This file is indexed.

/usr/include/trilinos/AnasaziIRTR.hpp is in libtrilinos-anasazi-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
//! \file AnasaziIRTR.hpp


#ifndef ANASAZI_IRTR_HPP
#define ANASAZI_IRTR_HPP

#include "AnasaziTypes.hpp"
#include "AnasaziRTRBase.hpp"

#include "AnasaziEigensolver.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
#include "Teuchos_ScalarTraits.hpp"

#include "Teuchos_LAPACK.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_SerialDenseMatrix.hpp"
#include "Teuchos_ParameterList.hpp"
#include "Teuchos_TimeMonitor.hpp"

/*!     \class Anasazi::IRTR

        IRTR is a caching implementation of the Implicit Riemannian Trust-Region
        (%IRTR) eigensolver.

        The solver uses between 10 and 13 blocks of vectors, compared to the
        requirements by SIRTR of 6 to 8 blocks of vectors. The base requirement
        is 10 blocks of vectors, where a block of vectors contains a number of vectors equal to the
        block size specified for the solver (see RTRBase::getBlockSize()).
        Additional blocks are required when solving a generalized eigenvalue problem or when using a preconditioiner.

        For more information, see RTRBase.

        \ingroup anasazi_solver_framework

        \author Chris Baker
*/


// TODO: add randomization
// TODO: add expensive debug checking on Teuchos_Debug

namespace Anasazi {

  template <class ScalarType, class MV, class OP>
  class IRTR : public RTRBase<ScalarType,MV,OP> {
  public:

    //! @name Constructor/Destructor
    //@{

    /*! \brief %IRTR constructor with eigenproblem, solver utilities, and parameter list of solver options.
     *
     * This constructor takes pointers required by the eigensolver, in addition
     * to a parameter list of options for the eigensolver. These options include the following:
     *   - "Rho Prime" - an \c MagnitudeType specifying the size of the implicit trust-region radius.
     *   - "Block Size" - an \c int specifying the block size used by the algorithm. This can also be specified using the setBlockSize() method.
     *   - "Leftmost" - a \c bool specifying whether the solver is computing the
     *     leftmost ("SR") or rightmost ("LR") eigenvalues. Default: true. This must be in accord with the SortManager pass to the constructor.
     *   - "Kappa Convergence" - a \c MagnitudeType specifing the rate of convergence for the linear convergence regime. Default: 0.1
     *   - "Theta Convergence" - a \c MagnitudeType specifing the order of convergence for the linear convergence regime. theta implies a convergence order of theta+1. Default: 1.0
     */
    IRTR( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >    &problem,
          const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> >           &sorter,
          const Teuchos::RCP<OutputManager<ScalarType> >         &printer,
          const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >      &tester,
          const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
          Teuchos::ParameterList                                 &params
        );

    //! %IRTR destructor
    virtual ~IRTR() {};

    //@}

    //! @name Solver methods
    //@{

    //! \brief Impemements Eigensolver. The outer %IRTR iteration. See RTRBase::iterate().
    void iterate();

    //@}

    //!  @name Output methods
    //@{

    //! Impemements Eigensolver. This method requests that the solver print out its current status to screen.
    void currentStatus(std::ostream &os);

    //@}

  private:
    //
    // Convenience typedefs
    //
    typedef SolverUtils<ScalarType,MV,OP> Utils;
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename SCT::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MAT;
    enum trRetType {
      UNINITIALIZED = 0,
      MAXIMUM_ITERATIONS,
      NEGATIVE_CURVATURE,
      EXCEEDED_TR,
      KAPPA_CONVERGENCE,
      THETA_CONVERGENCE
    };
    // these correspond to above
    std::vector<std::string> stopReasons_;
    //
    // Consts
    //
    const MagnitudeType ZERO;
    const MagnitudeType ONE;
    //
    // Internal methods
    //
    //! \brief The inner %IRTR iteration. See RTRBase::solveTRSubproblem().
    void solveTRSubproblem();
    //
    // rho_prime
    MagnitudeType rho_prime_;
    //
    // norm of initial gradient: this is used for scaling
    MagnitudeType normgradf0_;
    //
    // tr stopping reason
    trRetType innerStop_;
    //
    // number of inner iterations
    int innerIters_, totalInnerIters_;
    //
    // use 2D subspace acceleration of X+Eta to generate new iterate?
    bool useSA_;
  };




  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Constructor
  template <class ScalarType, class MV, class OP>
  IRTR<ScalarType,MV,OP>::IRTR(
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> >    &problem,
        const Teuchos::RCP<SortManager<typename Teuchos::ScalarTraits<ScalarType>::magnitudeType> >           &sorter,
        const Teuchos::RCP<OutputManager<ScalarType> >         &printer,
        const Teuchos::RCP<StatusTest<ScalarType,MV,OP> >      &tester,
        const Teuchos::RCP<GenOrthoManager<ScalarType,MV,OP> > &ortho,
        Teuchos::ParameterList                                 &params
        ) :
    RTRBase<ScalarType,MV,OP>(problem,sorter,printer,tester,ortho,params,"IRTR",false),
    ZERO(MAT::zero()),
    ONE(MAT::one()),
    totalInnerIters_(0)
  {
    // set up array of stop reasons
    stopReasons_.push_back("n/a");
    stopReasons_.push_back("maximum iterations");
    stopReasons_.push_back("negative curvature");
    stopReasons_.push_back("exceeded TR");
    stopReasons_.push_back("kappa convergence");
    stopReasons_.push_back("theta convergence");

    rho_prime_ = params.get("Rho Prime",0.5);
    TEUCHOS_TEST_FOR_EXCEPTION(rho_prime_ <= 0 || rho_prime_ >= 1,std::invalid_argument,
                       "Anasazi::IRTR::constructor: rho_prime must be in (0,1).");

    useSA_ = params.get<bool>("Use SA",false);
  }


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // TR subproblem solver
  //
  // FINISH:
  //   define pre- and post-conditions
  //
  // POST:
  //   delta_,Adelta_,Bdelta_,Hdelta_ undefined
  //
  template <class ScalarType, class MV, class OP>
  void IRTR<ScalarType,MV,OP>::solveTRSubproblem() {

