This file is indexed.

/usr/include/trilinos/AnasaziLOBPCGSolMgr.hpp is in libtrilinos-anasazi-dev 12.10.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
// @HEADER
// ***********************************************************************
//
//                 Anasazi: Block Eigensolvers Package
//                 Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER

#ifndef ANASAZI_LOBPCG_SOLMGR_HPP
#define ANASAZI_LOBPCG_SOLMGR_HPP

/*! \file AnasaziLOBPCGSolMgr.hpp
 *  \brief The Anasazi::LOBPCGSolMgr provides a powerful solver manager for the LOBPCG eigensolver.
*/

#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"

#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziSolverUtils.hpp"

#include "AnasaziLOBPCG.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziBasicOrthoManager.hpp"
#include "AnasaziStatusTestMaxIters.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestWithOrdering.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "Teuchos_BLAS.hpp"
#include "Teuchos_TimeMonitor.hpp"

/// \example LOBPCGEpetra.cpp
/// \brief Use LOBPCG with Epetra test problem from Galeri.
///
/// This example computes the eigenvalues of largest magnitude of an
/// eigenvalue problem $A x = \lambda x$, using Anasazi's
/// implementation of the LOBPCG method, with Epetra linear algebra.
/// It uses the Galeri package to construct the test problem.
///
/// \example LOBPCGEpetraEx.cpp
/// \brief Use LOBPCG with Epetra test problem (computed here).
///
/// This example computes the eigenvalues of largest magnitude of an
/// eigenvalue problem $A x = \lambda x$, using Anasazi's
/// implementation of the LOBPCG method, with Epetra linear algebra.
/// It constructs the test problem within the example itself.
///
/// \example LOBPCGEpetraFile.cpp
/// \brief Use LOBPCG with Epetra test problem loaded from file.
///
/// This example computes the eigenvalues of largest magnitude of an
/// eigenvalue problem $A x = \lambda x$, using Anasazi's
/// implementation of the LOBPCG method, with Epetra linear algebra.
/// The example loads the matrix from a file whose name is specified
/// at the command line.
///
/// \example LOBPCGEpetraExGen.cpp
/// \brief Use LOBPCG with Epetra, for a generalized eigenvalue problem.
///
/// This example computes the eigenvalues of largest magnitude of an
/// generalized eigenvalue problem, using Anasazi's implementation of
/// the LOBPCG method, with Epetra linear algebra.
///
/// \example LOBPCGEpetraExGenPrecIfpack.cpp
/// \brief Use LOBPCG with Epetra and Ifpack preconditioner.
///
/// This example computes the eigenvalues of largest magnitude of an
/// generalized eigenvalue problem, using Anasazi's implementation of
/// the LOBPCG method, with Epetra linear algebra.  It preconditions
/// LOBPCG with an Ifpack incomplete Cholesky preconditioner.
///
/// \example LOBPCGEpetraExGenShifted.cpp
/// \brief Use LOBPCG with Epetra, with shifted eigenvalue problem
///
/// This example computes the eigenvalues of largest magnitude of the
/// discretized 2-D Laplacian operator, using Anasazi's implementation
/// of the LOBPCG method.  This problem constructs a shifted
/// eigenproblem that targets the smallest eigenvalues around a
/// certain value (sigma).  This operator is discretized using linear
/// finite elements and constructed as an Epetra matrix, then passed
/// shifted using EpetraExt utilities.

namespace Anasazi {

/*! \class LOBPCGSolMgr
 *
 * \brief User interface for the LOBPCG eigensolver.
 *
 * This class provides a user interface for the LOBPCG (Locally
 * Optimal Block Preconditioned Conjugate Gradient) eigensolver.  It
 * provides the following features:
 *
 * <ul>
 * <li> Locking of converged eigenpairs </li>
 * <li> Global convergence on only the significant eigenpairs (instead
 *      of any eigenpairs with low residual) </li>
 * <li> recovery from orthogonalization failures (LOBPCGRitzFailure)
 *      when full orthogonalization is disabled </li>
 * </ol>
 *
 * Much of this behavior is controlled via parameters and options
 * passed to the solver manager. For more information, see the default
 * (zero-argument) constructor of this class.
 *
 * For an example that defines a custom StatusTest so that Anasazi's
 * solver LOBPCG converges correctly with spectrum folding, see the
 * LOBPCGCustomStatusTest.cpp example (associated with StatusTest).
 *
 * LOBPCG stops iterating if it has reached the maximum number of
 * iterations, or ig lobal convergence is detected (uses
 * StatusTestWithOrdering to ensure that only the most significant
 * eigenvalues/eigenvectors have converged).  If not specified via
 * setGlobalStatusTest(), the convergence test is a StatusTestResNorm
 * instance which tests the M-norms of the direct residuals relative
 * to the Ritz values.
 *
 * LOBPCG also includes a "locking test" which deflates converged
 * eigenpairs for locking.  It will query the underlying LOBPCG
 * eigensolver to determine when eigenvectors should be locked.  If
 * not specified via setLockingStatusTest(), the locking test is a
 * StatusTestResNorm object.
 *
 * Users may specify an optional "debug test."  This lets users
 * specify additional monitoring of the iteration.  If not specified
 * via setDebugStatusTest(), this is ignored.  In most cases, the
 * user's debug test should return ::Failed; if it returns ::Passed,
 * solve() will throw an AnasaziError exception.
 *
 * \ingroup anasazi_solver_framework
 * \author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist
 */
template<class ScalarType, class MV, class OP>
class LOBPCGSolMgr : public SolverManager<ScalarType,MV,OP> {

  private:
    typedef MultiVecTraits<ScalarType,MV> MVT;
    typedef OperatorTraits<ScalarType,MV,OP> OPT;
    typedef Teuchos::ScalarTraits<ScalarType> SCT;
    typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
    typedef Teuchos::ScalarTraits<MagnitudeType> MT;

  public:

  //! @name Constructors/Destructor
  //@{

  /*! \brief Basic constructor for LOBPCGSolMgr.
   *
   * This constructor accepts the Eigenproblem to be solved in addition
   * to a parameter list of options for the solver manager. These options include the following:
   *   - Solver parameters
   *      - \c "Which" - a \c string specifying the desired eigenvalues: SM, LM, SR or LR. Default: "SR"
   *      - \c "Block Size" - a \c int specifying the block size to be used by the underlying LOBPCG solver. Default: problem->getNEV()
   *      - \c "Full Ortho" - a \c bool specifying whether the underlying solver should employ the full orthogonalization scheme. Default: true
   *      - \c "Recover" - a \c bool specifying whether the solver manager should attempt to recover in the case of a LOBPCGRitzFailure when full orthogonalization is disabled. Default: true
   *      - \c "Verbosity" - a sum of MsgType specifying the verbosity. Default: ::Errors
   *      - \c "Init" - a LOBPCGState<ScalarType,MV> struct used to initialize the LOBPCG eigensolver.
   *   - Convergence parameters (if using default convergence test; see setGlobalStatusTest())
   *      - \c "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform. Default: 100
   *      - \c "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision.
   *      - \c "Relative Convergence Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding convergence. Default: true
   *      - \c "Convergence Norm" - a \c string specifying the norm for convergence testing: "2" or "M"
   *   - Locking parameters (if using default locking test; see setLockingStatusTest())
   *      - \c "Use Locking" - a \c bool specifying whether the algorithm should employ locking of converged eigenpairs. Default: false
   *      - \c "Max Locked" - a \c int specifying the maximum number of eigenpairs to be locked. Default: problem->getNEV()
   *      - \c "Locking Quorum" - a \c int specifying the number of eigenpairs that must meet the locking criteria before locking actually occurs. Default: 1
   *      - \c "Locking Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide locking. Default: 0.1*convergence tolerance
   *      - \c "Relative Locking Tolerance" - a \c bool specifying whether residuals norms should be scaled by their eigenvalues for the purposing of deciding locking. Default: true
   *      - \c "Locking Norm" - a \c string specifying the norm for locking testing: "2" or "M"
   */
  LOBPCGSolMgr( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
                             Teuchos::ParameterList &pl );

  //! Destructor.
  virtual ~LOBPCGSolMgr() {};
  //@}

  //! @name Accessor methods
  //@{

  //! Return the eigenvalue problem.
  const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
    return *problem_;
  }

  //! Get the iteration count for the most recent call to \c solve().
  int getNumIters() const {
    return numIters_;
  }

  /*! \brief Return the timers for this object.
   *
   * The timers are ordered as follows:
   *   - time spent in solve() routine
   *   - time spent locking converged eigenvectors
   */
   Teuchos::Array<Teuchos::RCP<Teuchos::Time> > getTimers() const {
     return Teuchos::tuple(_timerSolve, _timerLocking);
   }


  //@}

  //! @name Solver application methods
  //@{

  /*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
   * until the problem has been solved (as decided by the solver manager) or the solver manager decides to
   * quit.
   *
   * This method calls LOBPCG::iterate(), which will return either because a specially constructed status test evaluates to ::Passed
   * or an exception is thrown.
   *
   * A return from LOBPCG::iterate() signifies one of the following scenarios:
   *    - the maximum number of iterations has been exceeded. In this scenario, the solver manager will place\n
   *      all converged eigenpairs into the eigenproblem and return ::Unconverged.
   *    - the locking conditions have been met. In this scenario, some of the current eigenpairs will be removed\n
   *      from the eigensolver and placed into auxiliary storage. The eigensolver will be restarted with the remaining\n
   *      eigenpairs and some random information to replace the removed eigenpairs.
   *    - global convergence has been met. In this case, the most significant NEV eigenpairs in the solver and locked storage  \n
   *      have met the convergence criterion. (Here, NEV refers to the number of eigenpairs requested by the Eigenproblem.)    \n
   *      In this scenario, the solver manager will return ::Converged.
   *    - an LOBPCGRitzFailure exception has been thrown. If full orthogonalization is enabled and recovery from this exception\n
   *      is requested, the solver manager will attempt to recover from this exception by gathering the current eigenvectors,  \n
   *      preconditioned residual, and search directions from the eigensolver, orthogonormalizing the basis composed of these  \n
   *      three, projecting the eigenproblem, and restarting the eigensolver with the solution of the project eigenproblem. Any \n
   *      additional failure that occurs during this recovery effort will result in the eigensolver returning ::Unconverged.
   *
   * \returns ::ReturnType specifying:
   *    - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
   *    - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager
  */
  ReturnType solve();

  //! Set the status test defining global convergence.
  void setGlobalStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global);

  //! Get the status test defining global convergence.
  const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getGlobalStatusTest() const;

  //! Set the status test defining locking.
  void setLockingStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &locking);

  //! Get the status test defining locking.
  const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getLockingStatusTest() const;

  //! Set the status test for debugging.
  void setDebugStatusTest(const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug);

