonalize against. These are assumed orthonormal, mutually and independently.
    //

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    // Get a FancyOStream from out_arg or create a new one ...
    Teuchos::RCP<Teuchos::FancyOStream>
      out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
    out->setShowAllFrontMatter(false).setShowProcRank(true);
    *out << "Entering Anasazi::BasicOrthoManager::projectMat(...)\n";
#endif

    ScalarType ONE  = SCT::one();

    int xc = MVT::GetNumberVecs( X );
    ptrdiff_t xr = MVT::GetGlobalLength( X );
    int nq = Q.length();
    std::vector<int> qcs(nq);
    // short-circuit
    if (nq == 0 || xc == 0 || xr == 0) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
      *out << "Leaving Anasazi::BasicOrthoManager::projectMat(...)\n";
#endif
      return;
    }
    ptrdiff_t qr = MVT::GetGlobalLength ( *Q[0] );
    // if we don't have enough C, expand it with null references
    // if we have too many, resize to throw away the latter ones
    // if we have exactly as many as we have Q, this call has no effect
    C.resize(nq);


    /******   DO NO MODIFY *MX IF _hasOp == false   ******/
    if (this->_hasOp) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
      *out << "Allocating MX...\n";
#endif
      if (MX == Teuchos::null) {
        // we need to allocate space for MX
        MX = MVT::Clone(X,MVT::GetNumberVecs(X));
        OPT::Apply(*(this->_Op),X,*MX);
        this->_OpCounter += MVT::GetNumberVecs(X);
      }
    }
    else {
      // Op == I  -->  MX = X (ignore it if the user passed it in)
      MX = Teuchos::rcpFromRef(X);
    }
    int mxc = MVT::GetNumberVecs( *MX );
    ptrdiff_t mxr = MVT::GetGlobalLength( *MX );

    // check size of X and Q w.r.t. common sense
    TEUCHOS_TEST_FOR_EXCEPTION( xc<0 || xr<0 || mxc<0 || mxr<0, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectMat(): MVT returned negative dimensions for X,MX" );
    // check size of X w.r.t. MX and Q
    TEUCHOS_TEST_FOR_EXCEPTION( xc!=mxc || xr!=mxr || xr!=qr, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectMat(): Size of X not consistent with MX,Q" );

    // tally up size of all Q and check/allocate C
    int baslen = 0;
    for (int i=0; i<nq; i++) {
      TEUCHOS_TEST_FOR_EXCEPTION( MVT::GetGlobalLength( *Q[i] ) != qr, std::invalid_argument, 
                          "Anasazi::BasicOrthoManager::projectMat(): Q lengths not mutually consistent" );
      qcs[i] = MVT::GetNumberVecs( *Q[i] );
      TEUCHOS_TEST_FOR_EXCEPTION( qr < static_cast<ptrdiff_t>(qcs[i]), std::invalid_argument, 
                          "Anasazi::BasicOrthoManager::projectMat(): Q has less rows than columns" );
      baslen += qcs[i];

      // check size of C[i]
      if ( C[i] == Teuchos::null ) {
        C[i] = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(qcs[i],xc) );
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION( C[i]->numRows() != qcs[i] || C[i]->numCols() != xc , std::invalid_argument, 
                           "Anasazi::BasicOrthoManager::projectMat(): Size of Q not consistent with size of C" );
      }
    }

    // Perform the Gram-Schmidt transformation for a block of vectors

    // Compute the initial Op-norms
    std::vector<ScalarType> oldDot( xc );
    MVT::MvDot( X, *MX, oldDot );
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "oldDot = { ";
    std::copy(oldDot.begin(), oldDot.end(), std::ostream_iterator<ScalarType>(*out, " "));
    *out << "}\n";
#endif

    MQ.resize(nq);
    // Define the product Q^T * (Op*X)
    for (int i=0; i<nq; i++) {
      // Multiply Q' with MX
      MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*Q[i],X,*C[i],MQ[i],MX);
      // Multiply by Q and subtract the result in X
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
      *out << "Applying projector P_Q[" << i << "]...\n";
#endif
      MVT::MvTimesMatAddMv( -ONE, *Q[i], *C[i], ONE, X );