    // return one of:
    // MAXIMUM_ITERATIONS
    // NEGATIVE_CURVATURE
    // EXCEEDED_TR
    // KAPPA_CONVERGENCE
    // THETA_CONVERGENCE

    using Teuchos::RCP;
    using Teuchos::tuple;
    using Teuchos::null;
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    using Teuchos::TimeMonitor;
#endif
    using std::endl;
    typedef Teuchos::RCP<const MV> PCMV;
    typedef Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > PSDM;

    innerStop_ = MAXIMUM_ITERATIONS;

    const int n = MVT::GetGlobalLength(*this->eta_);
    const int p = this->blockSize_;
    const int d = n*p - (p*p+p)/2;

    // We have the following:
    //
    // X'*B*X = I
    // X'*A*X = theta_
    //
    // We desire to remain in the trust-region:
    // { eta : rho_Y(eta) \geq rho_prime }
    // where
    // rho_Y(eta) = 1/(1+eta'*B*eta)
    // Therefore, the trust-region is
    // { eta : eta'*B*eta \leq 1/rho_prime - 1 }
    //
    const double D2 = ONE/rho_prime_ - ONE;

    std::vector<MagnitudeType> d_Hd(p), alpha(p), beta(p), z_r(p), zold_rold(p);
    std::vector<MagnitudeType> eBe(p), eBd(p), dBd(p), new_eBe(p);
    MagnitudeType r0_norm;

    MVT::MvInit(*this->eta_ ,0.0);
    MVT::MvInit(*this->Aeta_,0.0);
    if (this->hasBOp_) {
      MVT::MvInit(*this->Beta_,0.0);
    }

    //
    // R_ contains direct residuals:
    //    R_ = A X_ - B X_ diag(theta_)
    //
    // r0 = grad f(X) = 2 P_BX A X = 2 P_BX (A X - B X diag(theta_) = 2 proj(R_)
    // We will do this in place.
    // For seeking the rightmost, we want to maximize f
    // This is the same as minimizing -f
    // Substitute all f with -f here. In particular,
    //    grad -f(X) = -grad f(X)
    //    Hess -f(X) = -Hess f(X)
    //
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
      this->orthman_->projectGen(
          *this->R_,                                            // operating on R
          tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,   // P_{BV,V}, and <BV,V>_B != I
          tuple<PSDM>(null),                                    // don't care about coeffs
          null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));      // don't have B*BV, but do have B*V
      if (this->leftMost_) {
        MVT::MvScale(*this->R_,2.0);
      }
      else {
        MVT::MvScale(*this->R_,-2.0);
      }
    }

    r0_norm = MAT::squareroot( RTRBase<ScalarType,MV,OP>::ginner(*this->R_) );
    //
    // kappa (linear) convergence
    // theta (superlinear) convergence
    //
    MagnitudeType kconv = r0_norm * this->conv_kappa_;
    // FINISH: consider inserting some scaling here
    // MagnitudeType tconv = r0_norm * MAT::pow(r0_norm/normgradf0_,this->conv_theta_);
    MagnitudeType tconv = MAT::pow(r0_norm,this->conv_theta_+ONE);
    if (this->om_->isVerbosity(Debug)) {
      this->om_->stream(Debug)
        << " >> |r0|       : " << r0_norm << endl
        << " >> kappa conv : " << kconv << endl
        << " >> theta conv : " << tconv << endl;
    }

    //
    // For Olsen preconditioning, the preconditioner is
    // Z = P_{Prec^-1 BX, BX} Prec^-1 R
    // for efficiency, we compute Prec^-1 BX once here for use later
    // Otherwise, we don't need PBX
    if (this->hasPrec_ && this->olsenPrec_)
    {
      std::vector<int> ind(this->blockSize_);
      for (int i=0; i<this->blockSize_; ++i) ind[i] = this->numAuxVecs_+i;
      Teuchos::RCP<MV> PBX = MVT::CloneViewNonConst(*this->PBV_,ind);
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor prectimer( *this->timerPrec_ );
#endif
        OPT::Apply(*this->Prec_,*this->BX_,*PBX);
        this->counterPrec_ += this->blockSize_;
      }
      PBX = Teuchos::null;
    }

