This file is indexed.

/usr/include/trilinos/AnasaziGenOrthoManager.hpp is in libtrilinos-anasazi-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

/*! \file AnasaziGenOrthoManager.hpp
  \brief  Templated virtual class for providing orthogonalization/orthonormalization methods with matrix-based 
          inner products.
*/

#ifndef ANASAZI_GENORTHOMANAGER_HPP
#define ANASAZI_GENORTHOMANAGER_HPP

/*! \class Anasazi::GenOrthoManager
  
  This class provides an interface for orthogonalization managers to provide
  oblique projectors of the form:
  \f[
    P_{X,Y} S = S - X \langle Y, X \rangle^{-1} \langle Y, S \rangle\ .
  \f]
  Such a projector modifies the input in the range on \f$X\f$ in order to 
  make the output orthogonal to the range of \f$Y\f$.
  
  \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziMatOrthoManager.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"

namespace Anasazi {

  template <class ScalarType, class MV, class OP>
  class GenOrthoManager : public MatOrthoManager<ScalarType,MV,OP> {
  public:
    //! @name Constructor/Destructor
    //@{ 
    //! Default constructor.
    GenOrthoManager(Teuchos::RCP<const OP> Op = Teuchos::null);

    //! Destructor.
    virtual ~GenOrthoManager() {};
    //@}


    //! @name Orthogonalization methods
    //@{ 

    /*! \brief Applies a series of generic projectors.
     *
     * Given a list of bases <tt>X[i]</tt> and <tt>Y[i]</tt> (a projection pair), this method
     * takes a multivector \c S and applies the projectors
     * \f[
     *    P_{X[i],Y[i]} S = S - X[i] \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
     * \f]
     * This operation projects \c S onto the space orthogonal to the <tt>Y[i]</tt>, 
     * along the range of the <tt>X[i]</tt>. The inner product specified by \f$\langle \cdot, 
     * \cdot \rangle\f$ is given by innerProd(). 
     *
     * \note The call 
     * \code 
     * projectGen(S, tuple(X1,X2), tuple(Y1,Y2)) 
     * \endcode 
     * is equivalent to the call
     * \code 
     * projectGen(S, tuple(X2,X1), tuple(Y2,Y1))
     * \endcode
     *
     * The method also returns the coefficients <tt>C[i]</tt> associated with each projection pair, so that 
     * \f[
     *    S_{in} = S_{out} + \sum_i X[i] C[i]
     * \f]
     * and therefore
     * \f[
     *    C[i] = \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
     * \f]
     *
     * Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with
     * respect to innerProd(), i.e., whether \f$\langle Y[i], X[i] \rangle = I\f$. In the case that the bases are specified
     * to be biorthogonal, the inverse \f$\langle Y, X \rangle^{-1}\f$ will not be computed. Furthermore, the user may optionally 
     * specifiy the image of \c S and the projection pairs under the inner product operator getOp().
     @param S [in/out] The multivector to be modified.<br>
       On output, the columns of \c S will be orthogonal to each <tt>Y[i]</tt>, satisfying
       \f[
          \langle Y[i], S_{out} \rangle = 0
       \f]
       Also, 
       \f[
          S_{in} = S_{out} + \sum_i X[i] C[i]
       \f]

     @param X [in] Multivectors for bases under which \f$S_{in}\f$ is modified.
        
     @param Y [in] Multivectors for bases to which \f$S_{out}\f$ should be orthogonal.

     @param isBiortho [in] A flag specifying whether the bases <tt>X[i]</tt>
            and <tt>Y[i]</tt> are biorthonormal, i.e,. whether \f$\langle Y[i],
            X[i]\rangle == I\f$.

     @param C [out] Coefficients for reconstructing \f$S_{in}\f$ via the bases <tt>X[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c S and <tt>X[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>.<br>
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c S and \c <tt>X[i]</tt>, then a std::invalid_argument
       exception will be thrown.<br>
       Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
       the caller will not have access to the computed coefficients <tt>C[i]</tt>.

     @param MS [in/out] If specified by the user, on input \c MS is required to be the image of \c S under the operator getOp(). 
     On output, \c MS will be updated to reflect the changes in \c S.
     