      // Update MX, with the least number of applications of Op as possible
      // Update MX. If we have MQ, use it. Otherwise, just multiply by Op
      if (this->_hasOp) {
        if (MQ[i] == Teuchos::null) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Updating MX via M*X...\n";
#endif
          OPT::Apply( *(this->_Op), X, *MX);
          this->_OpCounter += MVT::GetNumberVecs(X);
        }
        else {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Updating MX via M*Q...\n";
#endif
          MVT::MvTimesMatAddMv( -ONE, *MQ[i], *C[i], ONE, *MX );
        }
      }
    }

    // Compute new Op-norms
    std::vector<ScalarType> newDot(xc);
    MVT::MvDot( X, *MX, newDot );
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "newDot = { ";
    std::copy(newDot.begin(), newDot.end(), std::ostream_iterator<ScalarType>(*out, " "));
    *out << "}\n";
#endif

    // determine (individually) whether to do another step of classical Gram-Schmidt
    for (int j = 0; j < xc; ++j) {
      
      if ( SCT::magnitude(kappa_*newDot[j]) < SCT::magnitude(oldDot[j]) ) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "kappa_*newDot[" <<j<< "] == " << kappa_*newDot[j] << "... another step of Gram-Schmidt.\n";
#endif
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        Teuchos::TimeMonitor lcltimer( *timerReortho_ );
#endif
        for (int i=0; i<nq; i++) {
          Teuchos::SerialDenseMatrix<int,ScalarType> C2(C[i]->numRows(), C[i]->numCols());
          
          // Apply another step of classical Gram-Schmidt
          MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*Q[i],X,C2,MQ[i],MX);
          *C[i] += C2;
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Applying projector P_Q[" << i << "]...\n";
#endif
          MVT::MvTimesMatAddMv( -ONE, *Q[i], C2, ONE, X );
          
          // Update MX as above
          if (this->_hasOp) {
            if (MQ[i] == Teuchos::null) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
              *out << "Updating MX via M*X...\n";
#endif
              OPT::Apply( *(this->_Op), X, *MX);
              this->_OpCounter += MVT::GetNumberVecs(X);
            }
            else {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
              *out << "Updating MX via M*Q...\n";
#endif
              MVT::MvTimesMatAddMv( -ONE, *MQ[i], C2, ONE, *MX );
            }
          }
        }
        break;
      } // if (kappa_*newDot[j] < oldDot[j])
    } // for (int j = 0; j < xc; ++j)

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "Leaving Anasazi::BasicOrthoManager::projectMat(...)\n";
#endif
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X), with rank numvectors(X)
  template<class ScalarType, class MV, class OP>
  int BasicOrthoManager<ScalarType, MV, OP>::normalizeMat(
        MV &X, 
        Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
        Teuchos::RCP<MV> MX) const {
    // call findBasis(), with the instruction to try to generate a basis of rank numvecs(X)
    // findBasis() requires MX

    int xc = MVT::GetNumberVecs(X);
    ptrdiff_t xr = MVT::GetGlobalLength(X);

    // if Op==null, MX == X (via pointer)
    // Otherwise, either the user passed in MX or we will allocated and compute it
    if (this->_hasOp) {
      if (MX == Teuchos::null) {
        // we need to allocate space for MX
        MX = MVT::Clone(X,xc);
        OPT::Apply(*(this->_Op),X,*MX);
        this->_OpCounter += MVT::GetNumberVecs(X);
      }
    }

    // if the user doesn't want to store the coefficients, 
    // allocate some local memory for them 
    if ( B == Teuchos::null ) {
      B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
    }

    int mxc = (this->_hasOp) ? MVT::GetNumberVecs( *MX ) : xc;
    ptrdiff_t mxr = (this->_hasOp) ? MVT::GetGlobalLength( *MX )  : xr;

    // check size of C, B
    TEUCHOS_TEST_FOR_EXCEPTION( xc == 0 || xr == 0, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::normalizeMat(): X must be non-empty" );
    TEUCHOS_TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::normalizeMat(): Size of X not consistent with size of B" );
    TEUCHOS_TEST_FOR_EXCEPTION( xc != mxc || xr != mxr, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::normalizeMat(): Size of X not consistent with size of MX" );
    TEUCHOS_TEST_FOR_EXCEPTION( static_cast<ptrdiff_t>(xc) > xr, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::normalizeMat(): Size of X not feasible for normalization" );

    return findBasis(X, MX, *B, true );
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X) - span(W)
  template<class ScalarType, class MV, class OP>
  int BasicOrthoManager<ScalarType, MV, OP>::projectAndNormalizeMat(
          MV &X, 
          Teuchos::Array<Teuchos::RCP<const MV> >  Q,
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
          Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B,
          Teuchos::RCP<MV> MX,
          Teuchos::Array<Teuchos::RCP<const MV> > MQ
      ) const {