    // Z = P_{Prec^-1 BV, BV} Prec^-1 R
    //    Prec^-1 BV in PBV
    // or
    // Z = P_{BV,BV} Prec^-1 R
    if (this->hasPrec_)
    {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
      TimeMonitor prectimer( *this->timerPrec_ );
#endif
      OPT::Apply(*this->Prec_,*this->R_,*this->Z_);
      this->counterPrec_ += this->blockSize_;
      // the orthogonalization time counts under Ortho and under Preconditioning
      if (this->olsenPrec_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
        this->orthman_->projectGen(
            *this->Z_,                                             // operating on Z
            tuple<PCMV>(this->PBV_),tuple<PCMV>(this->V_),false,   // P_{PBV,V}, B inner product, and <PBV,V>_B != I
            tuple<PSDM>(null),                                     // don't care about coeffs
            null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));       // don't have B*PBV or B*Z, but do have B*V
      }
      else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
        this->orthman_->projectGen(
            *this->Z_,                                             // operating on Z
            tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,    // P_{BV,V}, and <BV,V>_B != I
            tuple<PSDM>(null),                                     // don't care about coeffs
            null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));       // don't have B*BV, but do have B*V
      }
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,*this->Z_,z_r);
    }
    else {
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,z_r);
    }

    if (this->om_->isVerbosity( Debug )) {
      // Check that gradient is B-orthogonal to X
      typename RTRBase<ScalarType,MV,OP>::CheckList chk;
      chk.checkBR = true;
      if (this->hasPrec_) chk.checkZ  = true;
      this->om_->print( Debug, this->accuracyCheck(chk, "after computing gradient") );
    }
    else if (this->om_->isVerbosity( OrthoDetails )) {
      // Check that gradient is B-orthogonal to X
      typename RTRBase<ScalarType,MV,OP>::CheckList chk;
      chk.checkBR = true;
      if (this->hasPrec_) chk.checkZ  = true;
      this->om_->print( OrthoDetails, this->accuracyCheck(chk, "after computing gradient") );
    }

    // delta = -z
    MVT::MvAddMv(-ONE,*this->Z_,ZERO,*this->Z_,*this->delta_);

    if (this->om_->isVerbosity(Debug)) {
      RCP<MV> Heta = MVT::Clone(*this->eta_,this->blockSize_);
      // put 2*A*e - 2*B*e*theta --> He
      MVT::MvAddMv(ONE,*this->Beta_,ZERO,*this->Beta_,*Heta);
      std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
      MVT::MvScale(*Heta,theta_comp);
      if (this->leftMost_) {
        MVT::MvAddMv( 2.0,*this->Aeta_,-2.0,*Heta,*Heta); // Heta = 2*Aeta + (-2)*Beta*theta
      }
      else {
        MVT::MvAddMv(-2.0,*this->Aeta_, 2.0,*Heta,*Heta); // Heta = (-2)*Aeta + 2*Beta*theta
      }
      // apply projector
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
        this->orthman_->projectGen(
            *Heta,                                                 // operating on Heta
            tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,    // P_{BV,V}, and <BV,V>_B != I
            tuple<PSDM>(null),                                     // don't care about coeffs
            null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));       // don't have B*BV, but do have B*V
      }

      std::vector<MagnitudeType> eg(this->blockSize_),
                                eHe(this->blockSize_);
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->AX_,eg);
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*Heta,eHe);
      if (this->leftMost_) {
        for (int j=0; j<this->blockSize_; ++j) {
          eg[j] = this->theta_[j] + 2*eg[j] + .5*eHe[j];
        }
      }
      else {
        for (int j=0; j<this->blockSize_; ++j) {
          eg[j] = -this->theta_[j] - 2*eg[j] + .5*eHe[j];
        }
      }
      this->om_->stream(Debug)
        << " Debugging checks: IRTR inner iteration " << innerIters_ << endl
        << " >> m_X(eta) : " << std::accumulate(eg.begin(),eg.end(),0.0) << endl;
      for (int j=0; j<this->blockSize_; ++j) {
        this->om_->stream(Debug)
          << " >> m_X(eta_" << j << ") : " << eg[j] << endl;
      }
    }

    ////////////////////////////////////////////////////////////////
    ////////////////////////////////////////////////////////////////
    // the inner/tCG loop
    for (innerIters_=1; innerIters_<=d; ++innerIters_) {

      //
      // [Hdelta,Adelta,Bdelta] = Hess*delta = 2 Proj(A*delta - B*delta*X'*A*X)
      // X'*A*X = diag(theta), so that
      // (B*delta)*diag(theta) can be done on the cheap
      //
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerAOp_ );
#endif
        OPT::Apply(*this->AOp_,*this->delta_,*this->Adelta_);
        this->counterAOp_ += this->blockSize_;
      }
      if (this->hasBOp_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerBOp_ );
#endif
        OPT::Apply(*this->BOp_,*this->delta_,*this->Bdelta_);
        this->counterBOp_ += this->blockSize_;
      }
      else {
        MVT::MvAddMv(ONE,*this->delta_,ZERO,*this->delta_,*this->Bdelta_);
      }
      // compute <eta,B*delta> and <delta,B*delta>
      // these will be needed below
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_  ,*this->Bdelta_,eBd);
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->delta_,*this->Bdelta_,dBd);
      // put 2*A*d - 2*B*d*theta --> Hd
      MVT::MvAddMv(ONE,*this->Bdelta_,ZERO,*this->Bdelta_,*this->Hdelta_);
      {
        std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
        MVT::MvScale(*this->Hdelta_,theta_comp);
      }
      if (this->leftMost_) {
        MVT::MvAddMv( 2.0,*this->Adelta_,-2.0,*this->Hdelta_,*this->Hdelta_);
      }
      else {
        MVT::MvAddMv(-2.0,*this->Adelta_, 2.0,*this->Hdelta_,*this->Hdelta_);
      }
      // apply projector
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
        this->orthman_->projectGen(
            *this->Hdelta_,                                       // operating on Hdelta
            tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,   // P_{BV,V}, and <BV,V>_B != I
            tuple<PSDM>(null),                                    // don't care about coeffs
            null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));      // don't have B*BV, but do have B*V
      }
      RTRBase<ScalarType,MV,OP>::ginnersep(*this->delta_,*this->Hdelta_,d_Hd);


