/usr/include/trilinos/AnasaziMatOrthoManager.hpp is in libtrilinos-anasazi-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
/*! \file AnasaziMatOrthoManager.hpp
\brief Templated virtual class for providing orthogonalization/orthonormalization methods with matrix-based
inner products.
*/
#ifndef ANASAZI_MATORTHOMANAGER_HPP
#define ANASAZI_MATORTHOMANAGER_HPP
/*! \class Anasazi::MatOrthoManager
\brief Anasazi's templated virtual class for providing routines for
orthogonalization and orthonormalization of multivectors using matrix-based
inner products.
This class extends Anasazi::OrthoManager by providing extra calling arguments
to orthogonalization routines, to reduce the cost of applying the inner
product in cases where the user already has the image of target multivectors
under the inner product matrix.
A concrete implementation of this class is necessary. The user can create
their own implementation if those supplied are not suitable for their needs.
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, and Heidi Thornquist
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziOrthoManager.hpp"
#include "AnasaziMultiVecTraits.hpp"
#include "AnasaziOperatorTraits.hpp"
namespace Anasazi {
template <class ScalarType, class MV, class OP>
class MatOrthoManager : public OrthoManager<ScalarType,MV> {
public:
//! @name Constructor/Destructor
//@{
//! Default constructor.
MatOrthoManager(Teuchos::RCP<const OP> Op = Teuchos::null);
//! Destructor.
virtual ~MatOrthoManager() {};
//@}
//! @name Accessor routines
//@{
//! Set operator used for inner product.
virtual void setOp( Teuchos::RCP<const OP> Op );
//! Get operator used for inner product.
virtual Teuchos::RCP<const OP> getOp() const;
//! Retrieve operator counter.
/*! This counter returns the number of applications of the operator specifying the inner
* product. When the operator is applied to a multivector, the counter is incremented by the
* number of vectors in the multivector. If the operator is not specified, the counter is never
* incremented.
*/
int getOpCounter() const;
//! Reset the operator counter to zero.
/*! See getOpCounter() for more details.
*/
void resetOpCounter();
//@}
//! @name Matrix-based Orthogonality Methods
//@{
/*! \brief Provides a matrix-based inner product.
*
* Provides the inner product
* \f[
* \langle x, y \rangle = x^H M y
* \f]
* Optionally allows the provision of \f$M y\f$ and/or \f$M x\f$. See OrthoManager::innerProd() for more details.
*
*/
void innerProdMat(
const MV& X, const MV& Y,
Teuchos::SerialDenseMatrix<int,ScalarType>& Z,
Teuchos::RCP<const MV> MX = Teuchos::null,
Teuchos::RCP<const MV> MY = Teuchos::null
) const;
/*! \brief Provides the norm induced by the matrix-based inner product.
*
* Provides the norm:
* \f[
* \|x\|_M = \sqrt{x^H M y}
* \f]
* Optionally allows the provision of \f$M x\f$. See OrthoManager::norm() for more details.
*/
void normMat(
const MV& X,
std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &normvec,
Teuchos::RCP<const MV> MX = Teuchos::null
) const;
/*! \brief Provides matrix-based projection method.
*
* This method optionally allows the provision of \f$M X\f$ and/or the \f$M Q[i]\f$. See OrthoManager::project() for more details.
@param X, Q, C [in/out] As in OrthoManager::project()
@param MX [in/out] If specified by the user, on input \c MX is required to be the image of \c X under the operator getOp().
On output, \c MX will be updated to reflect the changes in \c X.
@param MQ [in] If specified by the user, on \c MQ[i] is required to be the image of <tt>Q[i]</tt> under the operator getOp().
*/
virtual void projectMat (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<MV> MX = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MQ
= Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const = 0;
/*! \brief Provides matrix-based orthonormalization method.
*
* This method optionally allows the provision of \f$M X\f$. See orthoManager::normalize() for more details.
@param X, B [in/out] As in OrthoManager::normalize()
@param MX [in/out] If specified by the user, on input \c MX is required to be the image of \c X under the operator getOp().
On output, \c MX will be updated to reflect the changes in \c X.
@return Rank of the basis computed by this method, less than or equal to
the number of columns in \c X. This specifies how many columns in the
returned \c X and \c MX and rows in the returned \c B are valid.
*/
virtual int normalizeMat (
MV &X,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
Teuchos::RCP<MV> MX = Teuchos::null
) const = 0;
/*! \brief Provides matrix-based projection/orthonormalization method.
*
* This method optionally allows the provision of \f$M X\f$ and/or the \f$M Q[i]\f$. See orthoManager::projectAndNormalize() for more details.
@param X, Q, C, B [in/out] As in OrthoManager::projectAndNormalize()
@param MX [in/out] If specified by the user, on input \c MX is required to be the image of \c X under the operator getOp().