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    // Get a FancyOStream from out_arg or create a new one ...
    Teuchos::RCP<Teuchos::FancyOStream>
      out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
    out->setShowAllFrontMatter(false).setShowProcRank(true);
    *out << "Entering Anasazi::BasicOrthoManager::projectAndNormalizeMat(...)\n";
#endif

    int nq = Q.length();
    int xc = MVT::GetNumberVecs( X );
    ptrdiff_t xr = MVT::GetGlobalLength( X );
    int rank;

    /* if the user doesn't want to store the coefficients, 
     * allocate some local memory for them 
     */
    if ( B == Teuchos::null ) {
      B = Teuchos::rcp( new Teuchos::SerialDenseMatrix<int,ScalarType>(xc,xc) );
    }

    /******   DO NO MODIFY *MX IF _hasOp == false   ******/
    if (this->_hasOp) {
      if (MX == Teuchos::null) {
        // we need to allocate space for MX
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "Allocating MX...\n";
#endif
        MX = MVT::Clone(X,MVT::GetNumberVecs(X));
        OPT::Apply(*(this->_Op),X,*MX);
        this->_OpCounter += MVT::GetNumberVecs(X);
      }
    }
    else {
      // Op == I  -->  MX = X (ignore it if the user passed it in)
      MX = Teuchos::rcpFromRef(X);
    }

    int mxc = MVT::GetNumberVecs( *MX );
    ptrdiff_t mxr = MVT::GetGlobalLength( *MX );

    TEUCHOS_TEST_FOR_EXCEPTION( xc == 0 || xr == 0, std::invalid_argument, "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): X must be non-empty" );

    ptrdiff_t numbas = 0;
    for (int i=0; i<nq; i++) {
      numbas += MVT::GetNumberVecs( *Q[i] );
    }

    // check size of B
    TEUCHOS_TEST_FOR_EXCEPTION( B->numRows() != xc || B->numCols() != xc, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): Size of X must be consistent with size of B" );
    // check size of X and MX
    TEUCHOS_TEST_FOR_EXCEPTION( xc<0 || xr<0 || mxc<0 || mxr<0, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): MVT returned negative dimensions for X,MX" );
    // check size of X w.r.t. MX 
    TEUCHOS_TEST_FOR_EXCEPTION( xc!=mxc || xr!=mxr, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): Size of X must be consistent with size of MX" );
    // check feasibility
    TEUCHOS_TEST_FOR_EXCEPTION( numbas+xc > xr, std::invalid_argument, 
                        "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): Orthogonality constraints not feasible" );

    // orthogonalize all of X against Q
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "Orthogonalizing X against Q...\n";
#endif
    projectMat(X,Q,C,MX,MQ);

    Teuchos::SerialDenseMatrix<int,ScalarType> oldCoeff(xc,1);
    // start working
    rank = 0;
    int numTries = 10;   // each vector in X gets 10 random chances to escape degeneracy
    int oldrank = -1;
    do {
      int curxsize = xc - rank;

      // orthonormalize X, but quit if it is rank deficient
      // we can't let findBasis generated random vectors to complete the basis,
      // because it doesn't know about Q; we will do this ourselves below
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
      *out << "Attempting to find orthonormal basis for X...\n";
#endif
      rank = findBasis(X,MX,*B,false,curxsize);

      if (oldrank != -1 && rank != oldrank) {
        // we had previously stopped before, after operating on vector oldrank
        // we saved its coefficients, augmented it with a random vector, and
        // then called findBasis() again, which proceeded to add vector oldrank
        // to the basis. 
        // now, restore the saved coefficients into B
        for (int i=0; i<xc; i++) {
          (*B)(i,oldrank) = oldCoeff(i,0);
        }
      }