      // compute update step
      for (unsigned int j=0; j<alpha.size(); ++j)
      {
        alpha[j] = z_r[j]/d_Hd[j];
      }

      // compute new B-norms
      for (unsigned int j=0; j<alpha.size(); ++j)
      {
        new_eBe[j] = eBe[j] + 2*alpha[j]*eBd[j] + alpha[j]*alpha[j]*dBd[j];
      }

      if (this->om_->isVerbosity(Debug)) {
        for (unsigned int j=0; j<alpha.size(); j++) {
          this->om_->stream(Debug)
            << "     >> z_r[" << j << "]  : " << z_r[j]
            << "    d_Hd[" << j << "]  : " << d_Hd[j] << endl
            << "     >> eBe[" << j << "]  : " << eBe[j]
            << "    neweBe[" << j << "]  : " << new_eBe[j] << endl
            << "     >> eBd[" << j << "]  : " << eBd[j]
            << "    dBd[" << j << "]  : " << dBd[j] << endl;
        }
      }

      // check truncation criteria: negative curvature or exceeded trust-region
      std::vector<int> trncstep;
      trncstep.reserve(p);
      // trncstep will contain truncated step, due to
      //   negative curvature or exceeding implicit trust-region
      bool atleastonenegcur = false;
      for (unsigned int j=0; j<d_Hd.size(); ++j) {
        if (d_Hd[j] <= 0) {
          trncstep.push_back(j);
          atleastonenegcur = true;
        }
        else if (new_eBe[j] > D2) {
          trncstep.push_back(j);
        }
      }

      if (!trncstep.empty())
      {
        // compute step to edge of trust-region, for trncstep vectors
        if (this->om_->isVerbosity(Debug)) {
          for (unsigned int j=0; j<trncstep.size(); ++j) {
            this->om_->stream(Debug)
              << " >> alpha[" << trncstep[j] << "]  : " << alpha[trncstep[j]] << endl;
          }
        }
        for (unsigned int j=0; j<trncstep.size(); ++j) {
          int jj = trncstep[j];
          alpha[jj] = ( -eBd[jj] + MAT::squareroot(eBd[jj]*eBd[jj] + dBd[jj]*(D2-eBe[jj]) ) ) / dBd[jj];
        }
        if (this->om_->isVerbosity(Debug)) {
          for (unsigned int j=0; j<trncstep.size(); ++j) {
            this->om_->stream(Debug)
              << " >> tau[" << trncstep[j] << "]  : " << alpha[trncstep[j]] << endl;
          }
        }
        if (atleastonenegcur) {
          innerStop_ = NEGATIVE_CURVATURE;
        }
        else {
          innerStop_ = EXCEEDED_TR;
        }
      }

      // compute new eta = eta + alpha*delta
      // we need delta*diag(alpha)
      // do this in situ in delta_ and friends (we will note this for below)
      // then set eta_ = eta_ + delta_
      {
        std::vector<ScalarType> alpha_comp(alpha.begin(),alpha.end());
        MVT::MvScale(*this->delta_,alpha_comp);
        MVT::MvScale(*this->Adelta_,alpha_comp);
        if (this->hasBOp_) {
          MVT::MvScale(*this->Bdelta_,alpha_comp);
        }
        MVT::MvScale(*this->Hdelta_,alpha_comp);
      }
      MVT::MvAddMv(ONE,*this->delta_ ,ONE,*this->eta_ ,*this->eta_);
      MVT::MvAddMv(ONE,*this->Adelta_,ONE,*this->Aeta_,*this->Aeta_);
      if (this->hasBOp_) {
        MVT::MvAddMv(ONE,*this->Bdelta_,ONE,*this->Beta_,*this->Beta_);
      }

      // store new eBe
      eBe = new_eBe;

      //
      // print some debugging info
      if (this->om_->isVerbosity(Debug)) {
        RCP<MV> Heta = MVT::Clone(*this->eta_,this->blockSize_);
        // put 2*A*e - 2*B*e*theta --> He
        MVT::MvAddMv(ONE,*this->Beta_,ZERO,*this->Beta_,*Heta);
        {
          std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
          MVT::MvScale(*Heta,theta_comp);
        }
        if (this->leftMost_) {
          MVT::MvAddMv( 2.0,*this->Aeta_,-2.0,*Heta,*Heta);
        }
        else {
          MVT::MvAddMv(-2.0,*this->Aeta_, 2.0,*Heta,*Heta);
        }
        // apply projector
        {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
          this->orthman_->projectGen(
              *Heta,                                                // operating on Heta
              tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,   // P_{BV,V}, and <BV,V>_B != I
              tuple<PSDM>(null),                                    // don't care about coeffs
              null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));      // don't have B*BV, but do have B*V
        }

        std::vector<MagnitudeType> eg(this->blockSize_),
                                   eHe(this->blockSize_);
        RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->AX_,eg);
        RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*Heta,eHe);
        if (this->leftMost_) {
          for (int j=0; j<this->blockSize_; ++j) {
            eg[j] = this->theta_[j] + 2*eg[j] + .5*eHe[j];
          }
        }
        else {
          for (int j=0; j<this->blockSize_; ++j) {
            eg[j] = -this->theta_[j] - 2*eg[j] + .5*eHe[j];
          }
        }
        this->om_->stream(Debug)
          << " Debugging checks: IRTR inner iteration " << innerIters_ << endl
          << " >> m_X(eta) : " << std::accumulate(eg.begin(),eg.end(),0.0) << endl;
        for (int j=0; j<this->blockSize_; ++j) {
          this->om_->stream(Debug)
            << " >> m_X(eta_" << j << ") : " << eg[j] << endl;
        }
      }

