/usr/include/trilinos/AnasaziSimpleLOBPCGSolMgr.hpp is in libtrilinos-anasazi-dev 12.10.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | // @HEADER
// ***********************************************************************
//
// Anasazi: Block Eigensolvers Package
// Copyright (2004) Sandia Corporation
//
// Under terms of Contract DE-AC04-94AL85000, there is a non-exclusive
// license for use of this work by or on behalf of the U.S. Government.
//
// This library is free software; you can redistribute it and/or modify
// it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; either version 2.1 of the
// License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
// USA
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ***********************************************************************
// @HEADER
#ifndef ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP
#define ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP
/*! \file AnasaziSimpleLOBPCGSolMgr.hpp
\brief The Anasazi::SimpleLOBPCGSolMgr provides a simple solver manager over the LOBPCG
eigensolver.
*/
#include "AnasaziConfigDefs.hpp"
#include "AnasaziTypes.hpp"
#include "AnasaziEigenproblem.hpp"
#include "AnasaziSolverManager.hpp"
#include "AnasaziLOBPCG.hpp"
#include "AnasaziBasicSort.hpp"
#include "AnasaziSVQBOrthoManager.hpp"
#include "AnasaziStatusTestMaxIters.hpp"
#include "AnasaziStatusTestResNorm.hpp"
#include "AnasaziStatusTestCombo.hpp"
#include "AnasaziStatusTestOutput.hpp"
#include "AnasaziBasicOutputManager.hpp"
#include "AnasaziSolverUtils.hpp"
#include "Teuchos_TimeMonitor.hpp"
/// \example LOBPCGEpetraExSimple.cpp
/// \brief Use "Simple LOBPCG" with Epetra test problem (computed here).
///
/// This example computes the eigenvalues of largest magnitude of an
/// eigenvalue problem $A x = \lambda x$, using Anasazi's "simple"
/// implementation of the LOBPCG method, with Epetra linear algebra.
/// It constructs the test problem within the example itself.
/*! \class Anasazi::SimpleLOBPCGSolMgr
\brief The Anasazi::SimpleLOBPCGSolMgr provides a simple solver
manager over the LOBPCG eigensolver.
Anasazi::SimpleLOBPCGSolMgr allows the user to specify convergence
tolerance, verbosity level and block size. When block size is less than the
number of requested eigenvalues specified in the eigenproblem, checkpointing
is activated.
The purpose of this solver manager was to provide an example of a simple
solver manager, useful for demonstration as well as a jumping-off point for
solvermanager development. Also, the solver manager is useful for testing
some of the features of the Anasazi::LOBPCG eigensolver, principally the use
of auxiliary vectors.
This solver manager does not verify before quitting that the nev eigenvectors
that have converged are also the smallest nev eigenvectors that are known.
\ingroup anasazi_solver_framework
\author Chris Baker, Ulrich Hetmaniuk, Rich Lehoucq, Heidi Thornquist
*/
namespace Anasazi {
template<class ScalarType, class MV, class OP>
class SimpleLOBPCGSolMgr : public SolverManager<ScalarType,MV,OP> {
private:
typedef MultiVecTraits<ScalarType,MV> MVT;
typedef Teuchos::ScalarTraits<ScalarType> SCT;
typedef typename Teuchos::ScalarTraits<ScalarType>::magnitudeType MagnitudeType;
typedef Teuchos::ScalarTraits<MagnitudeType> MT;
public:
//!@name Constructors/Destructor
//@{
/*! \brief Basic constructor for SimpleLOBPCGSolMgr.
*
* This constructor accepts the Eigenproblem to be solved in addition
* to a parameter list of options for the solver manager. These options include the following:
* - "Which" - a \c string specifying the desired eigenvalues: SM, LM, SR or LR. Default: SR
* - "Block Size" - a \c int specifying the block size to be used by the underlying LOBPCG solver. Default: problem->getNEV()
* - "Maximum Iterations" - a \c int specifying the maximum number of iterations the underlying solver is allowed to perform. Default: 100
* - "Verbosity" - a sum of MsgType specifying the verbosity. Default: Anasazi::Errors
* - "Convergence Tolerance" - a \c MagnitudeType specifying the level that residual norms must reach to decide convergence. Default: machine precision
*/
SimpleLOBPCGSolMgr( const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl );
//! Destructor.
virtual ~SimpleLOBPCGSolMgr() {};
//@}
//! @name Accessor methods
//@{
const Eigenproblem<ScalarType,MV,OP>& getProblem() const {
return *problem_;
}
int getNumIters() const {
return numIters_;
}
//@}
//! @name Solver application methods
//@{
/*! \brief This method performs possibly repeated calls to the underlying eigensolver's iterate() routine
* until the problem has been solved (as decided by the solver manager) or the solver manager decides to
* quit.