  //! Get the status test for debugging.
  const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > & getDebugStatusTest() const;

  //@}

  private:
  Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > problem_;

  std::string whch_, ortho_;

  MagnitudeType convtol_, locktol_;
  int maxIters_, numIters_;
  bool useLocking_;
  bool relconvtol_, rellocktol_;
  int blockSize_;
  bool fullOrtho_;
  int maxLocked_;
  int verbosity_;
  int lockQuorum_;
  bool recover_;
  Teuchos::RCP<LOBPCGState<ScalarType,MV> > state_;
  enum ResType convNorm_, lockNorm_;

  Teuchos::RCP<Teuchos::Time> _timerSolve, _timerLocking;

  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > globalTest_;
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > lockingTest_;
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > debugTest_;
};


// Constructor
template<class ScalarType, class MV, class OP>
LOBPCGSolMgr<ScalarType,MV,OP>::LOBPCGSolMgr(
        const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
        Teuchos::ParameterList &pl ) :
  problem_(problem),
  whch_("SR"),
  ortho_("SVQB"),
  convtol_(MT::prec()),
  maxIters_(100),
  numIters_(0),
  useLocking_(false),
  relconvtol_(true),
  rellocktol_(true),
  blockSize_(0),
  fullOrtho_(true),
  maxLocked_(0),
  verbosity_(Anasazi::Errors),
  lockQuorum_(1),
  recover_(true)
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
  , _timerSolve(Teuchos::TimeMonitor::getNewTimer("Anasazi: LOBPCGSolMgr::solve()")),
  _timerLocking(Teuchos::TimeMonitor::getNewTimer("Anasazi: LOBPCGSolMgr locking"))
#endif
{
  TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null,              std::invalid_argument, "Problem not given to solver manager.");
  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(),              std::invalid_argument, "Problem not set.");
  TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isHermitian(),               std::invalid_argument, "Problem not symmetric.");
  TEUCHOS_TEST_FOR_EXCEPTION(problem_->getInitVec() == Teuchos::null,std::invalid_argument, "Problem does not contain initial vectors to clone from.");


  std::string strtmp;

  // which values to solve for
  whch_ = pl.get("Which",whch_);
  TEUCHOS_TEST_FOR_EXCEPTION(whch_ != "SM" && whch_ != "LM" && whch_ != "SR" && whch_ != "LR",
      std::invalid_argument, "Anasazi::LOBPCGSolMgr: Invalid sorting string.");

  // which orthogonalization to use
  ortho_ = pl.get("Orthogonalization",ortho_);
  if (ortho_ != "DGKS" && ortho_ != "SVQB") {
    ortho_ = "SVQB";
  }

  // convergence tolerance
  convtol_ = pl.get("Convergence Tolerance",convtol_);
  relconvtol_ = pl.get("Relative Convergence Tolerance",relconvtol_);
  strtmp = pl.get("Convergence Norm",std::string("2"));
  if (strtmp == "2") {
    convNorm_ = RES_2NORM;
  }
  else if (strtmp == "M") {
    convNorm_ = RES_ORTH;
  }
  else {
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
        "Anasazi::LOBPCGSolMgr: Invalid Convergence Norm.");
  }


  // locking tolerance
  useLocking_ = pl.get("Use Locking",useLocking_);
  rellocktol_ = pl.get("Relative Locking Tolerance",rellocktol_);
  // default: should be less than convtol_
  locktol_ = convtol_/10;
  locktol_ = pl.get("Locking Tolerance",locktol_);
  strtmp = pl.get("Locking Norm",std::string("2"));
  if (strtmp == "2") {
    lockNorm_ = RES_2NORM;
  }
  else if (strtmp == "M") {
    lockNorm_ = RES_ORTH;
  }
  else {
    TEUCHOS_TEST_FOR_EXCEPTION(true, std::invalid_argument,
        "Anasazi::LOBPCGSolMgr: Invalid Locking Norm.");
  }

  // maximum number of iterations
  maxIters_ = pl.get("Maximum Iterations",maxIters_);

  // block size: default is nev()
  blockSize_ = pl.get("Block Size",problem_->getNEV());
  TEUCHOS_TEST_FOR_EXCEPTION(blockSize_ <= 0, std::invalid_argument,
                     "Anasazi::LOBPCGSolMgr: \"Block Size\" must be strictly positive.");

  // max locked: default is nev(), must satisfy maxLocked_ + blockSize_ >= nev
  if (useLocking_) {
    maxLocked_ = pl.get("Max Locked",problem_->getNEV());
  }
  else {
    maxLocked_ = 0;
  }
  if (maxLocked_ == 0) {
    useLocking_ = false;
  }
  TEUCHOS_TEST_FOR_EXCEPTION(maxLocked_ < 0, std::invalid_argument,
                     "Anasazi::LOBPCGSolMgr: \"Max Locked\" must be positive.");
  TEUCHOS_TEST_FOR_EXCEPTION(maxLocked_ + blockSize_ < problem_->getNEV(),
                     std::invalid_argument,
                     "Anasazi::LOBPCGSolMgr: Not enough storage space for requested number of eigenpairs.");

  if (useLocking_) {
    lockQuorum_ = pl.get("Locking Quorum",lockQuorum_);
    TEUCHOS_TEST_FOR_EXCEPTION(lockQuorum_ <= 0,
                       std::invalid_argument,
                       "Anasazi::LOBPCGSolMgr: \"Locking Quorum\" must be strictly positive.");
  }