      //
      // if we found negative curvature or exceeded trust-region, then quit
      if (!trncstep.empty()) {
        break;
      }

      // update gradient of m
      // R = R + Hdelta*diag(alpha)
      // however, Hdelta_ already stores Hdelta*diag(alpha)
      // so just add them
      MVT::MvAddMv(ONE,*this->Hdelta_,ONE,*this->R_,*this->R_);
      {
        // re-tangentialize r
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerOrtho_ );
#endif
        this->orthman_->projectGen(
            *this->R_,                                            // operating on R
            tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,   // P_{BV,V}, and <BV,V>_B != I
            tuple<PSDM>(null),                                    // don't care about coeffs
            null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));      // don't have B*BV, but do have B*V
      }

      //
      // check convergence
      MagnitudeType r_norm = MAT::squareroot(RTRBase<ScalarType,MV,OP>::ginner(*this->R_,*this->R_));

      //
      // check local convergece
      //
      // kappa (linear) convergence
      // theta (superlinear) convergence
      //
      if (this->om_->isVerbosity(Debug)) {
        this->om_->stream(Debug)
          << " >> |r" << innerIters_ << "|        : " << r_norm << endl;
      }
      if ( r_norm <= ANASAZI_MIN(tconv,kconv) ) {
        if (tconv <= kconv) {
          innerStop_ = THETA_CONVERGENCE;
        }
        else {
          innerStop_ = KAPPA_CONVERGENCE;
        }
        break;
      }

      // Z = P_{Prec^-1 BV, BV} Prec^-1 R
      //    Prec^-1 BV in PBV
      // or
      // Z = P_{BV,BV} Prec^-1 R
      zold_rold = z_r;
      if (this->hasPrec_)
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor prectimer( *this->timerPrec_ );
#endif
        OPT::Apply(*this->Prec_,*this->R_,*this->Z_);
        this->counterPrec_ += this->blockSize_;
        // the orthogonalization time counts under Ortho and under Preconditioning
        if (this->olsenPrec_) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
          this->orthman_->projectGen(
              *this->Z_,                                             // operating on Z
              tuple<PCMV>(this->PBV_),tuple<PCMV>(this->V_),false,   // P_{PBV,V}, B inner product, and <PBV,V>_B != I
              tuple<PSDM>(null),                                     // don't care about coeffs
              null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));       // don't have B*PBV or B*Z, but do have B*V
        }
        else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor orthtimer( *this->timerOrtho_ );
#endif
          this->orthman_->projectGen(
              *this->Z_,                                             // operating on Z
              tuple<PCMV>(this->BV_),tuple<PCMV>(this->V_),false,    // P_{BV,V}, and <BV,V>_B != I
              tuple<PSDM>(null),                                     // don't care about coeffs
              null,tuple<PCMV>(null), tuple<PCMV>(this->BV_));       // don't have B*BV, but do have B*V
        }
        RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,*this->Z_,z_r);
      }
      else {
        RTRBase<ScalarType,MV,OP>::ginnersep(*this->R_,z_r);
      }

      // compute new search direction
      // below, we need to perform
      //   delta = -Z + delta*diag(beta)
      // however, delta_ currently stores delta*diag(alpha)
      // therefore, set
      //   beta_ to beta/alpha
      // so that
      //   delta_ = delta_*diag(beta_)
      // will in fact result in
      //   delta_ = delta_*diag(beta_)
      //          = delta*diag(alpha)*diag(beta/alpha)
      //          = delta*diag(beta)
      // i hope this is numerically sound...
      for (unsigned int j=0; j<beta.size(); ++j) {
        beta[j] = z_r[j]/(zold_rold[j]*alpha[j]);
      }
      {
        std::vector<ScalarType> beta_comp(beta.begin(),beta.end());
        MVT::MvScale(*this->delta_,beta_comp);
      }
      MVT::MvAddMv(-ONE,*this->Z_,ONE,*this->delta_,*this->delta_);

    }
    // end of the inner iteration loop
    //////////////////////////////////////////////////////////////////
    //////////////////////////////////////////////////////////////////
    if (innerIters_ > d) innerIters_ = d;

    this->om_->stream(Debug)
      << " >> stop reason is " << stopReasons_[innerStop_] << endl
      << endl;

  } // end of solveTRSubproblem


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Eigensolver iterate() method
  template <class ScalarType, class MV, class OP>
  void IRTR<ScalarType,MV,OP>::iterate() {

    using Teuchos::RCP;
    using Teuchos::null;
    using Teuchos::tuple;
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    using Teuchos::TimeMonitor;
#endif
    using std::endl;
    //typedef Teuchos::RCP<const MV> PCMV; // unused
    //typedef Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > PSDM; // unused

    //
    // Allocate/initialize data structures
    //
    if (this->initialized_ == false) {
      this->initialize();
    }