      if (rank < xc) {
        if (rank != oldrank) {
          // we quit on this vector and will augment it with random below
          // this is the first time that we have quit on this vector
          // therefor, (*B)(:,rank) contains the actual coefficients of the 
          // input vectors with respect to the previous vectors in the basis
          // save these values, as (*B)(:,rank) will be overwritten by our next
          // call to findBasis()
          // we will restore it after we are done working on this vector
          for (int i=0; i<xc; i++) {
            oldCoeff(i,0) = (*B)(i,rank);
          }
        }
      }

      if (rank == xc) {
        // we are done
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "Finished computing basis.\n";
#endif
        break;
      }
      else {
        TEUCHOS_TEST_FOR_EXCEPTION( rank < oldrank, OrthoError,   
                            "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): basis lost rank; this shouldn't happen");

        if (rank != oldrank) {
          // we added a vector to the basis; reset the chance counter
          numTries = 10;
          // store old rank
          oldrank = rank;
        }
        else {
          // has this vector run out of chances to escape degeneracy?
          if (numTries <= 0) {
            break;
          }
        }
        // use one of this vector's chances
        numTries--;

        // randomize troubled direction
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "Randomizing X[" << rank << "]...\n";
#endif
        Teuchos::RCP<MV> curX, curMX;
        std::vector<int> ind(1);
        ind[0] = rank;
        curX  = MVT::CloneViewNonConst(X,ind);
        MVT::MvRandom(*curX);
        if (this->_hasOp) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Applying operator to random vector.\n";
#endif
          curMX = MVT::CloneViewNonConst(*MX,ind);
          OPT::Apply( *(this->_Op), *curX, *curMX );
          this->_OpCounter += MVT::GetNumberVecs(*curX);
        }

        // orthogonalize against Q
        // if !this->_hasOp, the curMX will be ignored.
        // we don't care about these coefficients
        // on the contrary, we need to preserve the previous coeffs
        {
          Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC(0);
          projectMat(*curX,Q,dummyC,curMX,MQ);
        }
      }
    } while (1);

    // this should never raise an exception; but our post-conditions oblige us to check
    TEUCHOS_TEST_FOR_EXCEPTION( rank > xc || rank < 0, std::logic_error, 
                        "Anasazi::BasicOrthoManager::projectAndNormalizeMat(): Debug error in rank variable." );

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "Leaving Anasazi::BasicOrthoManager::projectAndNormalizeMat(...)\n";
#endif

    return rank;
  }



  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Find an Op-orthonormal basis for span(X), with the option of extending the subspace so that 
  // the rank is numvectors(X)
  template<class ScalarType, class MV, class OP>
  int BasicOrthoManager<ScalarType, MV, OP>::findBasis(
                MV &X, Teuchos::RCP<MV> MX, 
                Teuchos::SerialDenseMatrix<int,ScalarType> &B,
                bool completeBasis, int howMany ) const {

    // For the inner product defined by the operator Op or the identity (Op == 0)
    //   -> Orthonormalize X 
    // Modify MX accordingly
    //
    // Note that when Op is 0, MX is not referenced
    //
    // Parameter variables
    //
    // X  : Vectors to be orthonormalized
    //
    // MX : Image of the multivector X under the operator Op
    //
    // Op  : Pointer to the operator for the inner product
    //

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    // Get a FancyOStream from out_arg or create a new one ...
    Teuchos::RCP<Teuchos::FancyOStream>
      out = Teuchos::getFancyOStream(Teuchos::rcpFromRef(std::cout));
    out->setShowAllFrontMatter(false).setShowProcRank(true);
    *out << "Entering Anasazi::BasicOrthoManager::findBasis(...)\n";
#endif

    const ScalarType ONE  = SCT::one();
    const MagnitudeType ZERO = SCT::magnitude(SCT::zero());

    int xc = MVT::GetNumberVecs( X );

    if (howMany == -1) {
      howMany = xc;
    }

    /*******************************************************
     *  If _hasOp == false, we will not reference MX below *
     *******************************************************/
    TEUCHOS_TEST_FOR_EXCEPTION(this->_hasOp == true && MX == Teuchos::null, std::logic_error,
        "Anasazi::BasicOrthoManager::findBasis(): calling routine did not specify MS.");
    TEUCHOS_TEST_FOR_EXCEPTION( howMany < 0 || howMany > xc, std::logic_error, 
                        "Anasazi::BasicOrthoManager::findBasis(): Invalid howMany parameter" );