     @param MX [in] If specified by the user, <tt>MX[i]</tt> is required to be the image of <tt>X[i]</tt> under the operator getOp().
     @param MY [in] If specified by the user, <tt>MY[i]</tt> is required to be the image of <tt>Y[i]</tt> under the operator getOp().

     \pre 
     <ul>
     <li>If <tt>X[i] != Teuchos::null</tt> or <tt>Y[i] != Teuchos::null</tt>, then <tt>X[i]</tt> and <tt>Y[i]</tt> are required to 
         have the same number of columns, and each should have the same number of rows as \c S.
     <li>For any <tt>i != j</tt>, \f$\langle Y[i], X[j] \rangle == 0\f$.
     <li>If <tt>biOrtho == true</tt>, \f$\langle Y[i], X[i]\rangle == I\f$
     <li>Otherwise, if <tt>biOrtho == false</tt>, then \f$\langle Y[i], X[i]\rangle\f$ should be Hermitian positive-definite.
     <li>If <tt>X[i]</tt> and <tt>Y[i]</tt> have \f$xc_i\f$ columns and \c S has \f$sc\f$ columns, then <tt>C[i]</tt> if specified must
         be \f$xc_i \times sc\f$.
     </ul>
     
     */
    virtual void projectGen( 
           MV &S,
           Teuchos::Array<Teuchos::RCP<const MV> > X,
           Teuchos::Array<Teuchos::RCP<const MV> > Y,
           bool isBiOrtho,
           Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
                 = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
           Teuchos::RCP<MV> MS                        = Teuchos::null,
           Teuchos::Array<Teuchos::RCP<const MV> > MX = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null)),
           Teuchos::Array<Teuchos::RCP<const MV> > MY = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const = 0;


    /*! \brief Applies a series of generic projectors and returns an orthonormal basis for the residual data.
     *
     * Given a list of bases <tt>X[i]</tt> and <tt>Y[i]</tt> (a projection pair), this method
     * takes a multivector \c S and applies the projectors
     * \f[
     *    P_{X[i],Y[i]} S = S - X[i] \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
     * \f]
     * These operation project \c S onto the space orthogonal to the range of the <tt>Y[i]</tt>, 
     * along the range of \c X[i]. The inner product specified by \f$\langle \cdot, \cdot \rangle\f$
     * is given by innerProd(). 
     *
     * The method returns in \c S an orthonormal basis for the residual
     * \f[
     *    \left( \prod_{i} P_{X[i],Y[i]} \right) S_{in} = S_{out} B\ ,
     * \f]
     * where \c B contains the (not necessarily triangular) coefficients of the residual with respect to the 
     * new basis.
     *
     * The method also returns the coefficients <tt>C[i]</tt> and \c B associated with each projection pair, so that 
     * \f[
     *    S_{in} = S_{out} B + \sum_i X[i] C[i]
     * \f]
     * and 
     * \f[
     *    C[i] = \langle Y[i], X[i] \rangle^{-1} \langle Y[i], S \rangle\ .
     * \f]
     *
     * Lastly, for reasons of efficiency, the user must specify whether the projection pairs are bi-orthonormal with
     * respect to innerProd(), i.e., whether \f$\langle Y[i], X[i] \rangle = I\f$. Furthermore, the user may optionally 
     * specifiy the image of \c S and the projection pairs under the inner product operator getOp().
     @param S [in/out] The multivector to be modified.<br>
       On output, the columns of \c S will be orthogonal to each <tt>Y[i]</tt>, satisfying
       \f[
          \langle Y[i], S_{out} \rangle = 0
       \f]
       Also, 
       \f[
          S_{in}(1:m,1:n) = S_{out}(1:m,1:rank) B(1:rank,1:n) + \sum_i X[i] C[i]\ ,
       \f]
       where \c m is the number of rows in \c S, \c n is the number of
       columns in \c S, and \c rank is the value returned from the method.

     @param X [in] Multivectors for bases under which \f$S_{in}\f$ is modified.
        
     @param Y [in] Multivectors for bases to which \f$S_{out}\f$ should be orthogonal.