  // full orthogonalization: default true
  fullOrtho_ = pl.get("Full Ortho",fullOrtho_);

  // verbosity level
  if (pl.isParameter("Verbosity")) {
    if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
      verbosity_ = pl.get("Verbosity", verbosity_);
    } else {
      verbosity_ = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
    }
  }

  // recover from LOBPCGRitzFailure
  recover_ = pl.get("Recover",recover_);

  // get (optionally) an initial state
  if (pl.isParameter("Init")) {
    state_ = Teuchos::getParameter<Teuchos::RCP<Anasazi::LOBPCGState<ScalarType,MV> > >(pl,"Init");
  }
}


// solve()
template<class ScalarType, class MV, class OP>
ReturnType
LOBPCGSolMgr<ScalarType,MV,OP>::solve() {

  typedef SolverUtils<ScalarType,MV,OP> msutils;

  const int nev = problem_->getNEV();



  //////////////////////////////////////////////////////////////////////////////////////
  // Sort manager
  Teuchos::RCP<BasicSort<MagnitudeType> > sorter = Teuchos::rcp( new BasicSort<MagnitudeType>(whch_) );

  //////////////////////////////////////////////////////////////////////////////////////
  // Output manager
  Teuchos::RCP<BasicOutputManager<ScalarType> > printer = Teuchos::rcp( new BasicOutputManager<ScalarType>(verbosity_) );

  //////////////////////////////////////////////////////////////////////////////////////
  // Status tests
  //
  // maximum number of iterations: optional test
  Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > maxtest;
  if (maxIters_ > 0) {
    maxtest = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>(maxIters_) );
  }
  // convergence
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > convtest;
  if (globalTest_ == Teuchos::null) {
    convtest = Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(convtol_,nev,convNorm_,relconvtol_) );
  }
  else {
    convtest = globalTest_;
  }
  Teuchos::RCP<StatusTestWithOrdering<ScalarType,MV,OP> > ordertest
    = Teuchos::rcp( new StatusTestWithOrdering<ScalarType,MV,OP>(convtest,sorter,nev) );
  // locking
  Teuchos::RCP<StatusTest<ScalarType,MV,OP> > locktest;
  if (useLocking_) {
    if (lockingTest_ == Teuchos::null) {
      locktest = Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(locktol_,lockQuorum_,lockNorm_,rellocktol_) );
    }
    else {
      locktest = lockingTest_;
    }
  }
  // for a non-short-circuited OR test, the order doesn't matter
  Teuchos::Array<Teuchos::RCP<StatusTest<ScalarType,MV,OP> > > alltests;
  alltests.push_back(ordertest);
  if (locktest != Teuchos::null) alltests.push_back(locktest);
  if (debugTest_ != Teuchos::null) alltests.push_back(debugTest_);
  if (maxtest != Teuchos::null) alltests.push_back(maxtest);
  Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > combotest
    = Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>( StatusTestCombo<ScalarType,MV,OP>::OR, alltests) );
  // printing StatusTest
  Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest;
  if ( printer->isVerbosity(Debug) ) {
    outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed+Failed+Undefined ) );
  }
  else {
    outputtest = Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combotest,1,Passed ) );
  }

  //////////////////////////////////////////////////////////////////////////////////////
  // Orthomanager
  Teuchos::RCP<MatOrthoManager<ScalarType,MV,OP> > ortho;
  if (ortho_=="SVQB") {
    ortho = Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
  } else if (ortho_=="DGKS") {
    ortho = Teuchos::rcp( new BasicOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
  } else {
    TEUCHOS_TEST_FOR_EXCEPTION(ortho_!="SVQB"&&ortho_!="DGKS",std::logic_error,"Anasazi::LOBPCGSolMgr::solve(): Invalid orthogonalization type.");
  }

  //////////////////////////////////////////////////////////////////////////////////////
  // Parameter list
  Teuchos::ParameterList plist;
  plist.set("Block Size",blockSize_);
  plist.set("Full Ortho",fullOrtho_);

  //////////////////////////////////////////////////////////////////////////////////////
  // LOBPCG solver
  Teuchos::RCP<LOBPCG<ScalarType,MV,OP> > lobpcg_solver
    = Teuchos::rcp( new LOBPCG<ScalarType,MV,OP>(problem_,sorter,printer,outputtest,ortho,plist) );
  // set any auxiliary vectors defined in the problem
  Teuchos::RCP< const MV > probauxvecs = problem_->getAuxVecs();
  if (probauxvecs != Teuchos::null) {
    lobpcg_solver->setAuxVecs( Teuchos::tuple< Teuchos::RCP<const MV> >(probauxvecs) );
  }

  //////////////////////////////////////////////////////////////////////////////////////
  // Storage
  //
  // lockvecs will contain eigenvectors that have been determined "locked" by the status test
  int curNumLocked = 0;
  Teuchos::RCP<MV> lockvecs;
  if (useLocking_) {
    lockvecs = MVT::Clone(*problem_->getInitVec(),maxLocked_);
  }
  std::vector<MagnitudeType> lockvals;
  // workMV will be used as work space for LOBPCGRitzFailure recovery and locking
  // it will be partitioned in these cases as follows:
  // for LOBPCGRitzFailure recovery:
  // workMV = [X H P OpX OpH OpP], where OpX OpH OpP will be used for K and M
  // total size: 2*3*blocksize
  // for locking
  // workMV = [X P MX MP], with MX,MP needing storage only if hasM==true
  // total size: 2*blocksize or 4*blocksize
  Teuchos::RCP<MV> workMV;
  if (fullOrtho_ == false && recover_ == true) {
    workMV = MVT::Clone(*problem_->getInitVec(),2*3*blockSize_);
  }
  else if (useLocking_) {
    if (problem_->getM() != Teuchos::null) {
      workMV = MVT::Clone(*problem_->getInitVec(),4*blockSize_);
    }
    else {
      workMV = MVT::Clone(*problem_->getInitVec(),2*blockSize_);
    }
  }