*
* \returns ::ReturnType specifying:
* - ::Converged: the eigenproblem was solved to the specification required by the solver manager.
* - ::Unconverged: the eigenproblem was not solved to the specification desired by the solver manager
*/
ReturnType solve();
//@}
private:
Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > problem_;
std::string whch_;
MagnitudeType tol_;
int verb_;
int blockSize_;
int maxIters_;
int numIters_;
};
////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
SimpleLOBPCGSolMgr<ScalarType,MV,OP>::SimpleLOBPCGSolMgr(
const Teuchos::RCP<Eigenproblem<ScalarType,MV,OP> > &problem,
Teuchos::ParameterList &pl ) :
problem_(problem),
whch_("LM"),
tol_(1e-6),
verb_(Anasazi::Errors),
blockSize_(0),
maxIters_(100),
numIters_(0)
{
TEUCHOS_TEST_FOR_EXCEPTION(problem_ == Teuchos::null, std::invalid_argument, "Problem not given to solver manager.");
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isProblemSet(), std::invalid_argument, "Problem not set.");
TEUCHOS_TEST_FOR_EXCEPTION(!problem_->isHermitian(), std::invalid_argument, "Problem not symmetric.");
TEUCHOS_TEST_FOR_EXCEPTION(problem_->getInitVec() == Teuchos::null,std::invalid_argument, "Problem does not contain initial vectors to clone from.");
whch_ = pl.get("Which","SR");
TEUCHOS_TEST_FOR_EXCEPTION(whch_ != "SM" && whch_ != "LM" && whch_ != "SR" && whch_ != "LR",
AnasaziError,
"SimpleLOBPCGSolMgr: \"Which\" parameter must be SM, LM, SR or LR.");
tol_ = pl.get("Convergence Tolerance",tol_);
TEUCHOS_TEST_FOR_EXCEPTION(tol_ <= 0,
AnasaziError,
"SimpleLOBPCGSolMgr: \"Tolerance\" parameter must be strictly postiive.");
// verbosity level
if (pl.isParameter("Verbosity")) {
if (Teuchos::isParameterType<int>(pl,"Verbosity")) {
verb_ = pl.get("Verbosity", verb_);
} else {
verb_ = (int)Teuchos::getParameter<Anasazi::MsgType>(pl,"Verbosity");
}
}
blockSize_= pl.get("Block Size",problem_->getNEV());
TEUCHOS_TEST_FOR_EXCEPTION(blockSize_ <= 0,
AnasaziError,
"SimpleLOBPCGSolMgr: \"Block Size\" parameter must be strictly positive.");
maxIters_ = pl.get("Maximum Iterations",maxIters_);
}
////////////////////////////////////////////////////////////////////////////////////////
template<class ScalarType, class MV, class OP>
ReturnType
SimpleLOBPCGSolMgr<ScalarType,MV,OP>::solve() {
// sort manager
Teuchos::RCP<BasicSort<MagnitudeType> > sorter = Teuchos::rcp( new BasicSort<MagnitudeType>(whch_) );
// output manager
Teuchos::RCP<BasicOutputManager<ScalarType> > printer = Teuchos::rcp( new BasicOutputManager<ScalarType>(verb_) );
// status tests
Teuchos::RCP<StatusTestMaxIters<ScalarType,MV,OP> > max;
if (maxIters_ > 0) {
max = Teuchos::rcp( new StatusTestMaxIters<ScalarType,MV,OP>(maxIters_) );
}
else {
max = Teuchos::null;
}
Teuchos::RCP<StatusTestResNorm<ScalarType,MV,OP> > norm
= Teuchos::rcp( new StatusTestResNorm<ScalarType,MV,OP>(tol_) );
Teuchos::Array< Teuchos::RCP<StatusTest<ScalarType,MV,OP> > > alltests;
alltests.push_back(norm);
if (max != Teuchos::null) alltests.push_back(max);
Teuchos::RCP<StatusTestCombo<ScalarType,MV,OP> > combo
= Teuchos::rcp( new StatusTestCombo<ScalarType,MV,OP>(