     @param isBiortho [in] A flag specifying whether the bases <tt>X[i]</tt>
            and <tt>Y[i]</tt> are biorthonormal, i.e,. whether \f$\langle Y[i],
            X[i]\rangle == I\f$.

     @param C [out] Coefficients for reconstructing \f$S_{in}\f$ via the bases <tt>X[i]</tt>. If <tt>C[i]</tt> is a non-null pointer 
       and <tt>C[i]</tt> matches the dimensions of \c X and <tt>Q[i]</tt>, then the coefficients computed during the orthogonalization
       routine will be stored in the matrix <tt>C[i]</tt>.<br>
       If <tt>C[i]</tt> points to a Teuchos::SerialDenseMatrix with size
       inconsistent with \c S and \c <tt>X[i]</tt>, then a std::invalid_argument
       exception will be thrown.<br>
       Otherwise, if <tt>C.size() < i</tt> or <tt>C[i]</tt> is a null pointer,
       the caller will not have access to the computed coefficients <tt>C[i]</tt>.

     @param B [out] The coefficients of the original \c S with respect to the computed basis. If \c B is a non-null pointer and 
     \c B matches the dimensions of \c B, then the
     coefficients computed during the orthogonalization routine will be stored in \c B, similar to calling 
       \code
          innerProd( Sout, Sin, B );
       \endcode
     If \c B points to a Teuchos::SerialDenseMatrix with size inconsistent with
     \c S, then a std::invalid_argument exception will be thrown.<br>
     Otherwise, if \c B is null, the caller will not have access to the computed
     coefficients.<br>

     @param MS [in/out] If specified by the user, on input \c MS is required to be the image of \c S under the operator getOp(). 
     On output, \c MS will be updated to reflect the changes in \c S.
     
     @param MX [in] If specified by the user, <tt>MX[i]</tt> is required to be the image of <tt>X[i]</tt> under the operator getOp().
     @param MY [in] If specified by the user, <tt>MY[i]</tt> is required to be the image of <tt>Y[i]</tt> under the operator getOp().

     \note The matrix \c B is not necessarily triangular (as in a QR
         factorization); see the documentation of specific orthogonalization managers.

     \pre 
     <ul>
     <li>If <tt>X[i] != Teuchos::null</tt> or <tt>Y[i] != Teuchos::null</tt>, then <tt>X[i]</tt> and <tt>Y[i]</tt> are required to 
         have the same number of columns, and each should have the same number of rows as \c S.
     <li>For any <tt>i != j</tt>, \f$\langle Y[i], X[j] \rangle == 0\f$.
     <li>If <tt>biOrtho == true</tt>, \f$\langle Y[i], X[i]\rangle == I\f$
     <li>Otherwise, if <tt>biOrtho == false</tt>, then \f$\langle Y[i], X[i]\rangle\f$ should be Hermitian positive-definite.
     <li>If <tt>X[i]</tt> and <tt>Y[i]</tt> have \f$xc_i\f$ columns and \c S has \f$sc\f$ columns, then <tt>C[i]</tt> if specified must
         be \f$xc_i \times sc\f$.
     <li>If <tt>S</tt> has \f$sc\f$ columns, then \c B if specified must be \f$sc \times sc \f$.
     </ul>

     @return Rank of the basis computed by this method.
     */
    virtual int projectAndNormalizeGen (
           MV &S,
           Teuchos::Array<Teuchos::RCP<const MV> > X,
           Teuchos::Array<Teuchos::RCP<const MV> > Y,
           bool isBiOrtho,
           Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
                 = Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
           Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
           Teuchos::RCP<MV> MS                                         = Teuchos::null,
           Teuchos::Array<Teuchos::RCP<const MV> > MX                  = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null)),
           Teuchos::Array<Teuchos::RCP<const MV> > MY                  = Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
        ) const = 0;

    //@}

  };

  template <class ScalarType,class MV,class OP>
  GenOrthoManager<ScalarType,MV,OP>::GenOrthoManager(Teuchos::RCP<const OP> Op)
    : MatOrthoManager<ScalarType,MV,OP>(Op) {}

} // end of Anasazi namespace


#endif

// end of file AnasaziGenOrthoManager.hpp