/usr/include/trilinos/AnasaziEigenproblem.hpp is in libtrilinos-anasazi-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_EIGENPROBLEM_H
#define ANASAZI_EIGENPROBLEM_H
/*! \file AnasaziEigenproblem.hpp
\brief Abstract base class which defines the interface required by an eigensolver and
status test class to compute solutions to an eigenproblem
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_RCP.hpp"
/*! \class Anasazi::Eigenproblem
\brief This class defines the interface required by an eigensolver and status
test class to compute solutions to an eigenproblem.
*/
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class Eigenproblem {
public:
//! @name Constructors/Destructor
//@{
//! Empty constructor
Eigenproblem() {};
//! Destructor.
virtual ~Eigenproblem() {};
//@}
//! @name Set Methods
//@{
/*! \brief Set the operator for which eigenvalues will be computed.
*
* \note This may be different from the \c A if a spectral transformation
* is employed. For example, this operator may apply the operation
* \f$(A-\sigma I)^{-1}\f$ if you are looking for eigenvalues of \c A
* around \f$\sigma\f$.
*/
virtual void setOperator( const Teuchos::RCP<const OP> &Op ) = 0;
//! \brief Set the operator \c A of the eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setA( const Teuchos::RCP<const OP> &A ) = 0;
//! \brief Set the operator \c M of the eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setM( const Teuchos::RCP<const OP> &M ) = 0;
//! \brief Set the preconditioner for this eigenvalue problem \f$Ax=\lambda Mx\f$.
virtual void setPrec( const Teuchos::RCP<const OP> &Prec ) = 0;
/*! \brief Set the initial guess.
*
* \note This multivector should have the same number of columns as the blocksize.
*/
virtual void setInitVec( const Teuchos::RCP<MV> &InitVec ) = 0;
/*! \brief Set auxiliary vectors.
*
* \note This multivector can have any number of columns, and most likely
* will contain vectors that will be used by the eigensolver to
* orthogonalize against.
*/
virtual void setAuxVecs( const Teuchos::RCP<const MV> &AuxVecs ) = 0;
//! The number of eigenvalues (NEV) that are requested.
virtual void setNEV( int nev ) = 0;
/*! \brief Specify the symmetry of the eigenproblem.
*
* This knowledge may allow the solver to take advantage of the eigenproblems' symmetry.
* Some computational work may be avoided by setting this properly.
*/
virtual void setHermitian( bool isSym ) = 0;
/*! \brief Specify that this eigenproblem is fully defined.
*
* This routine serves multiple purpose:
* <ul>
* <li> sanity check that the eigenproblem has been fully and consistently defined
* <li> opportunity for the eigenproblem to allocate internal storage for eigenvalues
* and eigenvectors (to be used by eigensolvers and solver managers)
* </ul>
*
* \note The user MUST call this routine before they send the eigenproblem to any solver or solver manager.
*
* \returns \c true signifies success, \c false signifies error.
*/
virtual bool setProblem() = 0;
/*! \brief Set the solution to the eigenproblem.
*
* This mechanism allows an Eigensolution struct to be associated with an Eigenproblem object.
* setSolution() is usually called by a solver manager at the end of its SolverManager::solve()
* routine.
*/
virtual void setSolution(const Eigensolution<ScalarType,MV> &sol) = 0;
//@}
//! @name Accessor Methods
//@{
//! Get a pointer to the operator for which eigenvalues will be computed.
virtual Teuchos::RCP<const OP> getOperator() const = 0;
//! Get a pointer to the operator \c A of the eigenproblem \f$AX=\lambda Mx\f$.
virtual Teuchos::RCP<const OP> getA() const = 0;
//! Get a pointer to the operator \c M of the eigenproblem \f$AX=\lambda Mx\f$.
virtual Teuchos::RCP<const OP> getM() const = 0;
//! Get a pointer to the preconditioner.
virtual Teuchos::RCP<const OP> getPrec() const = 0;
//! Get a pointer to the initial vector
virtual Teuchos::RCP<const MV> getInitVec() const = 0;
//! Get a pointer to the auxiliary vector
virtual Teuchos::RCP<const MV> getAuxVecs() const = 0;
//! Get the number of eigenvalues (NEV) that are required by this eigenproblem.
virtual int getNEV() const = 0;
//! Get the symmetry information for this eigenproblem.
virtual bool isHermitian() const = 0;
//! If the problem has been set, this method will return true.
virtual bool isProblemSet() const = 0;
/*! \brief Get the solution to the eigenproblem.
*
* There is no computation associated with this method. It only provides a
* mechanism for associating an Eigensolution with a Eigenproblem.
*/
virtual const Eigensolution<ScalarType,MV> & getSolution() const = 0;
//@}
};
} // end Anasazi namespace
#endif
// end AnasaziEigenproblem.hpp
|