  // initialize the solution to nothing in case we throw an exception
  Eigensolution<ScalarType,MV> sol;
  sol.numVecs = 0;
  problem_->setSolution(sol);

  // initialize the solver if the user specified a state
  if (state_ != Teuchos::null) {
    lobpcg_solver->initialize(*state_);
  }

  // enter solve() iterations
  {
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
    Teuchos::TimeMonitor slvtimer(*_timerSolve);
#endif

    // tell the lobpcg_solver to iterate
    while (1) {
      try {
        lobpcg_solver->iterate();

        ////////////////////////////////////////////////////////////////////////////////////
        //
        // check user-specified debug test; if it passed, return an exception
        //
        ////////////////////////////////////////////////////////////////////////////////////
        if (debugTest_ != Teuchos::null && debugTest_->getStatus() == Passed) {
          throw AnasaziError("Anasazi::LOBPCGSolMgr::solve(): User-specified debug status test returned Passed.");
        }
        ////////////////////////////////////////////////////////////////////////////////////
        //
        // check convergence first
        //
        ////////////////////////////////////////////////////////////////////////////////////
        else if (ordertest->getStatus() == Passed || (maxtest != Teuchos::null && maxtest->getStatus() == Passed) ) {
          // we have convergence or not
          // ordertest->whichVecs() tells us which vectors from lockvecs and solver state are the ones we want
          // ordertest->howMany() will tell us how many
          break;
        }
        ////////////////////////////////////////////////////////////////////////////////////
        //
        // check locking if we didn't converge
        //
        ////////////////////////////////////////////////////////////////////////////////////
        else if (locktest != Teuchos::null && locktest->getStatus() == Passed) {

#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
          Teuchos::TimeMonitor lcktimer(*_timerLocking);
#endif

          // remove the locked vectors,values from lobpcg_solver: put them in newvecs, newvals
          TEUCHOS_TEST_FOR_EXCEPTION(locktest->howMany() <= 0,std::logic_error,
              "Anasazi::LOBPCGSolMgr::solve(): status test mistake: howMany() non-positive.");
          TEUCHOS_TEST_FOR_EXCEPTION(locktest->howMany() != (int)locktest->whichVecs().size(),std::logic_error,
              "Anasazi::LOBPCGSolMgr::solve(): status test mistake: howMany() not consistent with whichVecs().");
          TEUCHOS_TEST_FOR_EXCEPTION(curNumLocked == maxLocked_,std::logic_error,
              "Anasazi::LOBPCGSolMgr::solve(): status test mistake: locking not deactivated.");
          // get the indices
          int numnew = locktest->howMany();
          std::vector<int> indnew = locktest->whichVecs();

          // don't lock more than maxLocked_; we didn't allocate enough space.
          if (curNumLocked + numnew > maxLocked_) {
            numnew = maxLocked_ - curNumLocked;
            indnew.resize(numnew);
          }

          // the call below to lobpcg_solver->setAuxVecs() will reset the solver to unitialized with hasP() == false
          // store the hasP() state for use below
          bool hadP = lobpcg_solver->hasP();

          {
            // debug printing
            printer->print(Debug,"Locking vectors: ");
            for (unsigned int i=0; i<indnew.size(); i++) {printer->stream(Debug) << " " << indnew[i];}
            printer->print(Debug,"\n");
          }
          std::vector<MagnitudeType> newvals(numnew);
          Teuchos::RCP<const MV> newvecs;
          {
            // work in a local scope, to hide the variabes needed for extracting this info
            // get the vectors
            newvecs = MVT::CloneView(*lobpcg_solver->getRitzVectors(),indnew);
            // get the values
            std::vector<Value<ScalarType> > allvals = lobpcg_solver->getRitzValues();
            for (int i=0; i<numnew; i++) {
              newvals[i] = allvals[indnew[i]].realpart;
            }
          }
          // put newvecs into lockvecs
          {
            std::vector<int> indlock(numnew);
            for (int i=0; i<numnew; i++) indlock[i] = curNumLocked+i;
            MVT::SetBlock(*newvecs,indlock,*lockvecs);
            newvecs = Teuchos::null;
          }
          // put newvals into lockvals
          lockvals.insert(lockvals.end(),newvals.begin(),newvals.end());
          curNumLocked += numnew;
          // add locked vecs as aux vecs, along with aux vecs from problem
          {
            std::vector<int> indlock(curNumLocked);
            for (int i=0; i<curNumLocked; i++) indlock[i] = i;
            Teuchos::RCP<const MV> curlocked = MVT::CloneView(*lockvecs,indlock);
            if (probauxvecs != Teuchos::null) {
              lobpcg_solver->setAuxVecs( Teuchos::tuple< Teuchos::RCP<const MV> >(probauxvecs,curlocked) );
            }
            else {
              lobpcg_solver->setAuxVecs( Teuchos::tuple< Teuchos::RCP<const MV> >(curlocked) );
            }
          }
          // add locked vals to ordertest
          ordertest->setAuxVals(lockvals);
          // fill out the empty state in the solver
          {
            LOBPCGState<ScalarType,MV> state = lobpcg_solver->getState();
            Teuchos::RCP<MV> newstateX, newstateMX, newstateP, newstateMP;
            //
            // workMV will be partitioned as follows: workMV = [X P MX MP],
            //
            // make a copy of the current X,MX state
            std::vector<int> bsind(blockSize_);
            for (int i=0; i<blockSize_; i++) bsind[i] = i;
            newstateX = MVT::CloneViewNonConst(*workMV,bsind);
            MVT::SetBlock(*state.X,bsind,*newstateX);