    Teuchos::SerialDenseMatrix<int,ScalarType> AA, BB, S;
    if (useSA_ == true) {
      AA.reshape(2*this->blockSize_,2*this->blockSize_);
      BB.reshape(2*this->blockSize_,2*this->blockSize_);
      S.reshape(2*this->blockSize_,2*this->blockSize_);
    }
    else {
      AA.reshape(this->blockSize_,this->blockSize_);
      BB.reshape(this->blockSize_,this->blockSize_);
      S.reshape(this->blockSize_,this->blockSize_);
    }

    // set iteration details to invalid, as they don't have any meaning right now
    innerIters_ = -1;
    innerStop_  = UNINITIALIZED;

    // allocate temporary space
    while (this->tester_->checkStatus(this) != Passed) {

      // Print information on current status
      if (this->om_->isVerbosity(Debug)) {
        this->currentStatus( this->om_->stream(Debug) );
      }
      else if (this->om_->isVerbosity(IterationDetails)) {
        this->currentStatus( this->om_->stream(IterationDetails) );
      }

      // increment iteration counter
      this->iter_++;

      // solve the trust-region subproblem
      solveTRSubproblem();
      totalInnerIters_ += innerIters_;

      // perform debugging on eta et al.
      if (this->om_->isVerbosity( Debug ) ) {
        typename RTRBase<ScalarType,MV,OP>::CheckList chk;
        // this is the residual of the model, should still be in the tangent plane
        chk.checkBR  = true;
        chk.checkEta = true;
        chk.checkAEta = true;
        chk.checkBEta = true;
        this->om_->print( Debug, this->accuracyCheck(chk, "in iterate() after solveTRSubproblem()") );
        this->om_->stream(Debug)
          << " >> norm(Eta) : " << MAT::squareroot(RTRBase<ScalarType,MV,OP>::ginner(*this->eta_)) << endl
          << endl;
      }

      if (useSA_ == false) {
        // compute the retraction of eta: R_X(eta) = X+eta
        // we must accept, but we will work out of delta so that we can multiply back into X below
        {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor lcltimer( *this->timerLocalUpdate_ );
#endif
          MVT::MvAddMv(ONE,*this->X_,ONE,*this->eta_,*this->delta_);
          MVT::MvAddMv(ONE,*this->AX_,ONE,*this->Aeta_,*this->Adelta_);
          if (this->hasBOp_) {
            MVT::MvAddMv(ONE,*this->BX_,ONE,*this->Beta_,*this->Bdelta_);
          }
        }
        // perform some debugging on X+eta
        if (this->om_->isVerbosity( Debug ) ) {
          // X^T B X = I
          // X^T B Eta = 0
          // (X+Eta)^T B (X+Eta) = I + Eta^T B Eta
          Teuchos::SerialDenseMatrix<int,ScalarType> XE(this->blockSize_,this->blockSize_),
            E(this->blockSize_,this->blockSize_);
          MVT::MvTransMv(ONE,*this->delta_,*this->Bdelta_,XE);
          MVT::MvTransMv(ONE,*this->eta_,*this->Beta_,E);
          this->om_->stream(Debug)
            << " >> Error in AX+AEta == A(X+Eta) : " << Utils::errorEquality(*this->delta_,*this->Adelta_,this->AOp_) << endl
            << " >> Error in BX+BEta == B(X+Eta) : " << Utils::errorEquality(*this->delta_,*this->Bdelta_,this->BOp_) << endl
            << " >> norm( (X+Eta)^T B (X+Eta) )  : " << XE.normFrobenius() << endl
            << " >> norm( Eta^T B Eta )          : " << E.normFrobenius() << endl
            << endl;
        }
      }

      //
      // perform rayleigh-ritz for X+eta or [X,eta] according to useSA_
      // save an old copy of f(X) for rho analysis below
      //
      MagnitudeType oldfx = this->fx_;
      std::vector<MagnitudeType> oldtheta(this->theta_), newtheta(AA.numRows());
      int rank, ret;
      rank = AA.numRows();
      if (useSA_ == true) {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerLocalProj_ );
#endif
        Teuchos::SerialDenseMatrix<int,ScalarType> AA11(Teuchos::View,AA,this->blockSize_,this->blockSize_,0,0),
                                                   AA12(Teuchos::View,AA,this->blockSize_,this->blockSize_,0,this->blockSize_),
                                                   AA22(Teuchos::View,AA,this->blockSize_,this->blockSize_,this->blockSize_,this->blockSize_);
        Teuchos::SerialDenseMatrix<int,ScalarType> BB11(Teuchos::View,BB,this->blockSize_,this->blockSize_,0,0),
                                                   BB12(Teuchos::View,BB,this->blockSize_,this->blockSize_,0,this->blockSize_),
                                                   BB22(Teuchos::View,BB,this->blockSize_,this->blockSize_,this->blockSize_,this->blockSize_);
        MVT::MvTransMv(ONE,*this->X_  ,*this->AX_  ,AA11);
        MVT::MvTransMv(ONE,*this->X_  ,*this->Aeta_,AA12);
        MVT::MvTransMv(ONE,*this->eta_,*this->Aeta_,AA22);
        MVT::MvTransMv(ONE,*this->X_  ,*this->BX_  ,BB11);
        MVT::MvTransMv(ONE,*this->X_  ,*this->Beta_,BB12);
        MVT::MvTransMv(ONE,*this->eta_,*this->Beta_,BB22);
      }
      else {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerLocalProj_ );
#endif
        MVT::MvTransMv(ONE,*this->delta_,*this->Adelta_,AA);
        MVT::MvTransMv(ONE,*this->delta_,*this->Bdelta_,BB);
      }
      this->om_->stream(Debug) << "AA: " << std::endl << AA << std::endl;;
      this->om_->stream(Debug) << "BB: " << std::endl << BB << std::endl;;
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerDS_ );
#endif
        ret = Utils::directSolver(AA.numRows(),AA,Teuchos::rcpFromRef(BB),S,newtheta,rank,1);
      }
      this->om_->stream(Debug) << "S: " << std::endl << S << std::endl;;
      TEUCHOS_TEST_FOR_EXCEPTION(ret != 0,std::logic_error,"Anasazi::IRTR::iterate(): failure solving projected eigenproblem after retraction. ret == " << ret);
      TEUCHOS_TEST_FOR_EXCEPTION(rank != AA.numRows(),RTRRitzFailure,"Anasazi::IRTR::iterate(): retracted iterate failed in Ritz analysis. rank == " << rank);