On output, \c MX will be updated to reflect the changes in \c X.
@param MQ [in] If specified by the user, on \c MQ[i] is required to be the image of <tt>Q[i]</tt> under the operator getOp().
@return Rank of the basis computed by this method, less than or equal to
the number of columns in \c X. This specifies how many columns in the
returned \c X and \c MX and rows in the returned \c B are valid.
*/
virtual int projectAndNormalizeMat (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null,
Teuchos::RCP<MV> MX = Teuchos::null,
Teuchos::Array<Teuchos::RCP<const MV> > MQ
= Teuchos::tuple(Teuchos::RCP<const MV>(Teuchos::null))
) const = 0;
/*! \brief This method computes the error in orthonormality of a multivector.
*
* This method optionally allows optionally exploits a caller-provided \c MX.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormErrorMat(const MV &X, Teuchos::RCP<const MV> MX = Teuchos::null) const = 0;
/*! \brief This method computes the error in orthogonality of two multivectors.
*
* This method optionally allows optionally exploits a caller-provided \c MX and/or \c MY.
*/
virtual typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogErrorMat(
const MV &X,
const MV &Y,
Teuchos::RCP<const MV> MX = Teuchos::null,
Teuchos::RCP<const MV> MY = Teuchos::null
) const = 0;
//@}
//! @name Methods implementing Anasazi::OrthoManager
//@{
/*! \brief Implements the interface OrthoManager::innerProd().
*
* This method calls
* \code
* innerProdMat(X,Y,Z);
* \endcode
*/
void innerProd( const MV& X, const MV& Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const;
/*! \brief Implements the interface OrthoManager::norm().
*
* This method calls
* \code
* normMat(X,normvec);
* \endcode
*/
void norm( const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &normvec ) const;
/*! \brief Implements the interface OrthoManager::project().
*
* This method calls
* \code
* projectMat(X,Q,C);
* \endcode
*/
void project (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null))
) const;
/*! \brief Implements the interface OrthoManager::normalize().
*
* This method calls
* \code
* normalizeMat(X,B);
* \endcode
*/
int normalize ( MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null) const;
/*! \brief Implements the interface OrthoManager::projectAndNormalize().
*
* This method calls
* \code
* projectAndNormalizeMat(X,Q,C,B);
* \endcode
*/
int projectAndNormalize (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
= Teuchos::tuple(Teuchos::RCP< Teuchos::SerialDenseMatrix<int,ScalarType> >(Teuchos::null)),
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B = Teuchos::null
) const;
/*! \brief Implements the interface OrthoManager::orthonormError().
*
* This method calls
* \code
* orthonormErrorMat(X);
* \endcode
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthonormError(const MV &X) const;
/*! \brief Implements the interface OrthoManager::orthogError().
*
* This method calls
* \code
* orthogErrorMat(X1,X2);
* \endcode
*/
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
orthogError(const MV &X1, const MV &X2) const;
//@}
protected:
Teuchos::RCP<const OP> _Op;
bool _hasOp;
mutable int _OpCounter;
};
template <class ScalarType, class MV, class OP>
MatOrthoManager<ScalarType,MV,OP>::MatOrthoManager(Teuchos::RCP<const OP> Op)
: _Op(Op), _hasOp(Op!=Teuchos::null), _OpCounter(0) {}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::setOp( Teuchos::RCP<const OP> Op )
{
_Op = Op;
_hasOp = (_Op != Teuchos::null);
}
template <class ScalarType, class MV, class OP>
Teuchos::RCP<const OP> MatOrthoManager<ScalarType,MV,OP>::getOp() const
{
return _Op;
}
template <class ScalarType, class MV, class OP>
int MatOrthoManager<ScalarType,MV,OP>::getOpCounter() const
{
return _OpCounter;
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::resetOpCounter()
{
_OpCounter = 0;
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::innerProd(
const MV& X, const MV& Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z ) const
{
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
Teuchos::RCP<const MV> P,Q;
Teuchos::RCP<MV> R;
if (_hasOp) {
// attempt to minimize the amount of work in applying
if ( MVT::GetNumberVecs(X) < MVT::GetNumberVecs(Y) ) {
R = MVT::Clone(X,MVT::GetNumberVecs(X));
OPT::Apply(*_Op,X,*R);
_OpCounter += MVT::GetNumberVecs(X);