            if (state.MX != Teuchos::null) {
              std::vector<int> block3(blockSize_);
              for (int i=0; i<blockSize_; i++) block3[i] = 2*blockSize_+i;
              newstateMX = MVT::CloneViewNonConst(*workMV,block3);
              MVT::SetBlock(*state.MX,bsind,*newstateMX);
            }
            //
            // get select part, set to random, apply M
            {
              Teuchos::RCP<MV> newX = MVT::CloneViewNonConst(*newstateX,indnew);
              MVT::MvRandom(*newX);

              if (newstateMX != Teuchos::null) {
                Teuchos::RCP<MV> newMX = MVT::CloneViewNonConst(*newstateMX,indnew);
                OPT::Apply(*problem_->getM(),*newX,*newMX);
              }
            }

            Teuchos::Array<Teuchos::RCP<const MV> > curauxvecs = lobpcg_solver->getAuxVecs();
            Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC;
            // ortho X against the aux vectors
            ortho->projectAndNormalizeMat(*newstateX,curauxvecs,dummyC,Teuchos::null,newstateMX);

            if (hadP) {
              //
              // get P and optionally MP, orthogonalize against X and auxiliary vectors
              std::vector<int> block2(blockSize_);
              for (int i=0; i<blockSize_; i++) block2[i] = blockSize_+i;
              newstateP = MVT::CloneViewNonConst(*workMV,block2);
              MVT::SetBlock(*state.P,bsind,*newstateP);

              if (state.MP != Teuchos::null) {
                std::vector<int> block4(blockSize_);
                for (int i=0; i<blockSize_; i++) block4[i] = 3*blockSize_+i;
                newstateMP = MVT::CloneViewNonConst(*workMV,block4);
                MVT::SetBlock(*state.MP,bsind,*newstateMP);
              }

              if (fullOrtho_) {
                // ortho P against the new aux vectors and new X
                curauxvecs.push_back(newstateX);
                ortho->projectAndNormalizeMat(*newstateP,curauxvecs,dummyC,Teuchos::null,newstateMP);
              }
              else {
                // ortho P against the new aux vectors
                ortho->projectAndNormalizeMat(*newstateP,curauxvecs,dummyC,Teuchos::null,newstateMP);
              }
            }
            // set the new state
            LOBPCGState<ScalarType,MV> newstate;
            newstate.X  = newstateX;
            newstate.MX = newstateMX;
            newstate.P  = newstateP;
            newstate.MP = newstateMP;
            lobpcg_solver->initialize(newstate);
          }

          if (curNumLocked == maxLocked_) {
            // disable locking now; remove locking test from combo test
            combotest->removeTest(locktest);
          }
        }
        else {
          TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::LOBPCGSolMgr::solve(): Invalid return from lobpcg_solver::iterate().");
        }
      }
      ////////////////////////////////////////////////////////////////////////////////////
      //
      // check Ritz Failure
      //
      ////////////////////////////////////////////////////////////////////////////////////
      catch (const LOBPCGRitzFailure &re) {
        if (fullOrtho_==true || recover_==false) {
          // if we are already using full orthogonalization, there isn't much we can do here.
          // the most recent information in the status tests is still valid, and can be used to extract/return the
          // eigenpairs that have converged.
          printer->stream(Warnings) << "Error! Caught LOBPCGRitzFailure at iteration " << lobpcg_solver->getNumIters() << std::endl
            << "Will not try to recover." << std::endl;
          break; // while(1)
        }
        printer->stream(Warnings) << "Error! Caught LOBPCGRitzFailure at iteration " << lobpcg_solver->getNumIters() << std::endl
          << "Full orthogonalization is off; will try to recover." << std::endl;
        // get the current "basis" from the solver, orthonormalize it, do a rayleigh-ritz, and restart with the ritz vectors
        // if there aren't enough, break and quit with what we have
        //
        // workMV = [X H P OpX OpH OpP], where OpX OpH OpP will be used for K and M
        LOBPCGState<ScalarType,MV> curstate = lobpcg_solver->getState();
        Teuchos::RCP<MV> restart, Krestart, Mrestart;
        int localsize = lobpcg_solver->hasP() ? 3*blockSize_ : 2*blockSize_;
        bool hasM = problem_->getM() != Teuchos::null;
        {
          std::vector<int> recind(localsize);
          for (int i=0; i<localsize; i++) recind[i] = i;
          restart = MVT::CloneViewNonConst(*workMV,recind);
        }
        {
          std::vector<int> recind(localsize);
          for (int i=0; i<localsize; i++) recind[i] = localsize+i;
          Krestart = MVT::CloneViewNonConst(*workMV,recind);
        }
        if (hasM) {
          Mrestart = Krestart;
        }
        else {
          Mrestart = restart;
        }
        //
        // set restart = [X H P] and Mrestart = M*[X H P]
        //
        // put X into [0 , blockSize)
        {
          std::vector<int> blk1(blockSize_);
          for (int i=0; i < blockSize_; i++) blk1[i] = i;
          MVT::SetBlock(*curstate.X,blk1,*restart);