StatusTestCombo<ScalarType,MV,OP>::OR, alltests
));
// printing StatusTest
Teuchos::RCP<StatusTestOutput<ScalarType,MV,OP> > outputtest
= Teuchos::rcp( new StatusTestOutput<ScalarType,MV,OP>( printer,combo,1,Passed ) );
// orthomanager
Teuchos::RCP<SVQBOrthoManager<ScalarType,MV,OP> > ortho
= Teuchos::rcp( new SVQBOrthoManager<ScalarType,MV,OP>(problem_->getM()) );
// parameter list
Teuchos::ParameterList plist;
plist.set("Block Size",blockSize_);
plist.set("Full Ortho",true);
// create an LOBPCG solver
Teuchos::RCP<LOBPCG<ScalarType,MV,OP> > lobpcg_solver
= Teuchos::rcp( new LOBPCG<ScalarType,MV,OP>(problem_,sorter,printer,outputtest,ortho,plist) );
// add the auxillary vecs from the eigenproblem to the solver
if (problem_->getAuxVecs() != Teuchos::null) {
lobpcg_solver->setAuxVecs( Teuchos::tuple<Teuchos::RCP<const MV> >(problem_->getAuxVecs()) );
}
int numfound = 0;
int nev = problem_->getNEV();
Teuchos::Array< Teuchos::RCP<MV> > foundvecs;
Teuchos::Array< Teuchos::RCP< std::vector<MagnitudeType> > > foundvals;
while (numfound < nev) {
// reduce the strain on norm test, if we are almost done
if (nev - numfound < blockSize_) {
norm->setQuorum(nev-numfound);
}
// tell the solver to iterate
try {
lobpcg_solver->iterate();
}
catch (const std::exception &e) {
// we are a simple solver manager. we don't catch exceptions. set solution empty, then rethrow.
printer->stream(Anasazi::Errors) << "Exception: " << e.what() << std::endl;
Eigensolution<ScalarType,MV> sol;
sol.numVecs = 0;
problem_->setSolution(sol);
throw;
}
// check the status tests
if (norm->getStatus() == Passed) {
int num = norm->howMany();
// if num < blockSize_, it is because we are on the last iteration: num+numfound>=nev
TEUCHOS_TEST_FOR_EXCEPTION(num < blockSize_ && num+numfound < nev,
std::logic_error,
"Anasazi::SimpleLOBPCGSolMgr::solve(): logic error.");
std::vector<int> ind = norm->whichVecs();
// just grab the ones that we need
if (num + numfound > nev) {
num = nev - numfound;
ind.resize(num);
}
// copy the converged eigenvectors
Teuchos::RCP<MV> newvecs = MVT::CloneCopy(*lobpcg_solver->getRitzVectors(),ind);
// store them
foundvecs.push_back(newvecs);
// add them as auxiliary vectors
Teuchos::Array<Teuchos::RCP<const MV> > auxvecs = lobpcg_solver->getAuxVecs();
auxvecs.push_back(newvecs);
// setAuxVecs() will reset the solver to uninitialized, without messing with numIters()
lobpcg_solver->setAuxVecs(auxvecs);
// copy the converged eigenvalues
Teuchos::RCP<std::vector<MagnitudeType> > newvals = Teuchos::rcp( new std::vector<MagnitudeType>(num) );
std::vector<Value<ScalarType> > all = lobpcg_solver->getRitzValues();
for (int i=0; i<num; i++) {
(*newvals)[i] = all[ind[i]].realpart;
}
foundvals.push_back(newvals);
numfound += num;
}
else if (max != Teuchos::null && max->getStatus() == Passed) {
int num = norm->howMany();
std::vector<int> ind = norm->whichVecs();
if (num > 0) {
// copy the converged eigenvectors
Teuchos::RCP<MV> newvecs = MVT::CloneCopy(*lobpcg_solver->getRitzVectors(),ind);
// store them
foundvecs.push_back(newvecs);
// don't bother adding them as auxiliary vectors; we have reached maxiters and are going to quit