      //
      // order the projected ritz values and vectors
      // this ensures that the ritz vectors produced below are ordered
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerSort_ );
#endif
        std::vector<int> order(newtheta.size());
        // sort the values in newtheta
        this->sm_->sort(newtheta, Teuchos::rcpFromRef(order), -1);   // don't catch exception
        // apply the same ordering to the primitive ritz vectors
        Utils::permuteVectors(order,S);
      }
      //
      // save the first blockSize values into this->theta_
      std::copy(newtheta.begin(), newtheta.begin()+this->blockSize_, this->theta_.begin());
      //
      // update f(x)
      this->fx_ = std::accumulate(this->theta_.begin(),this->theta_.end(),ZERO);

      //
      // if debugging, do rho analysis before overwriting X,AX,BX
      if (this->om_->isVerbosity( Debug ) ) {
        //
        // compute rho
        //        f(X) - f(newX)           f(X) - f(newX)
        // rho = ---------------- = ---------------------------
        //         m(0) - m(eta)    -<2AX,eta> - .5*<Heta,eta>
        //
        //            f(X) - f(newX)
        //     = ---------------------------------------
        //        -<2AX,eta> - <eta,Aeta> + <eta,Beta XAX>
        //
        MagnitudeType rhonum, rhoden, mxeta;
        std::vector<MagnitudeType> eBe(this->blockSize_);
        RTRBase<ScalarType,MV,OP>::ginnersep(*this->eta_,*this->Beta_,eBe);
        //
        // compute rhonum
        rhonum = oldfx - this->fx_;
        //
        // compute rhoden
        rhoden = -2.0*RTRBase<ScalarType,MV,OP>::ginner(*this->AX_  ,*this->eta_)
                 -RTRBase<ScalarType,MV,OP>::ginner(*this->Aeta_,*this->eta_);
        for (int i=0; i<this->blockSize_; ++i) {
          rhoden += eBe[i]*oldtheta[i];
        }
        mxeta = oldfx - rhoden;
        this->rho_ = rhonum / rhoden;
        this->om_->stream(Debug)
          << " >> old f(x) is : " << oldfx << endl
          << " >> new f(x) is : " << this->fx_ << endl
          << " >> m_x(eta) is : " << mxeta << endl
          << " >> rhonum is   : " << rhonum << endl
          << " >> rhoden is   : " << rhoden << endl
          << " >> rho is      : " << this->rho_ << endl;
        // compute individual rho
        for (int j=0; j<this->blockSize_; ++j) {
          this->om_->stream(Debug)
            << " >> rho[" << j << "]     : " << 1.0/(1.0+eBe[j]) << endl;
        }
      }

      // form new X as Ritz vectors, using the primitive Ritz vectors in S and
      // either [X eta] or X+eta
      // we will clear the const views of X,BX into V,BV and
      // work from non-const temporary views
      {
        // release const views to X, BX
        // get non-const views
        this->X_  = Teuchos::null;
        this->BX_ = Teuchos::null;
        std::vector<int> ind(this->blockSize_);
        for (int i=0; i<this->blockSize_; ++i) ind[i] = this->numAuxVecs_+i;
        Teuchos::RCP<MV> X, BX;
        X = MVT::CloneViewNonConst(*this->V_,ind);
        if (this->hasBOp_) {
          BX = MVT::CloneViewNonConst(*this->BV_,ind);
        }
        if (useSA_ == false) {
          // multiply delta=(X+eta),Adelta=...,Bdelta=...
          // by primitive Ritz vectors back into X,AX,BX
          // compute ritz vectors, A,B products into X,AX,BX
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor lcltimer( *this->timerLocalUpdate_ );
#endif
          MVT::MvTimesMatAddMv(ONE,*this->delta_,S,ZERO,*X);
          MVT::MvTimesMatAddMv(ONE,*this->Adelta_,S,ZERO,*this->AX_);
          if (this->hasBOp_) {
            MVT::MvTimesMatAddMv(ONE,*this->Bdelta_,S,ZERO,*BX);
          }
        }
        else {
          // compute ritz vectors, A,B products into X,AX,BX
          // currently, X in X and eta in eta
          // compute each result into delta, then copy to appropriate place
          // decompose S into [Sx;Se]
          Teuchos::SerialDenseMatrix<int,ScalarType> Sx(Teuchos::View,S,this->blockSize_,this->blockSize_,0,0),
                                                     Se(Teuchos::View,S,this->blockSize_,this->blockSize_,this->blockSize_,0);
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          TimeMonitor lcltimer( *this->timerLocalUpdate_ );
#endif
          // X = [X eta] S = X*Sx + eta*Se
          MVT::MvTimesMatAddMv(ONE,*      X   ,Sx,ZERO,*this->delta_);
          MVT::MvTimesMatAddMv(ONE,*this->eta_,Se,ONE ,*this->delta_);
          MVT::MvAddMv(ONE,*this->delta_,ZERO,*this->delta_,*X);
          // AX = [AX Aeta] S = AX*Sx + Aeta*Se
          MVT::MvTimesMatAddMv(ONE,*this->AX_  ,Sx,ZERO,*this->delta_);
          MVT::MvTimesMatAddMv(ONE,*this->Aeta_,Se,ONE ,*this->delta_);
          MVT::MvAddMv(ONE,*this->delta_,ZERO,*this->delta_,*this->AX_);
          if (this->hasBOp_) {
            // BX = [BX Beta] S = BX*Sx + Beta*Se
            MVT::MvTimesMatAddMv(ONE,*      BX   ,Sx,ZERO,*this->delta_);
            MVT::MvTimesMatAddMv(ONE,*this->Beta_,Se,ONE ,*this->delta_);
            MVT::MvAddMv(ONE,*this->delta_,ZERO,*this->delta_,*BX);
          }
        }
        // clear non-const views, restore const views
        X  = Teuchos::null;
        BX = Teuchos::null;
        this->X_  = MVT::CloneView(static_cast<const MV&>(*this->V_ ),ind);
        this->BX_ = MVT::CloneView(static_cast<const MV&>(*this->BV_),ind);
      }