          // put MX into [0 , blockSize)
          if (hasM) {
            MVT::SetBlock(*curstate.MX,blk1,*Mrestart);
          }
        }
        //
        // put H into [blockSize_ , 2*blockSize)
        {
          std::vector<int> blk2(blockSize_);
          for (int i=0; i < blockSize_; i++) blk2[i] = blockSize_+i;
          MVT::SetBlock(*curstate.H,blk2,*restart);

          // put MH into [blockSize_ , 2*blockSize)
          if (hasM) {
            MVT::SetBlock(*curstate.MH,blk2,*Mrestart);
          }
        }
        // optionally, put P into [2*blockSize,3*blockSize)
        if (localsize == 3*blockSize_) {
          std::vector<int> blk3(blockSize_);
          for (int i=0; i < blockSize_; i++) blk3[i] = 2*blockSize_+i;
          MVT::SetBlock(*curstate.P,blk3,*restart);

          // put MP into [2*blockSize,3*blockSize)
          if (hasM) {
            MVT::SetBlock(*curstate.MP,blk3,*Mrestart);
          }
        }
        // project against auxvecs and locked vecs, and orthonormalize the basis
        Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > dummyC;
        Teuchos::Array<Teuchos::RCP<const MV> > Q;
        {
          if (curNumLocked > 0) {
            std::vector<int> indlock(curNumLocked);
            for (int i=0; i<curNumLocked; i++) indlock[i] = i;
            Teuchos::RCP<const MV> curlocked = MVT::CloneView(*lockvecs,indlock);
            Q.push_back(curlocked);
          }
          if (probauxvecs != Teuchos::null) {
            Q.push_back(probauxvecs);
          }
        }
        int rank = ortho->projectAndNormalizeMat(*restart,Q,dummyC,Teuchos::null,Mrestart);
        if (rank < blockSize_) {
          // quit
          printer->stream(Errors) << "Error! Recovered basis only rank " << rank << ". Block size is " << blockSize_ << ".\n"
            << "Recovery failed." << std::endl;
          break;
        }
        // reduce multivec size if necessary
        if (rank < localsize) {
          localsize = rank;
          std::vector<int> redind(localsize);
          for (int i=0; i<localsize; i++) redind[i] = i;
          // grab the first part of restart,Krestart
          restart = MVT::CloneViewNonConst(*restart,redind);
          Krestart = MVT::CloneViewNonConst(*Krestart,redind);
          if (hasM) {
            Mrestart = Krestart;
          }
          else {
            Mrestart = restart;
          }
        }
        Teuchos::SerialDenseMatrix<int,ScalarType> KK(localsize,localsize), MM(localsize,localsize), S(localsize,localsize);
        std::vector<MagnitudeType> theta(localsize);
        // project the matrices
        //
        // MM = restart^H M restart
        MVT::MvTransMv(1.0,*restart,*Mrestart,MM);
        //
        // compute Krestart = K*restart
        OPT::Apply(*problem_->getOperator(),*restart,*Krestart);
        //
        // KK = restart^H K restart
        MVT::MvTransMv(1.0,*restart,*Krestart,KK);
        rank = localsize;
        msutils::directSolver(localsize,KK,Teuchos::rcpFromRef(MM),S,theta,rank,1);
        if (rank < blockSize_) {
          printer->stream(Errors) << "Error! Recovered basis of rank " << rank << " produced only " << rank << "ritz vectors.\n"
            << "Block size is " << blockSize_ << ".\n"
            << "Recovery failed." << std::endl;
          break;
        }
        theta.resize(rank);
        //
        // sort the ritz values using the sort manager
        {
          Teuchos::BLAS<int,ScalarType> blas;
          std::vector<int> order(rank);
          // sort
          sorter->sort( theta, Teuchos::rcpFromRef(order),rank );   // don't catch exception
          // Sort the primitive ritz vectors
          Teuchos::SerialDenseMatrix<int,ScalarType> curS(Teuchos::View,S,rank,rank);
          msutils::permuteVectors(order,curS);
        }
        //
        Teuchos::SerialDenseMatrix<int,ScalarType> S1(Teuchos::View,S,localsize,blockSize_);
        //
        // compute the ritz vectors: store them in Krestart
        LOBPCGState<ScalarType,MV> newstate;
        Teuchos::RCP<MV> newX;
        {
          std::vector<int> bsind(blockSize_);
          for (int i=0; i<blockSize_; i++) bsind[i] = i;
          newX = MVT::CloneViewNonConst(*Krestart,bsind);
        }
        MVT::MvTimesMatAddMv(1.0,*restart,S1,0.0,*newX);
        // send X and theta into the solver
        newstate.X = newX;
        theta.resize(blockSize_);
        newstate.T = Teuchos::rcpFromRef(theta);
        // initialize
        lobpcg_solver->initialize(newstate);
      }
      catch (const AnasaziError &err) {
        printer->stream(Errors)
          << "Anasazi::LOBPCGSolMgr::solve() caught unexpected exception from Anasazi::LOBPCG::iterate() at iteration " << lobpcg_solver->getNumIters() << std::endl
          << err.what() << std::endl
          << "Anasazi::LOBPCGSolMgr::solve() returning Unconverged with no solutions." << std::endl;
        return Unconverged;
      }
      // don't catch any other exceptions
    }

    sol.numVecs = ordertest->howMany();
    if (sol.numVecs > 0) {
      sol.Evecs = MVT::Clone(*problem_->getInitVec(),sol.numVecs);
      sol.Espace = sol.Evecs;
      sol.Evals.resize(sol.numVecs);
      std::vector<MagnitudeType> vals(sol.numVecs);