P = R;
Q = Teuchos::rcpFromRef(Y);
}
else {
P = Teuchos::rcpFromRef(X);
R = MVT::Clone(Y,MVT::GetNumberVecs(Y));
OPT::Apply(*_Op,Y,*R);
_OpCounter += MVT::GetNumberVecs(Y);
Q = R;
}
}
else {
P = Teuchos::rcpFromRef(X);
Q = Teuchos::rcpFromRef(Y);
}
MVT::MvTransMv(SCT::one(),*P,*Q,Z);
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::innerProdMat(
const MV& X, const MV& Y, Teuchos::SerialDenseMatrix<int,ScalarType>& Z, Teuchos::RCP<const MV> MX, Teuchos::RCP<const MV> MY) const
{
(void) MX;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef MultiVecTraits<ScalarType,MV> MVT;
// typedef OperatorTraits<ScalarType,MV,OP> OPT; // unused
Teuchos::RCP<MV> P,Q;
if ( MY == Teuchos::null ) {
innerProd(X,Y,Z);
}
else if ( _hasOp ) {
// the user has done the matrix vector for us
MVT::MvTransMv(SCT::one(),X,*MY,Z);
}
else {
// there is no matrix vector
MVT::MvTransMv(SCT::one(),X,Y,Z);
}
#ifdef TEUCHOS_DEBUG
for (int j=0; j<Z.numCols(); j++) {
for (int i=0; i<Z.numRows(); i++) {
TEUCHOS_TEST_FOR_EXCEPTION(SCT::isnaninf(Z(i,j)), std::logic_error,
"Anasazi::MatOrthoManager::innerProdMat(): detected NaN/inf.");
}
}
#endif
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::norm(
const MV& X, std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &normvec ) const
{
this->normMat(X,normvec);
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::normMat(
const MV& X,
std::vector< typename Teuchos::ScalarTraits<ScalarType>::magnitudeType > &normvec,
Teuchos::RCP<const MV> MX) const
{
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef Teuchos::ScalarTraits<typename SCT::magnitudeType> MT;
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef OperatorTraits<ScalarType,MV,OP> OPT;
int nvecs = MVT::GetNumberVecs(X);
// Make sure that normvec has enough entries to hold the norms
// of all the columns of X. std::vector<T>::size_type is
// unsigned, so do the appropriate cast to avoid signed/unsigned
// comparisons that trigger compiler warnings.
if (normvec.size() < static_cast<size_t>(nvecs))
normvec.resize (nvecs);
if (!_hasOp) {
// X == MX, since the operator M is the identity.
MX = Teuchos::rcp(&X, false);
MVT::MvNorm(X, normvec);
}
else {
// The caller didn't give us a previously computed MX, so
// apply the operator. We assign to MX only after applying
// the operator, so that if the application fails, MX won't be
// modified.
if(MX == Teuchos::null) {
Teuchos::RCP<MV> tempVec = MVT::Clone(X,nvecs);
OPT::Apply(*_Op,X,*tempVec);
_OpCounter += nvecs;
MX = tempVec;
}
else {
// The caller gave us a previously computed MX. Make sure
// that it has at least as many columns as X.
const int numColsMX = MVT::GetNumberVecs(*MX);
TEUCHOS_TEST_FOR_EXCEPTION(numColsMX < nvecs, std::invalid_argument,
"MatOrthoManager::norm(X, MX, normvec): "
"MX has fewer columns than X: "
"MX has " << numColsMX << " columns, "
"and X has " << nvecs << " columns.");
}
std::vector<ScalarType> dotvec(nvecs);
MVT::MvDot(X,*MX,dotvec);
for (int i=0; i<nvecs; i++) {
normvec[i] = MT::squareroot( SCT::magnitude(dotvec[i]) );
}
}
}
template <class ScalarType, class MV, class OP>
void MatOrthoManager<ScalarType,MV,OP>::project (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C
) const
{
this->projectMat(X,Q,C);
}
template <class ScalarType, class MV, class OP>
int MatOrthoManager<ScalarType,MV,OP>::normalize (
MV &X, Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B ) const
{
return this->normalizeMat(X,B);
}
template <class ScalarType, class MV, class OP>
int MatOrthoManager<ScalarType,MV,OP>::projectAndNormalize (
MV &X,
Teuchos::Array<Teuchos::RCP<const MV> > Q,
Teuchos::Array<Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > > C,
Teuchos::RCP<Teuchos::SerialDenseMatrix<int,ScalarType> > B
) const
{
return this->projectAndNormalizeMat(X,Q,C,B);
}
template <class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
MatOrthoManager<ScalarType,MV,OP>::orthonormError(const MV &X) const
{
return this->orthonormErrorMat(X,Teuchos::null);
}
template <class ScalarType, class MV, class OP>
typename Teuchos::ScalarTraits<ScalarType>::magnitudeType
MatOrthoManager<ScalarType,MV,OP>::orthogError(const MV &X1, const MV &X2) const
{
return this->orthogErrorMat(X1,X2);
}
} // end of Anasazi namespace
#endif
// end of file AnasaziMatOrthoManager.hpp
|