// copy the converged eigenvalues
Teuchos::RCP<std::vector<MagnitudeType> > newvals = Teuchos::rcp( new std::vector<MagnitudeType>(num) );
std::vector<Value<ScalarType> > all = lobpcg_solver->getRitzValues();
for (int i=0; i<num; i++) {
(*newvals)[i] = all[ind[i]].realpart;
}
foundvals.push_back(newvals);
numfound += num;
}
break; // while(numfound < nev)
}
else {
TEUCHOS_TEST_FOR_EXCEPTION(true,std::logic_error,"Anasazi::SimpleLOBPCGSolMgr::solve(): solver returned without satisfy status test.");
}
} // end of while(numfound < nev)
TEUCHOS_TEST_FOR_EXCEPTION(foundvecs.size() != foundvals.size(),std::logic_error,"Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent array sizes");
// create contiguous storage for all eigenvectors, eigenvalues
Eigensolution<ScalarType,MV> sol;
sol.numVecs = numfound;
if (numfound > 0) {
// allocate space for eigenvectors
sol.Evecs = MVT::Clone(*problem_->getInitVec(),numfound);
}
else {
sol.Evecs = Teuchos::null;
}
sol.Espace = sol.Evecs;
// allocate space for eigenvalues
std::vector<MagnitudeType> vals(numfound);
sol.Evals.resize(numfound);
// all real eigenvalues: set index vectors [0,...,numfound-1]
sol.index.resize(numfound,0);
// store eigenvectors, eigenvalues
int curttl = 0;
for (unsigned int i=0; i<foundvals.size(); i++) {
TEUCHOS_TEST_FOR_EXCEPTION((signed int)(foundvals[i]->size()) != MVT::GetNumberVecs(*foundvecs[i]), std::logic_error, "Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent sizes");
unsigned int lclnum = foundvals[i]->size();
std::vector<int> lclind(lclnum);
for (unsigned int j=0; j<lclnum; j++) lclind[j] = curttl+j;
// put the eigenvectors
MVT::SetBlock(*foundvecs[i],lclind,*sol.Evecs);
// put the eigenvalues
std::copy( foundvals[i]->begin(), foundvals[i]->end(), vals.begin()+curttl );
curttl += lclnum;
}
TEUCHOS_TEST_FOR_EXCEPTION( curttl != sol.numVecs, std::logic_error, "Anasazi::SimpleLOBPCGSolMgr::solve(): inconsistent sizes");
// sort the eigenvalues and permute the eigenvectors appropriately
if (numfound > 0) {
std::vector<int> order(sol.numVecs);
sorter->sort(vals,Teuchos::rcpFromRef(order),sol.numVecs);
// store the values in the Eigensolution
for (int i=0; i<sol.numVecs; i++) {
sol.Evals[i].realpart = vals[i];
sol.Evals[i].imagpart = MT::zero();
}
// now permute the eigenvectors according to order
SolverUtils<ScalarType,MV,OP> msutils;
msutils.permuteVectors(sol.numVecs,order,*sol.Evecs);
}
// print final summary
lobpcg_solver->currentStatus(printer->stream(FinalSummary));
// print timing information
#ifdef ANASAZI_TEUCHOS_TIME_MONITOR
if ( printer->isVerbosity( TimingDetails ) ) {
Teuchos::TimeMonitor::summarize( printer->stream( TimingDetails ) );
}
#endif
// send the solution to the eigenproblem
problem_->setSolution(sol);
printer->stream(Debug) << "Returning " << sol.numVecs << " eigenpairs to eigenproblem." << std::endl;
// get the number of iterations performed for this solve.
numIters_ = lobpcg_solver->getNumIters();
// return from SolMgr::solve()
if (sol.numVecs < nev) return Unconverged;
return Converged;
}
} // end Anasazi namespace
#endif /* ANASAZI_SIMPLE_LOBPCG_SOLMGR_HPP */
|