      //
      // update residual, R = AX - BX*theta
      {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
        TimeMonitor lcltimer( *this->timerCompRes_ );
#endif
        MVT::MvAddMv( ONE, *this->BX_, ZERO, *this->BX_, *this->R_ );
        std::vector<ScalarType> theta_comp(this->theta_.begin(),this->theta_.end());
        MVT::MvScale( *this->R_, theta_comp );
        MVT::MvAddMv( ONE, *this->AX_, -ONE, *this->R_, *this->R_ );
      }
      //
      // R has been updated; mark the norms as out-of-date
      this->Rnorms_current_ = false;
      this->R2norms_current_ = false;


      //
      // When required, monitor some orthogonalities
      if (this->om_->isVerbosity( Debug ) ) {
        // Check almost everything here
        typename RTRBase<ScalarType,MV,OP>::CheckList chk;
        chk.checkX = true;
        chk.checkAX = true;
        chk.checkBX = true;
        chk.checkR = true;
        this->om_->print( Debug, this->accuracyCheck(chk, "after local update") );
      }
      else if (this->om_->isVerbosity( OrthoDetails )) {
        typename RTRBase<ScalarType,MV,OP>::CheckList chk;
        chk.checkX = true;
        chk.checkR = true;
        this->om_->print( OrthoDetails, this->accuracyCheck(chk, "after local update") );
      }

    } // end while (statusTest == false)

  } // end of iterate()


  //////////////////////////////////////////////////////////////////////////////////////////////////
  // Print the current status of the solver
  template <class ScalarType, class MV, class OP>
  void
  IRTR<ScalarType,MV,OP>::currentStatus(std::ostream &os)
  {
    using std::endl;
    os.setf(std::ios::scientific, std::ios::floatfield);
    os.precision(6);
    os <<endl;
    os <<"================================================================================" << endl;
    os << endl;
    os <<"                             IRTR Solver Status" << endl;
    os << endl;
    os <<"The solver is "<<(this->initialized_ ? "initialized." : "not initialized.") << endl;
    os <<"The number of iterations performed is " << this->iter_       << endl;
    os <<"The current block size is             " << this->blockSize_  << endl;
    os <<"The number of auxiliary vectors is    " << this->numAuxVecs_ << endl;
    os <<"The number of operations A*x    is " << this->counterAOp_   << endl;
    os <<"The number of operations B*x    is " << this->counterBOp_    << endl;
    os <<"The number of operations B*x by the orthomanager is " << this->orthman_->getOpCounter() << endl;
    os <<"The number of operations Prec*x is " << this->counterPrec_ << endl;
    os <<"Parameter rho_prime is  " << rho_prime_ << endl;
    os <<"Inner stopping condition was " << stopReasons_[innerStop_] << endl;
    os <<"Number of inner iterations was " << innerIters_ << endl;
    os <<"Total number of inner iterations is " << totalInnerIters_ << endl;
    os <<"f(x) is " << this->fx_ << endl;

    os.setf(std::ios_base::right, std::ios_base::adjustfield);

    if (this->initialized_) {
      os << endl;
      os <<"CURRENT EIGENVALUE ESTIMATES             "<<endl;
      os << std::setw(20) << "Eigenvalue"
         << std::setw(20) << "Residual(B)"
         << std::setw(20) << "Residual(2)"
         << endl;
      os <<"--------------------------------------------------------------------------------"<<endl;
      for (int i=0; i<this->blockSize_; i++) {
        os << std::setw(20) << this->theta_[i];
        if (this->Rnorms_current_) os << std::setw(20) << this->Rnorms_[i];
        else os << std::setw(20) << "not current";
        if (this->R2norms_current_) os << std::setw(20) << this->R2norms_[i];
        else os << std::setw(20) << "not current";
        os << endl;
      }
    }
    os <<"================================================================================" << endl;
    os << endl;
  }


} // end Anasazi namespace

#endif // ANASAZI_IRTR_HPP