      // copy them into the solution
      std::vector<int> which = ordertest->whichVecs();
      // indices between [0,blockSize) refer to vectors/values in the solver
      // indices between [-curNumLocked,-1] refer to locked vectors/values [0,curNumLocked)
      // everything has already been ordered by the solver; we just have to partition the two references
      std::vector<int> inlocked(0), insolver(0);
      for (unsigned int i=0; i<which.size(); i++) {
        if (which[i] >= 0) {
          TEUCHOS_TEST_FOR_EXCEPTION(which[i] >= blockSize_,std::logic_error,"Anasazi::LOBPCGSolMgr::solve(): positive indexing mistake from ordertest.");
          insolver.push_back(which[i]);
        }
        else {
          // sanity check
          TEUCHOS_TEST_FOR_EXCEPTION(which[i] < -curNumLocked,std::logic_error,"Anasazi::LOBPCGSolMgr::solve(): negative indexing mistake from ordertest.");
          inlocked.push_back(which[i] + curNumLocked);
        }
      }

      TEUCHOS_TEST_FOR_EXCEPTION(insolver.size() + inlocked.size() != (unsigned int)sol.numVecs,std::logic_error,"Anasazi::LOBPCGSolMgr::solve(): indexing mistake.");

      // set the vecs,vals in the solution
      if (insolver.size() > 0) {
        // set vecs
        int lclnum = insolver.size();
        std::vector<int> tosol(lclnum);
        for (int i=0; i<lclnum; i++) tosol[i] = i;
        Teuchos::RCP<const MV> v = MVT::CloneView(*lobpcg_solver->getRitzVectors(),insolver);
        MVT::SetBlock(*v,tosol,*sol.Evecs);
        // set vals
        std::vector<Value<ScalarType> > fromsolver = lobpcg_solver->getRitzValues();
        for (unsigned int i=0; i<insolver.size(); i++) {
          vals[i] = fromsolver[insolver[i]].realpart;
        }
      }

      // get the vecs,vals from locked storage
      if (inlocked.size() > 0) {
        int solnum = insolver.size();
        // set vecs
        int lclnum = inlocked.size();
        std::vector<int> tosol(lclnum);
        for (int i=0; i<lclnum; i++) tosol[i] = solnum + i;
        Teuchos::RCP<const MV> v = MVT::CloneView(*lockvecs,inlocked);
        MVT::SetBlock(*v,tosol,*sol.Evecs);
        // set vals
        for (unsigned int i=0; i<inlocked.size(); i++) {
          vals[i+solnum] = lockvals[inlocked[i]];
        }
      }

      // sort the eigenvalues and permute the eigenvectors appropriately
      {
        std::vector<int> order(sol.numVecs);
        sorter->sort( vals, Teuchos::rcpFromRef(order), sol.numVecs);
        // store the values in the Eigensolution
        for (int i=0; i<sol.numVecs; i++) {
          sol.Evals[i].realpart = vals[i];
          sol.Evals[i].imagpart = MT::zero();
        }
        // now permute the eigenvectors according to order
        msutils::permuteVectors(sol.numVecs,order,*sol.Evecs);
      }

      // setup sol.index, remembering that all eigenvalues are real so that index = {0,...,0}
      sol.index.resize(sol.numVecs,0);
    }
  }

  // print final summary
  lobpcg_solver->currentStatus(printer->stream(FinalSummary));

  // print timing information
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
  if ( printer->isVerbosity( TimingDetails ) ) {
    Teuchos::TimeMonitor::summarize( printer->stream( TimingDetails ) );
  }
#endif

  problem_->setSolution(sol);
  printer->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;

  // get the number of iterations performed in this call to solve.
  numIters_ = lobpcg_solver->getNumIters();

  if (sol.numVecs < nev) {
    return Unconverged; // return from LOBPCGSolMgr::solve()
  }
  return Converged; // return from LOBPCGSolMgr::solve()
}


template <class ScalarType, class MV, class OP>
void
LOBPCGSolMgr<ScalarType,MV,OP>::setGlobalStatusTest(
    const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &global)
{
  globalTest_ = global;
}

template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &
LOBPCGSolMgr<ScalarType,MV,OP>::getGlobalStatusTest() const
{
  return globalTest_;
}

template <class ScalarType, class MV, class OP>
void
LOBPCGSolMgr<ScalarType,MV,OP>::setDebugStatusTest(
    const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &debug)
{
  debugTest_ = debug;
}

template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &
LOBPCGSolMgr<ScalarType,MV,OP>::getDebugStatusTest() const
{
  return debugTest_;
}

template <class ScalarType, class MV, class OP>
void
LOBPCGSolMgr<ScalarType,MV,OP>::setLockingStatusTest(
    const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &locking)
{
  lockingTest_ = locking;
}

template <class ScalarType, class MV, class OP>
const Teuchos::RCP< StatusTest<ScalarType,MV,OP> > &
LOBPCGSolMgr<ScalarType,MV,OP>::getLockingStatusTest() const
{
  return lockingTest_;
}

} // end Anasazi namespace

#endif /* ANASAZI_LOBPCG_SOLMGR_HPP */