    /* xstart is which column we are starting the process with, based on howMany
     * columns before xstart are assumed to be Op-orthonormal already
     */
    int xstart = xc - howMany;

    for (int j = xstart; j < xc; j++) {

      // numX represents the number of currently orthonormal columns of X
      int numX = j;
      // j represents the index of the current column of X
      // these are different interpretations of the same value

      // 
      // set the lower triangular part of B to zero
      for (int i=j+1; i<xc; ++i) {
        B(i,j) = ZERO;
      }

      // Get a view of the vector currently being worked on.
      std::vector<int> index(1);
      index[0] = j;
      Teuchos::RCP<MV> Xj = MVT::CloneViewNonConst( X, index );
      Teuchos::RCP<MV> MXj;
      if ((this->_hasOp)) {
        // MXj is a view of the current vector in MX
        MXj = MVT::CloneViewNonConst( *MX, index );
      }
      else {
        // MXj is a pointer to Xj, and MUST NOT be modified
        MXj = Xj;
      }

      // Get a view of the previous vectors.
      std::vector<int> prev_idx( numX );
      Teuchos::RCP<const MV> prevX, prevMX;

      if (numX > 0) {
        for (int i=0; i<numX; ++i) prev_idx[i] = i;
        prevX = MVT::CloneViewNonConst( X, prev_idx );
        if (this->_hasOp) {
          prevMX = MVT::CloneViewNonConst( *MX, prev_idx );
        }
      } 

      bool rankDef = true;
      /* numTrials>0 will denote that the current vector was randomized for the purpose
       * of finding a basis vector, and that the coefficients of that vector should
       * not be stored in B
       */
      for (int numTrials = 0; numTrials < 10; numTrials++) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "Trial " << numTrials << " for vector " << j << "\n";
#endif

        // Make storage for these Gram-Schmidt iterations.
        Teuchos::SerialDenseMatrix<int,ScalarType> product(numX, 1);
        std::vector<MagnitudeType> origNorm(1), newNorm(1), newNorm2(1);

        //
        // Save old MXj vector and compute Op-norm
        //
        Teuchos::RCP<MV> oldMXj = MVT::CloneCopy( *MXj ); 
        MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,origNorm,MXj);
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "origNorm = " << origNorm[0] << "\n";
#endif

        if (numX > 0) {
          // Apply the first step of Gram-Schmidt

          // product <- prevX^T MXj
          MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*prevX,*Xj,product,Teuchos::null,MXj);

          // Xj <- Xj - prevX prevX^T MXj   
          //     = Xj - prevX product
#ifdef ANASAZI_BASIC_ORTHO_DEBUG 
          *out << "Orthogonalizing X[" << j << "]...\n";
#endif
          MVT::MvTimesMatAddMv( -ONE, *prevX, product, ONE, *Xj );

          // Update MXj
          if (this->_hasOp) {
            // MXj <- Op*Xj_new
            //      = Op*(Xj_old - prevX prevX^T MXj)
            //      = MXj - prevMX product
#ifdef ANASAZI_BASIC_ORTHO_DEBUG 
            *out << "Updating MX[" << j << "]...\n";
#endif
            MVT::MvTimesMatAddMv( -ONE, *prevMX, product, ONE, *MXj );
          }

          // Compute new Op-norm
          MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm,MXj);
          MagnitudeType product_norm = product.normOne();
          
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "newNorm = " << newNorm[0] << "\n";
          *out << "prodoct_norm = " << product_norm << "\n";
#endif

          // Check if a correction is needed.
          if ( product_norm/newNorm[0] >= tol_ || newNorm[0] < eps_*origNorm[0]) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
            if (product_norm/newNorm[0] >= tol_) {
              *out << "product_norm/newNorm == " << product_norm/newNorm[0] << "... another step of Gram-Schmidt.\n";
            }
            else {
              *out << "eps*origNorm == " << eps_*origNorm[0] << "... another step of Gram-Schmidt.\n";
            }
#endif
            // Apply the second step of Gram-Schmidt
            // This is the same as above
            Teuchos::SerialDenseMatrix<int,ScalarType> P2(numX,1);
            MatOrthoManager<ScalarType,MV,OP>::innerProdMat(*prevX,*Xj,P2,Teuchos::null,MXj);
            product += P2;
#ifdef ANASAZI_BASIC_ORTHO_DEBUG 
            *out << "Orthogonalizing X[" << j << "]...\n";
#endif
            MVT::MvTimesMatAddMv( -ONE, *prevX, P2, ONE, *Xj );
            if ((this->_hasOp)) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG 
              *out << "Updating MX[" << j << "]...\n";
#endif
              MVT::MvTimesMatAddMv( -ONE, *prevMX, P2, ONE, *MXj );
            }
            // Compute new Op-norms
            MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm2,MXj);
            product_norm = P2.normOne();
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
            *out << "newNorm2 = " << newNorm2[0] << "\n";
            *out << "product_norm = " << product_norm << "\n";
#endif
            if ( product_norm/newNorm2[0] >= tol_ || newNorm2[0] < eps_*origNorm[0] ) {
              // we don't do another GS, we just set it to zero.
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
              if (product_norm/newNorm2[0] >= tol_) {
                *out << "product_norm/newNorm2 == " << product_norm/newNorm2[0] << "... setting vector to zero.\n";
              }
              else if (newNorm[0] < newNorm2[0]) {
                *out << "newNorm2 > newNorm... setting vector to zero.\n";
              }
              else {
                *out << "eps*origNorm == " << eps_*origNorm[0] << "... setting vector to zero.\n";
              }
#endif
              MVT::MvInit(*Xj,ZERO);
              if ((this->_hasOp)) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
                *out << "Setting MX[" << j << "] to zero as well.\n";
#endif
                MVT::MvInit(*MXj,ZERO);
              }
            }
          } 
        } // if (numX > 0) do GS

        // save the coefficients, if we are working on the original vector and not a randomly generated one
        if (numTrials == 0) {
          for (int i=0; i<numX; i++) {
            B(i,j) = product(i,0);
          }
        }

        // Check if Xj has any directional information left after the orthogonalization.
        MatOrthoManager<ScalarType,MV,OP>::normMat(*Xj,newNorm,MXj);
        if ( newNorm[0] != ZERO && newNorm[0] > SCT::sfmin() ) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Normalizing X[" << j << "], norm(X[" << j << "]) = " << newNorm[0] << "\n";
#endif
          // Normalize Xj.
          // Xj <- Xj / norm
          MVT::MvScale( *Xj, ONE/newNorm[0]);
          if (this->_hasOp) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
            *out << "Normalizing M*X[" << j << "]...\n";
#endif
            // Update MXj.
            MVT::MvScale( *MXj, ONE/newNorm[0]);
          }

          // save it, if it corresponds to the original vector and not a randomly generated one
          if (numTrials == 0) {
            B(j,j) = newNorm[0];
          }

          // We are not rank deficient in this vector. Move on to the next vector in X.
          rankDef = false;
          break;
        }
        else {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
          *out << "Not normalizing M*X[" << j << "]...\n";
#endif
          // There was nothing left in Xj after orthogonalizing against previous columns in X.
          // X is rank deficient.
          // reflect this in the coefficients
          B(j,j) = ZERO;

          if (completeBasis) {
            // Fill it with random information and keep going.
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
            *out << "Inserting random vector in X[" << j << "]...\n";
#endif
            MVT::MvRandom( *Xj );
            if (this->_hasOp) {
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
              *out << "Updating M*X[" << j << "]...\n";
#endif
              OPT::Apply( *(this->_Op), *Xj, *MXj );
              this->_OpCounter += MVT::GetNumberVecs(*Xj);
            }
          }
          else {
            rankDef = true;
            break;
          }
        }
      }  // for (numTrials = 0; numTrials < 10; ++numTrials)

      // if rankDef == true, then quit and notify user of rank obtained
      if (rankDef == true) {
        TEUCHOS_TEST_FOR_EXCEPTION( rankDef && completeBasis, OrthoError, 
                            "Anasazi::BasicOrthoManager::findBasis(): Unable to complete basis" );
#ifdef ANASAZI_BASIC_ORTHO_DEBUG
        *out << "Returning early, rank " << j << " from Anasazi::BasicOrthoManager::findBasis(...)\n";
#endif
        return j;
      }

    } // for (j = 0; j < xc; ++j)

#ifdef ANASAZI_BASIC_ORTHO_DEBUG
    *out << "Returning " << xc << " from Anasazi::BasicOrthoManager::findBasis(...)\n";
#endif
    return xc;
  }

} // namespace Anasazi

#endif // ANASAZI_BASIC_ORTHOMANAGER_HPP